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Abstract. Models trained in federated settings often suffer from de-
graded performances and fail at generalizing, especially when facing het-
erogeneous scenarios. In this work, we investigate such behavior through
the lens of geometry of the loss and Hessian eigenspectrum, linking the
model’s lack of generalization capacity to the sharpness of the solution.
Motivated by prior studies connecting the sharpness of the loss surface
and the generalization gap, we show that i) training clients locally with
Sharpness-Aware Minimization (SAM) or its adaptive version (ASAM)
and ii) averaging stochastic weights (SWA) on the server-side can sub-
stantially improve generalization in Federated Learning and help bridging
the gap with centralized models. By seeking parameters in neighborhoods
having uniform low loss, the model converges towards flatter minima
and its generalization significantly improves in both homogeneous and
heterogeneous scenarios. Empirical results demonstrate the effectiveness
of those optimizers across a variety of benchmark vision datasets (e.g.
Cifar10/100, Landmarks-User-160k, Idda) and tasks (large scale classi-
fication, semantic segmentation, domain generalization).

1 Introduction

Federated Learning (FL) [51] is a machine learning framework enabling the
training of a prediction model across distributed clients while maintaining their
privacy, never disclosing local data. In recent years it has had a notable resonance
in the world of computer vision, with applications ranging from large-scale
classification [27] to medical imaging [22] to domain generalization [49] and many
others [43,72,21,66]. The learning paradigm is based on communication rounds
where a sub-sample of clients trains the global model independently on their
local datasets, and the produced updates are later aggregated on the server-side.
The heterogeneous distribution of clients’ data, which is usually non-i.i.d. and
unbalanced, poses a major challenge in realistic federated scenarios, leading to
degraded convergence performances [73,26,45]. Locally, the model has only access
to a small portion of the data failing to generalize to the rest of the underlying
distribution. That contrasts with the standard centralized training, where the
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FedAvg α = 0 FedASAM α = 0 FedAvg α = 1k FedASAM α = 1k

Fig. 1: Cross-entropy loss landscapes of the global model in heterogeneous (α = 0) and
homogeneous (α = 1k) federated scenarios on Cifar100. When trained with FedAvg,
the global model converges towards sharp minima. The sharpness-aware optimizer ASAM
significantly smooths the surfaces.

learner can uniformly sample from the whole distribution. While many promising
works in the literature focus on regularizing the local objective to align the global
and local solutions, thus reducing the client drift [45,34,1], less attention has been
given to the explicit optimization of the loss function for finding better minima.
Several works studied the connection between the sharpness of the loss surface
and model’s generalization [25,35,41,38,59,30,12], and proposed effective solutions
based on the minimization of the derived generalization bound [69,18,40] or on
averaging the network’s parameters along the trajectory of SGD [29].

In this work, we first analyze the heterogeneous federated scenario to high-
light the causes behind the poor generalization of the federated algorithms. We
hypothesize during local training the model overfits the current distribution, and
the resulting average of the updates is strayed apart from local minima. Thus, the
global model is not able to generalize to the overall underlying distribution and
has a much slower convergence rate, i.e. it needs a much larger number of rounds
to reach the performance of the homogeneous setting. To speed up training and
reduce the performance gap in the case of non-i.i.d. data, we look at improving
the generalization ability of the model. Motivated by recent findings relating the
geometry of the loss and the generalization gap [35,16,41,32] and by the achieve-
ments in the field of Vision Transformers [12], we analyze the loss landscape in
the federated scenario and find out that models converge to sharp minima (Fig.1),
hence the poor generalization. As a solution, we introduce methods of the current
literature that explicitly look for flat minima: i) Sharpness-Aware Minimization
(SAM) [18] and its adaptive version (ASAM) [40] on the client-side and ii) Stochastic
Weight Averaging (SWA) [29] on the server-side. These modifications, albeit simple,
surprisingly lead to significant improvements. Their use is already effective if
taken individually, but the best performance is obtained when combined. The
resultant models exhibit smoother loss surfaces and improved final performance
consistently across several vision tasks. To summarize, our main contributions
are:

– We analyze the behavior of models trained in heterogeneous and homogeneous
federated scenarios by looking at their convergence points, loss surfaces and
Hessian eigenvalues, linking the lack in generalization to sharp minima.
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– To encourage convergence towards flatter minima, we introduce SAM and ASAM

in the local client-side training and SWA in the aggregation of the updates
on the server-side. The resultant models show smoother loss landscapes and
lower Hessian eigenvalues, with improved generalization capacities.

– We test our approach on multiple vision tasks, i.e. small and large scale clas-
sification [27], domain generalization [7] and semantic segmentation [50,11].

– We compare our method with strong data augmentations techniques and
state-of-the-art FL algorithms, further validating its effectiveness.

2 Related Works

We describe here the existing approaches closely related to our work. For a
comprehensive analysis of the state of the art in FL, we refer to [33,44,70].

2.1 Statistical Heterogeneity in Federated Learning

Federated Learning is a topic in continuous growth and evolution. Aiming at a
real-world scenario, the non-i.i.d. and unbalanced distribution of users’ data poses
a significant challenge. The statistical heterogeneity of local datasets leads to
unstable and slow convergence, suboptimal performance and poor generalization
of the global model [73,26,27]. FedAvg [51] defines the standard optimization
method and is based on multiple local SGD [56] steps per round. The server-
side aggregation is a weighted average of the clients’ updates. This simple
approach is effective in homogeneous scenarios. Still, it fails to achieve comparable
performance against non-i.i.d. data due to local models straying from each other
and leading the central model away from the global optimum [34]. To mitigate the
effect of the client drift, many works enforce regularization in local optimization
so that the local model is not led too far apart from the global one [45,34,27,1,43].
Indeed, averaging models/gradients collected from clients having access to a
limited subset of tasks may translate into oscillations of the global model and
suboptimal performance on the global distribution [48]. Therefore, other lines of
research look at improving the aggregation stage using server-side momentum [26]
and adaptive optimizers [55], or aggregating task-specific parameters [59,8,9].

In this work, we attempt to explain the behavior of the model in federated
scenarios by looking at the loss surface and convergence minima, which is, in
our opinion, a fundamental perspective to fully understand the reasons behind
the degradation of heterogeneous performance relative to centralized and ho-
mogeneous settings. To this end, we focus on explicitly seeking parameters in
uniformly low-loss neighborhoods, without any additional communication cost. By
encouraging local convergence towards flatter minima, we show that the general-
ization capacity of the global model is consequently improved. Moreover, thanks
to the cyclical average of stochastic weights - accumulated along the trajectory of
SGD during rounds on the server-side - broader regions of the weight space are
explored, and wider optima are reached. Referring to the terminology introduced
by [68], we aim at bridging the participation gap introduced by unseen clients
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distributions. Concurrently, [54] provide a theoretical analysis of SAM in FL,
matching the convergence rates of the existing methods. Unlike our work, they
do not explicitly focus on the issue of statistical heterogeneity in vision tasks.

2.2 Real-world Vision Scenarios in Federated Learning

Research on FL has mainly focused on algorithmic aspects, often overlooking its
application to real scenarios and vision tasks. Here, we perform an analysis of
the following real-world settings.
Large-scale Classification. Synthetic federated datasets for classification tasks
are usually limited in size and do not offer a faithful representation of reality in
the data distribution across clients [27]. [27] addresses such issue by adapting the
large-scale Google Landmarks v2 [64] to the federated context, using authorship
information. We employ the resulting Landmarks-User-160k in our experiments.
Semantic Segmentation. A crucial task for real-world applications [19,53], e.g .
autonomous driving [58,61], is Semantic Segmentation (SS), which assigns each
image pixel to a known category. Most studies of SS in FL focus on medical imag-
ing applications and propose ad hoc techniques to safeguard the patients’ privacy
[57,46,67,6]. Differently, [52] focuses on object segmentation using prototypical
representations. A recently studied application is FL in autonomous driving,
motivated by the large amount of privacy-protected data collected by self-driving
cars: the authors of [17] propose a new benchmark for analyzing such a scenario,
FedDrive. None of those works study the relation between loss landscape and
convergence minima of the proposed solution. We apply our approach to the
FedDrive benchmark and prove its efficacy in addressing the federated SS task.
Domain Generalization. When it comes to image data collected from devices
around the world, it is realistic to assume there may be different domains resulting
from the several acquisition devices, light, weather conditions, noise, or viewpoints.
With the rising development of FL and the privacy concerns, the problem of
Domain Generalization (DG) [7] in a federated setting becomes crucial. DG
aims to learn a domain-agnostic model capable of satisfying performances on
unseen domains, and its application to federated scenarios is still poorly studied.
For instance, [49,62] focus on domain shifts deriving from equipment in the
medical field, while [17] analyzes the effects of changing landscapes and weather
conditions in the setting of autonomous driving. We show that our approach
improves generalization to unseen domains both in classification and SS tasks.

2.3 Flat Minima and Generalization

To understand neural networks’ generalization, several theoretical and em-
pirical studies analyze its relationship with the geometry of the loss surface
[25,35,16,41,32], connecting sharp minima with poor generalization. “Flatness”[25]
is defined as the dimension of the region connected around the minimum in which
the training loss remains low. Interestingly, it has been shown [32] that sharpness-
based measures highly correlate with generalization performance. The above
studies lead to the introduction of Sharpness-Aware Minimization (SAM) [18]
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which explicitly seeks flatter minima and smoother loss surfaces through a simulta-
neous minimization of loss sharpness and value during training. As highlighted by
[40], SAM is sensitive to parameter re-scaling, weakening the connection between
loss sharpness and generalization gap. ASAM [40] solves such issue introducing the
concept of adaptive sharpness. Encouraged by their effectiveness across a variety
of architectures and tasks[12,4], we ask whether SAM and ASAM can improve gener-
alization in FL as well and find it effective even in the most difficult scenarios. In
addition, [20,15] show that local optima found by SGD are connected through a
path of near constant loss and that ensambling those points in the weight space
leads to high performing networks. Building upon these insights, [29] proposes to
average the points traversed by SGD to improve generalization and indeed show
the model converges towards wider optima. We modify this approach for FL and
use it to cyclically ensemble the models obtained with FedAvg on the server side.

3 Behind the Curtain of Heterogeneous FL

3.1 Federated Learning: Overview

The standard federated framework is based on a central server exchanging
messages with K distributed clients. Each device k has access to a privacy-
protected dataset Dk made of Nk images belonging to the input space X . The
goal is to learn a global model fθ parametrized by θ ∈ W ⊆ Rd, where fθ : X → Y
when solving the classification task and fθ : X → YNp in semantic segmentation,
with Y being the output space and Np the total number of pixels of each image.
We assume the structure of θ to be identical across all devices. The learning
procedure spans over T communications rounds, during which a subset of clients
C receives the current model parameters θt with t ∈ [T ] and trains it on Dk∀k ∈ C,
minimizing a local loss function Lk(θ

t) : W ×X × Y → R+. In FedAvg [51], the
global model is updated as a weighted average of the clients’ updates θtk, aiming at
solving the global objective argminθ∈Rd

1
N

∑
k∈C NkLk(θ), with N =

∑
k∈C Nk

being the total training images. In particular, from the generalization perspective
- defined D ≜

⋃
k∈[K] Dk the overall clients’ data, D its distribution and LD =

1/
∑

k Nk

∑
k∈[K] NkLk(θ) the training loss - we aim at learning a model having

low population loss LD(θ) ≜ E(x,y)∼D

[
ED[Lk(y, f(x, θ))]

]
[68]. The difference

between the population and training losses defines the generalization gap, i.e. the
ability of the model to generalize to unseen data [18].

In realistic scenarios, given two clients i and j, Di likely follows a different
distribution than Dj , i.e. Di ̸= Dj , and the loss Li(θ) ∀i ∈ [K] is typically
non-convex in θ. The loss landscape comprehends a multiplicity of local minima
leading to models with different generalization performance, i.e. significantly
different values of LD(θ) [18]. Moreover, at each round, the model is likely not
to see the entire distribution, further widening the generalization gap [24,23].
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Fig. 2: Left: CNN convergence points in distinct federated scenarios with α ∈ [0, 0.5, 1k]
on Cifar100. Please refer to Appendix C for implementation details. (a) Train loss
surface showing the weights obtained at convergence. (b) Test error surface of the same
models. Right: Test error surfaces computed on Cifar100 using three distinct local
models after training. (c) When α = 0, the local models are not able to generalize to
the overall data distribution, being too specialized on the local data. (d) When α = 1k,
the resulting models are connected through a low-loss region.

3.2 Where Heterogeneous FL Fails at Generalizing

In order to fully understand the behavior of a model trained in a heterogeneous
federated scenario, we perform a thorough empirical analysis from different
perspectives. Our experimental setup replicates that proposed by [27] both as
regards the dataset and the network. The Cifar100 dataset [39], widely used as
benchmark in FL, is split between 100 clients, following a Dirichlet distribution
with concentration parameter α. To replicate a heterogeneous scenario, we choose
α ∈ {0, 0.5}, while α is set to 1000 for the homogeneous one. The model is trained
over 20k rounds. Fore more details, please refer to Appendix C.
Model Behavior in Heterogeneous and Homogeneous Scenarios. In Fig.
3, we compare the training trends in centralized, homogeneous and heterogeneous
federated settings: in the latter, not only is the trend much noisier and more
unstable, but the performance gap is considerable. Consequently, we question the
causes of such behavior. First of all, we wonder if the heterogeneous distribution
of the data totally inhibits the model from achieving comparable performances:
we find it is only a matter of rounds, i.e. with a much larger round budget - 10
times larger in our case - the model reaches convergence (Fig. 3). So it becomes
obvious the training is somehow slowed down and there is room for improvement.
This hypothesis is further validated by the convergence points of the models
trained in different settings (Fig. 2): when α = 1k a low-loss region is reached
at the end of training, while the same does not happen with lower values of α,
meaning that local minima are still to be found. Moreover, the shift between
the train and test surfaces suggests us the model trained in the heterogeneous
setting (α = 0) is unable to generalize well to unseen data, finding itself in a
high-loss region [29]. By analyzing the model behavior, we discover that shifts in
client data distribution lead to numerous fluctuations in learning, i.e. at each
round the model focuses on a subset of the just seen tasks and is unable to
generalize to the previously learned ones. This phenomenon is also known as
catastrophic interference of neural networks [37] and is typical of the world of
multitask learning [10,60]. Fig. 3 highlights this by comparing the accuracy of
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Fig. 3: Cifar100 Accuracy trends. Left: Global model on local distributions with (a)
α = 0 and (b) 1k @ 20k rounds. Each color represents a local distribution (i.e. one
class for α = 0). (c): α ∈ {0, 0.5, 1k} with necessary rounds to reach convergence.

the global model on the clients’ data and the test set when α = 0 and α = 1k. In
the first case, at each round the model achieves very high performances on one
class but forgets about the others and this behavior is only slightly attenuated
as the training continues. In the homogeneous scenario, on the other hand, the
model behaves very similarly on each client and convergence is easily reached,
giving way to overfitting as the number of rounds increases.

We analyze the clients’ local training for further insights from the character-
istics of the updated models. By plotting the position of the weights in the loss
landscape after training, we find the models easily overfit the local data distribu-
tion (Fig. 2): when tested on the test set, the clients’ updates are positioned in
very high-error regions and as a result the global model moves away from the
minimum, meaning the clients specialize too much on their own data and are
not able to generalize to the overall underlying distribution. Moreover, Fig. 2
highlights another relevant issue: models trained on homogeneous distributions
are connected through a path of low error and can therefore be ensambled to
obtain a more meaningful representation [20], but the same does not hold when
α = 0, where the models are situated in different loss-value regions. Therefore,
FedAvg averages models that are too far apart to lead to a meaningful result.

Federated Training Converges to Sharp Minima. Many works tried to
account for this difficulty arising in federated scenarios by enforcing regularization
in local optimization not to lead the local model too far apart from the global
one [45,34,27,1,43], or by using momentum on the server-side [26], or learning
task-specific parameters keeping distinct models on the server-side [59,8,9]. To the
best of our knowledge, this is the first work addressing such behavior by looking
at the loss landscape. Inspired by a recent trend in Deep Learning connecting the
geometry of the loss and the generalization gap [35,16,41,32,40,29], we investigate
the geometry of the loss surface of models trained in non-i.i.d. scenarios with
the intention of understanding whether sharp minima may cause the lack of
generalization in FL. Following [41], we plot the loss surfaces obtained with
models trained in a heterogeneous and in a homogeneous scenario (Fig. 1)
showing that both converge to sharp regions, providing a plausible explanation
for the highlighted lack of generalization. Additionally, [35] characterizes flatness
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FedAvg α = 1k ASAM α = 1k

Fig. 4: λk
max for each client k as rounds

pass

Table 1: Cifar100 Hessian eigenvalues.

Algorithm
λmax λmax/λ5

α = 0 α = 1k α = 0 α = 1k

FedAvg E=1 93.46 106.14 2.00 1.31
FedAvg E=2 110.62 118.35 2.32 1.30
FedSAM 70.29 51.28 1.79 1.48
FedASAM 30.11 20.19 1.80 1.27

FedAvg + SWA 97.24 120.02 1.49 1.39
FedSAM + SWA 73.16 54.20 1.56 1.61
FedASAM + SWA 24.57 20.49 1.51 1.30
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Fig. 5: Hessian eigenspectra of the global
model with α ∈ {0, 1k}

through the eigenvalues of the Hessian: the dominant eigenvalue λmax evaluates
the worst-case landscape curvature, i.e. the larger λmax the greater the change
in loss in that direction and the steeper the minimum. Hence, we compute the
Hessian eigenspectrum (first 50 eigenvalues) using the power iteration mode
and analyze it both from the global and local perspectives (Fig. 4,5). Table 1
reports the values of λmax and the ratio λmax/λ5, commonly used as a proxy
for sharpness [31], as the heterogeneity varies. As expected, λmax is large in all
settings when using FedAvg, implying that such method leads the model towards
sharp minima regardless of the data distribution, confirming what was noted in
the loss landscapes. As for the client-side analysis, we compute the value of λk

max

using the locally updated parameters θtk on the k-th device’s data Dk ∀t ∈ [T ].
Comparing the i.i.d. and non-i.i.d. settings, we note i) the local values of λmax

are much lower if α = 0, i.e. the clients locally reach wide minima (low Hessian
maximum eigenvalue, λk

max ≤ 14) due to the simplicity of the learned task, i.e. a
narrow subset of the classes, but the average of the distinct updates drives the
model towards sharper minima (high Hessian eigenvalues of the global model,
λmax ≃ 94). ii) When α ∈ {0.5, 1k}, λmax decreases as the rounds pass, i.e. the
global model is moving towards regions with lower curvature, while this is not as
evident in the heterogeneous setting. Motivated by these results, we believe that
introducing an explicit search for flatter minima can help the model generalize.

4 Seeking Flat Minima in Federated Learning

Common first-order optimizers (e.g. SGD [56], Adam [36]) are usually non-
robust to unseen data distributions [12], since they only aim at minimizing the
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Algorithm 1 SAM/ASAM and SWA applied to FedAvg

Require: Initial random model f0
θ , K clients, T rounds, learning rates γ1, γ2, neighborhood size ρ > 0, η > 0, batch

size |B|, local epochs E, cycle length c
1: for each round t = 0 to T − 1 do
2: if t = 0.75 ∗ T then ▷ Apply SWA from 75% of training onwards

3: θSWA ← θt ▷ Initialize SWA model

4: end if
5: if t ≥ 0.75 ∗ T then
6: γ = γ(t) ▷ Compute LR for the round (Eq. 7 in Appendix)
7: end if
8: Subsample a set C of clients
9: for each client k in C in parallel do ▷ Iterate over subset C of clients

10: θ
t+1
k,0

← θt

11: for e = 0 to E − 1 do
12: for i = 0 to Nk/|B| do

13: Compute gradient ∇θLB(θ
t+1
k,i

) on batch B from Dk

14: Compute ϵ̂
(
θ
t+1
k,i

)
= ρ∇θLB

(
θ
t+1
k,i

)/∣∣∣∣∇θLB
(
θ
t+1
k,i

)∣∣∣∣
2 =: ϵ̂(θ) ▷ Solve local maximization (Eq. 3)

15: θ
t+1
k,i+1

← θ
t+1
k,i

− γ
(
∇θLB(θ

t+1
k,i

)
∣∣∣
θ+ϵ̂(θ)

)
▷ Local update with sharpness-aware gradient (Eq. 4)

16: end for
17: end for
18: Send θ

t+1
k

to the server

19: end for
20: θt+1 ← 1∑

k∈C Nk

∑
k∈C Nkθ

t+1
k

▷ FedAvg

21: if t ≥ 0.75 ∗ T and mod(t, c) = 0 then ▷ End of cycle

22: nmodels ← t/c

23: θSWA ←
θSWA·nmodels+θt+1

nmodels+1
▷ Update SWA average (Eq. 8)

24: end if
25: end for

training loss LD, without looking at higher-order information correlating with
generalization (e.g. curvature). The federated scenario exacerbates such behavior
due to its inherent statistical heterogeneity, resulting in sharp minima and poor
generalization. We hypothesize that encouraging the local model to converge
towards flatter neighborhoods may help bridging the generalization gap. To this
end, we introduce sharpness-aware minimizers, namely SAM [18] and ASAM [40],
on the client-side during local training, and Stochastic Weight Averaging [29]
on the server-side after the aggregation, adapting the scenario of [29] to FL. By
minimizing the sharpness of the loss surface and the generalization gap, the local
models are more robust towards unseen data distributions and, when averaged,
build a more solid central model. Defined the sharpness of a training loss LD as
max||ϵ||p≤ρ LD(θ+ ϵ)−LD(θ), with ρ being the neighborhood size and p ∈ [1,∞),
SAM aims at minimizing it by solving minθ∈Rd max||ϵ||p≤ρ LD(θ+ ϵ) + λ||θ||22. SWA
averages weights proposed by SGD, while using a learning rate schedule to explore
regions of the weight space corresponding to high performing networks. For a
detailed explanation of SAM, ASAM and SWA we refer the reader to Appendix A.
Algorithm 1 sums up the details of our approach.

5 Experiments

In this Section, we show the effectiveness of SAM, ASAM and SWA in federated
scenarios when addressing tasks of image classification (Sec. 5.1), large-scale
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Table 2: FedSAM, FedASAM and SWA on Cifar100 and Cifar10

Algorithm
α = 0 α = 0.5/0.05 α = 1000/100

5cl 10cl 20cl 5cl 10cl 20cl 5cl 10cl 20cl

C
if
a
r
1
0
0

FedAvg E=1 30.25 36.74 38.59 40.43 41.27 42.17 49.92 50.25 50.66
FedAvg E=2 24.94 31.81 35.18 38.21 39.59 40.94 48.72 48.64 48.45
FedSAM 31.04 36.93 38.56 44.73 44.84 46.05 54.01 53.39 53.97
FedASAM 36.04 39.76 40.81 45.61 46.58 47.78 54.81 54.97 54.50

FedAvg + SWA 39.34 39.74 39.85 43.90 44.02 42.09 50.98 50.87 50.92
FedSAM + SWA 39.30 39.51 39.24 47.96 46.76 46.47 53.90 53.67 54.36
FedASAM + SWA 42.01 42.64 41.62 49.17 48.72 48.27 53.86 54.79 54.10

C
if
a
r
1
0

FedAvg E=1 65.00 65.54 68.52 69.24 72.50 73.07 84.46 84.50 84.59
FedAvg E=2 61.49 62.22 66.36 69.23 69.77 73.48 83.93 84.10 84.21
FedSAM 70.16 71.09 72.90 73.52 74.81 76.04 84.58 84.67 84.82
FedASAM 73.66 74.10 76.09 75.61 76.22 76.98 84.77 84.72 84.75

FedAvg + SWA 69.71 69.54 70.19 73.48 72.80 73.81 84.35 84.32 84.47
FedSAM + SWA 74.97 73.73 73.06 76.61 75.84 76.22 84.23 84.37 84.63
FedASAM + SWA 76.44 75.51 76.36 76.12 76.16 76.86 84.88 84.80 84.79

classification, SS and DG (Sec. 5.2). Their strength indeed lies in finding flatter
minima (Sec. 5.1), which consequently help the model to generalize especially in
the heterogeneous scenario. We compare our method with algorithms proper of
the FL literature and strong data augmentations (Sec. 5.1), commonly used to
improve generalization in DL, further validating the efficacy of our proposal. We
refer to App. C for implementation details and App. E for the ablation studies.

5.1 The Effectiveness of the Search for Flat Minima in FL

In Sec. 3.2, we have shown that, given a fixed number of rounds, FL models trained
in heterogeneous settings present a considerable performance gap compared to
their homogeneous counterparts. Indeed, the gap between the two scenarios can be
significant with a difference of up to 20% points (Table 2). We identify the clients’
overspecialization on local data as one of the causes of the poor generalization
of the global model to the underlying training distribution. We confirm this by
showing the model converges to sharp minima, correlated to a poor generalization
capacity. In Table 2, we show that explicitly optimizing for flat minima in both the
local training and the server-side aggregation does help improving performances,
with evident benefits especially in heterogeneous scenarios. We test SAM, ASAM and
their combination with SWA on the federated Cifar10 and Cifar100 [39,26,27]
with several levels of heterogeneity (α ∈ {0, 0.05, 100} for Cifar10 and α ∈
{0, 0.5, 1k} for Cifar100) and clients participation (K ∈ {5, 10, 20}, i.e. 5%,
10%, 20%). As for Cifar100, we additionally test our approach on the setting
proposed by [55], later referred to as Cifar100-PAM, where the splits reflect the
“coarse” and “fine” label structure proper of the dataset. Since both SAM and ASAM

perform a step of gradient ascent and one of gradient descent for each iteration,
they should be compared with FedAvg with 2 local epochs. However, the results
show FedAvg with E = 2 suffers even more from statistical heterogeneity, so we
will compare our baseline with the better-performing FedAvg with E = 1. Our
experiments reveal that applying ASAM to FedAvg leads to the best accuracies
with a gain of +6% and +8% points respectively on Cifar100 and Cifar10
in the most challenging scenario, i.e. α = 0 and 5 clients per round. This gain
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Table 3: Accuracy results on Cifar100-PAM with ResNet18

Algorithm Aug
E = 1 E = 2

10 clients 20 clients 10 clients 20 clients

@5k @10k w/ SWA @5k @10k w/ SWA @5k @10k w/ SWA @5k @10k w/ SWA

FedAvg 46.60 47.03 52.70 46.51 45.83 50.28 44.58 43.90 51.10 43.31 42.88 47.95
FedSAM 50.71 53.10 55.44 52.96 53.41 54.67 52.36 52.04 55.23 51.41 51.35 53.41
FedASAM 49.31 51.10 54.25 47.21 53.50 54.29 49.03 49.33 53.01 53.88 52.94 54.18

FedAvg
M
i
x
u
p 43.47 49.25 56.71 50.33 49.89 55.74 44.76 46.44 57.15 47.10 47.59 54.40

FedSAM 42.83 51.92 53.96 49.66 55.77 57.70 42.17 51.04 56.54 53.50 54.75 58.88
FedASAM 43.13 51.09 56.31 50.51 52.62 56.89 44.74 50.14 58.31 49.87 50.87 55.86

FedAvg

C
u
t
o
u
t 48.64 48.59 55.40 47.00 46.96 51.70 45.19 45.46 55.40 44.68 44.25 49.39

FedSAM 48.28 53.53 57.25 52.06 54.37 56.70 49.39 51.88 57.32 52.16 52.37 55.45
FedASAM 47.52 52.13 57.01 50.01 50.66 53.54 48.99 50.09 55.77 48.48 48.77 52.00

Table 4: FedAvg, SAM, ASAM and SWA w/ strong data augmentations (Mixup, Cutout)

Algorithm SWA Aug
α = 0 α = 0.5/0.05 α = 1000/100

5cl 10cl 20cl 5cl 10cl 20cl 5cl 10cl 20cl

C
if
a
r
1
0
0

FedAvg ✗

M
i
x
u
p

29.91 33.67 35.67 35.10 37.80 39.34 55.34 55.81 55.98
FedSAM ✗ 30.46 34.10 35.89 38.76 40.31 42.03 54.21 54.94 55.24
FedASAM ✗ 34.04 36.82 36.97 40.71 42.24 44.45 49.75 49.87 49.68
FedAvg ✓ 35.56 36.07 36.08 39.21 39.22 38.31 55.43 55.37 55.39
FedSAM ✓ 35.62 36.25 35.66 42.13 41.95 42.03 52.9 53.14 53.48
FedASAM ✓ 40.08 38.74 37.47 44.53 43.97 44.22 46.97 47.24 46.93

FedAvg ✗

C
u
t
o
u
t

24.24 31.55 32.44 37.72 38.45 39.48 53.48 53.83 52.90
FedSAM ✗ 23.51 30.92 33.12 40.33 40.31 42.58 54.27 54.75 54.76
FedASAM ✗ 30.05 33.62 34.51 41.86 41.84 43.33 51.88 51.78 53.03
FedAvg ✓ 33.65 34.40 35.03 40.43 40.12 39.32 53.87 54.09 52.75
FedSAM ✓ 34.00 34.08 34.26 43.09 42.81 42.85 53.78 54.28 53.93
FedASAM ✓ 39.30 37.46 36.27 44.76 43.48 43.95 50.00 49.65 50.81

is further improved by FedASAM + SWA with a corresponding increase of +12%
and +11.5%. The stability introduced by SWA especially helps with lower clients
participation, where the trend is noisier. Our ablation studies (Appendix E.3)
prove the boost given by SWA is mainly related to the average of the stochastic
weights, rather than the cycling learning rate. Table 3 shows the results on
Cifar100-Pam with ResNet18: here SAM and SAM + SWA help more than ASAM.
ASAM and SWA Lead to Flatter Minima in FL. We extend the analysis on the
loss landscape and the Hessian eigenspectrum to the models trained with FedSAM,
FedASAM and SWA. As expected, both the loss surfaces (Fig. 1) and the Hessian
spectra (Fig. 5) indicate us those methods indeed help converging towards flatter
minima. The value of λmax goes from 93.5 with FedAvg to 70.3 with FedSAM to
30.1 with FedASAM in the most heterogeneous setting (Table 1). The result is
further improved by FedASAM + SWA, obtaining λmax = 24.6. We notice there is
a strict correspondence between the best λmax and the best ratio λmax/λ5. Even
if the maximum eigenvalue resulting with FedAvg + SWA and FedSAM + SWA is
higher than the respective one without SWA, the corresponding lower ratio λmax/λ5

actually tells us the bulk of the spectrum lies in a lower curvature region [18],
proving the effectiveness of SWA. Looking at ASAM’s behavior from each client’s
perspective (Fig. 4), flat minima are achieved from the very beginning of the
training and that reflects positively on the model’s performance.
ASAM and SWA Enable Strong Data Augmentations in FL. Data augmen-
tations usually play a key role in the performance of a neural network and its
ability to generalize [71,65,5], but their design often requires domain expertise
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Table 5: Comparison of improvements (%) in centralized and heterogeneous federated
scenarios (α = 0, 5 clients) on Cifar100, computed w.r.t. the reference at the bottom

Algorithm
Accuracy Absolute Improvement Relative Improvement

Centr. α = 0 Centr. α = 0 Centr. α = 0

SAM 55.22 31.04 +3.02 +0.79 +5.79 +2.61
ASAM 55.66 36.04 +3.46 +5.79 +6.63 +19.14
SWA 52.72 39.34 +0.52 +9.09 +1.00 +30.05
SAM + SWA 55.75 39.30 +0.55 +9.05 +1.06 +29.92
ASAM + SWA 55.96 42.01 +3.76 +11.76 +7.20 +38.88
Mixup 58.01 29.91 +5.81 -0.34 +11.13 -1.12
Cutout 55.30 24.24 +3.10 -6.01 +5.94 -19.87

Centralized: 52.20 - FedAvg: 30.25

and greater computational capabilities, two elements not necessarily present in a
federated context. In Table 3 and 4, we distinctly apply Mixup [71] and Cutout

[14] on Cifar100-PAM and Cifar100 (Cifar10 in Appendix F.2). Surprisingly,
both lead to worse performances across all algorithms, so instead of helping
the model to generalize, they further slow down training. When combined with
our methods, the performance improves in the heterogeneous scenarios w.r.t.
the corresponding baseline (FedAvg + data augmentation) and SWA brings a
significant boost, enabling the use of data augmentation techniques in FL.

Heterogeneous FL Benefits Even More from Flat Minima. Given the
marked improvement brought by SAM, ASAM and their combination with SWA, one
might wonder if this simply reflects the gains achieved in the centralized scenario.
In Table 5, we prove the positive gap obtained in the heterogeneous federated
scenario is larger than the centralized one, showing those approaches are actually
helping the training. We also note that while Cutout and Mixup improve the
performances in the centralized setting, they do not help in FL, where they
achieve a final accuracy worse than FedAvg (Appendix F.1 for α ∈ {0.5, 1k}).
Comparison with FL SOTA. We compare our method with FedProx [45],
SCAFFOLD [34], FedAvgM [26], FedDyn [1] and AdaBest [63], both on their own
and combined with SAM, ASAM and SWA (Table 6). FedProx adds a proximal
term to the local objective and, as expected [42,63], does not bring any notable
improvement. SCAFFOLD uses control variates to reduce the client drift, exchanging
twice the parameters at each round. While performing on par with FedAvg in
the homogeneous scenario (84.5% on Cifar10 and 51.9% on Cifar100), its
performance is heavily affected by the data statistical heterogeneity. The same
happens for FedAvgM. FedDyn dynamically aligns global and local stationary
points and, as highlighted by [63], is prone to parameters explosion: while it
achieves good results on the simpler Cifar10, it requires heavy gradient clipping
and is unable to reach the end of training on Cifar100. As a solution, AdaBest
is proposed, exceeding FedAvg by a few points. Our results demonstrate the
consistent effectiveness of FedASAM w.r.t. the SOTA baselines, improving the
accuracy by ≈ 6% points on the best SOTA on both datasets. Moreover, by
adding ASAM, all FL algorithms notably increase their performance. In particular
i) we enable FedAvgM and SCAFFOLD to train in most of the settings with highest
heterogeneity, ii) even if limited by the necessary gradient clipping, the results
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Table 6: SOTA comparison on Cifar10 and Cifar100 (centralized performance)

Algorithm
w/o SWA w/ SWA

α = 0 α = 0.05/0.5 α = 0 α = 0.05/0.5
5cl 20cl 5cl 20cl 5cl 20cl 5cl 20cl

C
if
a
r
1
0

FedAvg 65.00 68.52 69.24 73.07 69.71 70.19 73.48 73.81
FedSAM 70.16 72.90 73.52 76.04 74.97 73.06 76.61 76.22
FedASAM 73.66 76.09 75.61 76.98 76.44 76.36 76.12 76.86
FedAvgM 10.00 10.00 10.00 78.51 10.00 10.00 10.00 84.00
FedProx 62.72 68.44 68.38 73.02 70.56 70.08 74.27 73.67
SCAFFOLD 32.25 15.56 54.46 44.76 11.98 10.00 33.25 24.11
FedDyn 67.69 73.81 71.36 75.20 77.00 74.00 77.99 75.12
AdaBest 66.77 72.29 69.84 75.89 78.94 76.12 80.35 79.35
FedAvgM + ASAM 77.30 84.89 77.06 84.92 80.88 85.98 78.29 86.03
FedProx + ASAM 73.74 75.76 75.32 77.03 76.89 75.92 76.65 76.95
SCAFFOLD + ASAM 77.78 77.93 77.59 77.80 75.66 75.30 75.32 75.29
FedDyn + SAM 77.38 81.00 79.18 81.70 83.81 86.07 83.18 85.57
AdaBest + ASAM 77.48 78.43 78.41 79.72 82.00 80.80 81.87 80.81

C
if
a
r
1
0
0

FedAvg 30.25 38.59 40.43 42.17 39.34 39.85 43.90 42.09
FedSAM 31.04 38.56 44.73 46.05 39.30 39.24 47.96 46.47
FedASAM 36.04 40.81 45.61 47.78 42.01 41.62 49.17 48.27
FedAvgM 1.00 40.64 4.60 47.88 1.00 53.50 4.60 53.69
FedProx 31.20 38.59 39.53 42.17 39.06 39.68 43.98 41.84
SCAFFOLD 1.00 1.00 33.26 1.00 1.00 1.00 5.76 1.00
FedDyn 1.00 1.40 22.03 24.75 1.00 1.40 8.27 35.15
AdaBest 29.90 39.11 36.93 43.25 44.48 44.21 48.20 44.51
FedAvgM + ASAM 1.00 39.61 4.60 51.65 1.00 51.58 4.60 56.19
FedProx + ASAM 36.10 40.91 44.81 48.17 43.90 42.06 48.66 48.19
SCAFFOLD + ASAM 43.65 42.61 46.50 46.76 40.63 39.07 44.87 44.28
FedDyn + ASAM 22.16 23.51 38.43 38.60 17.51 19.22 38.60 31.06
AdaBest + ASAM 39.75 45.00 45.25 49.56 51.75 47.42 51.89 51.47

reached by FedDyn on Cifar100 are almost doubled. Lastly, the best results are
obtained with ASAM + SWA which stabilizes the noisy learning trends and enables
models to converge close to centralized performance with α = 0.

5.2 ASAM and SWA in Real World Vision Scenarios

In this Section, we analyze our method in real world scenarios, i.e. large scale
classification, Semantic Segmentation (SS) for autonomous driving [17] and
Domain Generalization (DG) applied to both classification and SS.
Large-scale Classification. We extend our analysis on visual classification
tasks to Landmarks-User-160k [27] to validate the effectiveness of SAM, ASAM,
and SWA in the presence of real-world challenges such as Non-Identical Class
Distribution (different distribution of classes per device), and Imbalanced Client
Sizes (varying number of training data per device). Results confirm the benefits
of applying client-side sharpness-aware optimizers, especially in combination with
server-side weight averaging with an improvement in final accuracy of up to 7%.
Semantic Segmentation for Autonomous Driving. SS is a fundamental
task for applications of autonomous driving. Due to the private nature of the
data collected by self-driving cars, it is reasonable to study this task within a
federated scenario. We refer to FedDrive [17] - a new benchmark for autonomous
driving in FL - for both settings and baselines. The employed datasets are
Cityscapes [13] and IDDA [2] with both uniform and heterogeneous settings. To
test the generalization capabilities of the model when facing both semantic and
appearance shift, the test domain of IDDA either contains pictures taken in the
countryside, or in rainy conditions. The model is tested on both previously seen
and unseen domains. As shown in Table 8, ASAM performs best both on Cityscapes
and heterogeneous IDDA. The best performance is obtained combining ASAM +

SWA with SiloBN [3], keeping the BatchNorm [28] statistics local to each client [47]
while sharing the learnable parameters across domains.
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Table 7: Accuracy Results (%) on
Landmarks-User-160k

@5k rounds w/ SWA 75 w/ SWA 100
FedAvg 61.91 66.05 67.52
FedSAM 63.72 67.11 68.12
FedASAM 64.23 67.17 68.32
Centralized 74.03

Table 8: Federated SS on Cityscapes and
IDDA. Results in mIoU (%) @ 1.5k rounds

Algorithm Uniform Country Rainy mIoUseen unseen seen unseen
FedAvg ✓

ID
D
A

63.31 48.60 65.16 27.38

C
it
y
sc

a
p
e
s

43.61
FedSAM ✓ 64.22 49.74 64.81 30.00 44.58
FedASAM ✓ 62.74 48.73 64.74 31.32 45.86
FedAvg + SWA ✓ 63.91 43.28 63.24 47.72 45.64
FedSAM + SWA ✓ 62.26 46.26 63.69 48.40 45.29
FedASAM + SWA ✓ 60.78 44.23 63.18 51.76 45.69
FedAvg ✗ 42.06 36.04 39.50 24.59 38.65
FedSAM ✗ 43.28 37.83 39.65 29.27 41.22
FedASAM ✗ 43.67 36.11 41.68 30.07 42.27
FedAvg + SWA ✗ 37.16 37.48 37.06 42.33 42.48
FedSAM + SWA ✗ 44.26 40.45 38.15 45.25 43.42
FedASAM + SWA ✗ 45.23 39.72 42.09 45.40 43.02
SiloBN ✗ 45.86 32.77 48.09 39.67 45.96
SiloBN + SAM ✗ 46.88 33.71 48.22 40.08 49.10
SiloBN + ASAM ✗ 46.57 35.22 48.33 40.76 49.75

Domain Generalization. To further show the generalization performance
acquired by the model trained with SAM, ASAM and SWA, we test it on the corrupted
Cifar datasets [24]. The test images are altered by 19 corruptions each with 5
levels of severity. Fig. 6 shows the results on the highest severity and once again
validate the efficacy of seeking flat minima in FL (complete results in App. D).
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Fig. 6: Domain generalization in FL. Results with α = 0, 20 clients, severity level 5.

6 Conclusions

Heterogeneous Federated Learning suffers from degraded performances and
slowdown in training due to the poor generalization of the learned global model.
Inspired by recent trends in deep learning connecting the loss landscape and
the generalization gap, we analyzed the behavior of the model through the
lens of the geometry of the loss surface and linked the lack of generalization
to convergence towards sharp minima. As a solution, we introduced Sharpness-
Aware Minimization, its adaptive version and Stochastic Weight Averaging in FL
for encouraging convergence towards flatter minima. We showed the effectiveness
of this approach in several vision tasks and datasets.
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