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Abstract. The rotation search problem aims to find a 3D rotation that best aligns
a given number of point pairs. To induce robustness against outliers for rota-
tion search, prior work considers truncated least-squares (TLS), which is a non-
convex optimization problem, and its semidefinite relaxation (SDR) as a tractable
alternative. Whether or not this SDR is theoretically tight in the presence of noise,
outliers, or both has remained largely unexplored. We derive conditions that char-
acterize the tightness of this SDR, showing that the tightness depends on the noise
level, the truncation parameters of TLS, and the outlier distribution (random or
clustered). In particular, we give a short proof for the tightness in the noiseless
and outlier-free case, as opposed to the lengthy analysis of prior work.

1 Introduction

Robust geometric estimation problems in computer vision have been studied for decades
[28,40]. However, the analysis of their computational complexity is not sufficiently well
understood [51]: There are fast algorithms that run in real time [21,43,56,46], and there
are computational complexity theorems that negate the existence of efficient algorithms
[51,4].4 For example, the commonly used consensus maximization formulation (for ro-
bust fitting) is shown to be NP hard in general [51], and its closely related truncated
least-squares formulation is not approximable [4], even though they are both highly
robust to noise and outliers. Between these “optimistic” algorithms and “pessimistic”
theorems, semidefinite relaxations of truncated least-squares [35,57,58] strike a favor-
able balance between efficiency (as they are typically solvable in polynomial time) and
robustness (which is inherited to some extent from the original formulation).

Even though noise and outliers are ubiquitous in geometric vision, and non-convex
formulations and their semidefinite relaxations have been widely used in a large body
of papers [33,2,24,18,41,15,14,34,7,8,9,47,27,1,37,61,25,26,3,49], much fewer works
[16,42,23,48,30,55,60,52,38]5 provide theoretical insights on the robustness of semidef-
inite relaxations to noise, a few semidefinite relaxations [13,35,57,58] are empirically
robust to outliers, and only one paper on rotation synchronization [54] gives theoret-
ical guarantees for noise, outliers, and both. Complementary to the story of [51] and

4 The catch is that the fast methods might not always be correct (e.g., at extreme outlier rates).
5 [12,5,62,39] analyzed SDRs under noise but they are not for geometric vision problems.
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inheriting the spirit of [54], in this paper we consider the question of whether “a spe-
cific semidefinite relaxation” for “robust rotation search” is “tight” or not, and provide
tightness characterizations that account for the presence of noise, outliers, and both.

More formally, in this paper we consider the following problem (see [44,43,57] for
what has motivated this problem):

Problem 1 (Robust Rotation Search). Let {(yi,xi)}ℓi=1 be a collection of ℓ 3D point
pairs. Assume that a subset I∗ ⊆ {1, . . . , ℓ} of these pairs are related by a 3D rotation
R∗

0 ∈ SO(3) up to bounded noise {ϵi :
∥∥ϵi∥∥2 ≤ δ}ℓi=1 ⊂ R3 with δ ≥ 0, i.e.,{

yi = R∗
0xi + ϵi, i ∈ I∗

yi and xi are arbitrary i /∈ I∗ .
(1)

Here, I∗ is called the inlier index set. If i ∈ I∗ then xi, yi, or (yi,xi) is called an inlier,
otherwise it is called an outlier. The goal is to find R∗

0 and I∗ from {(yi,xi)}ℓi=1.

To solve this problem, we consider the truncated least-squares formulation (rotation
version), where the hyper-parameter c2i ≥ 0 is called the truncation parameter:

min
R0∈SO(3)

ℓ∑
i=1

min
{∥∥yi −R0xi

∥∥2
2
, c2i

}
. (TLS-R)

While (TLS-R) is highly robust to outliers and noise [58], it is non-convex and hard to
solve. Via a remarkable sequence of algebraic manipulations, [57] showed that (TLS-R)
is equivalent to some non-convex quadratically constrained quadratic program (QCQP),
which can be relaxed to a semidefinite program (SDR) via the standard lifting technique.
The exact forms of (QCQP) and (SDR) will be shown in Section 2. One approach to
study how much robustness (SDR) inherits from (TLS-R) or (QCQP) is to verify if the
solution of (SDR) leads to a global minimizer to (QCQP). Informally, if this is true, then
we say that (SDR) is tight (cf. Definition 1). Here, we make the following contributions:

– For noiseless point sets without outliers (ϵi = 0, I∗ = {1, . . . , ℓ} in Problem 1),
we prove that (SDR) is always tight (Theorem 1). While this result had already
been proven in [57, Section E.3], our proof is simpler and shorter.

– For noiseless point sets with outliers, Theorem 2 states that (SDR) is tight for suffi-
ciently small truncation parameters c2i and random outliers (regardless of the num-
ber of outliers), but it is not tight if c2i is set too large. Theorem 3 reveals that (SDR)
is vulnerable to (e.g., not tight in the presence of) clustered outlier point pairs that
are defined by a rotation different from R∗

0. Different from Theorem 1, outliers and
improper choices of c2i might actually undermine the tightness of (SDR).

– For noisy point sets without outliers, Theorems 4 and 5 show that (SDR) is tight
for sufficiently small noise and for sufficiently large c2i . Theorem 4 is not hard to
prove within our analysis framework, while Theorem 5 improves over Theorem 4
by giving a better bound on c2i through non-trivial constructive arguments.

– The case of noisy data with outliers is the most challenging, but from our analysis
of the two previous cases, a tightness characterization for this difficult case follows
(Theorem 6). Thus, we will discuss this case only sparingly.
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Paper Organization. In Section 2 we review the derivations of (SDR) from (TLS-R)
[57], while we also provide new insights. In Section 3, we discuss our main results. In
Section 4, we present limitations of our work and potential avenues for future research.
The proofs of our results can be found in our full paper [45].
Notations and Basics. We employ the MATLAB notation [a1; . . . ; aℓ] to denote con-
catenation into a column vector. Given a 4(ℓ + 1) × 4(ℓ + 1) matrix A , we employ
the bracket notation [A]ij of [57] to denote the 4 × 4 submatrix of A whose rows are
indexed by {4i+ 1, . . . , 4i+ 4} and columns by {4j + 1, . . . , 4j + 4}. Following our
previous work on robust rotation search [46], we treat unit quaternions as unit vectors
on the 3-sphere S3. Each R ∈ SO(3) can be equivalently written as

R =

w2
1 + w2

2 − w2
3 − w2

4 2(w2w3 − w1w4) 2(w2w4 + w1w3)
2(w2w3 + w1w4) w2

1 + w2
3 − w2

2 − w2
4 2(w3w4 − w1w2)

2(w2w4 − w1w3) 2(w3w4 + w1w2) w2
1 + w2

4 − w2
2 − w2

3

 , (2)

where w = [w1;w2;w3;w4] ∈ S3 and −w are unit quaternions. Conversely, every
3× 3 matrix of the form (2) with [w1;w2;w3;w4] ∈ S3 is a 3D rotation. This means a
two-to-one correspondence between unit quaternions (S3) and 3D rotations (SO(3)).

2 (TLS-R) and Its Relaxation: Review and New Insights

In Section 2.1 we derive a semidefinite relaxation (SDR) from (TLS-R). More specifi-
cally, we show that (TLS-R) is equivalent to a truncated least-squares problem named
(TLS-Q), with the optimization variable being a unit quaternion. We further show that
(TLS-Q) can be equivalently written as a quadratically constrained quadratic program,
labeled as (QCQP). Thus, we obtain the semidefinite relaxation (SDR) of (QCQP), as a
result of lifting, and their dual program (D). See Table 1 for an overview.

While Section 2.1 follows the development of [57] in spirit, our derivation is sim-
pler. For example, we dispensed with the use of quaternion product [29] in [57], which
is a sophisticated algebraic operation. That said, it is safe to treat our (SDR) as equiva-
lent to the naive relaxation of [57]; see the full paper [45] for a detailed discussion.

In Section 2.2 we discuss the KKT optimality conditions that are essential for study-
ing the interplay among (QCQP), (SDR), and (D), and thus the tightness of (SDR).

Table 1: Descriptions of different programs. TLS means Truncated Least-Squares.

Programs Description

(TLS-R) The TLS problem with the optimization variable being a 3D rotation

(TLS-Q) TLS with the optimization variable being a unit quaternion, equivalent to (TLS-R)

(QCQP) A quadratically constrained quadratic program, equivalent to (TLS-Q)

(SDR) The semidefinite relaxation of (QCQP), obtained via lifting

(D) The dual program of (SDR) and (QCQP)



4 L. Peng et al.

2.1 Derivation

Notice that the term ∥yi −R0xi∥22 = ∥yi∥22 + ∥xi∥22 − 2y⊤
i R0xi of (TLS-R) depends

linearly on the rotation R0. Moreover, each entry of a 3D rotation R0 depends quadrat-
ically on its unit quaternion representation w0 ∈ S3; recall (2). One then naturally asks
whether ∥yi −R0xi∥22 is a quadratic form in w0; the answer is affirmative:

Lemma 1 (Rotations and Unit Quaternions). Let R0 be a 3D rotation, then we have

∥∥yi −R0xi

∥∥2
2
= w⊤

0 Qiw0, (3)

where Qi is a 4 × 4 positive semidefinite matrix, and w0 ∈ S3 is the unit quaternion
representation of R0. Moreover, the eigenvalues of Qi are respectively(∥∥yi

∥∥
2
+
∥∥xi

∥∥
2

)2
,
(∥∥yi

∥∥
2
+

∥∥xi

∥∥
2

)2
,
(∥∥yi

∥∥
2
−
∥∥xi

∥∥
2

)2
,
(∥∥yi

∥∥
2
−
∥∥xi

∥∥
2

)2
. (4)

While the exact form of Qi is complicated, Lemma 1 provides a characterization of the
eigenvalues of Qi, which is much easier to work with. Note that, while the relationship
between 3D rotations and unit quaternions is well known (see, e.g., [29]), we have not
found (4) in the literature, except in the appendix of our prior work [46].

From Lemma 1, we now see that (TLS-R) is equivalent to

min
w0∈S3

ℓ∑
i=1

min
{
w⊤

0 Qiw0, c
2
i

}
. (TLS-Q)

Using the following simple equality (θ ∈ {−1, 1} in [35,57]; see also [31])

min{a, b} = min
θ∈{0,1}

θa+ (1− θ)b = min
θ2=θ

θa+ (1− θ)b, (5)

problem (TLS-Q) can be equivalently written as

min
w0∈S3,θ2

i=θi

ℓ∑
i=1

(
θiw

⊤
0 Qiw0 − θic

2
i

)
+

ℓ∑
i=1

c2i . (6)

Note that, while the constant
∑ℓ

i=1 c
2
i in (6) can be ignored, keeping it there will sim-

plify matters. Even though the objective of (6) is a cubic polynomial in the entries of
the unknowns w0 and θi’s, problem (6) is equivalent to a quadratic program. Indeed, let
wi := θiw0, which implies θi = w⊤

0 wi. Then (6) becomes

min
w0∈S3,wi∈{w0,0}

ℓ∑
i=1

(
w⊤

0 (Qi − c2i I4)wi

)
+

ℓ∑
i=1

c2i (7)

The objective function of problem (7) is now quadratic. Moreover, the constraints are
also quadratic. To see this, one easily verifies that the binary constraint wi ∈ {w0, 0}
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can be equivalently written quadratically as wiw
⊤
0 = wiw

⊤
i . Collecting all vectors of

variables into a 4(ℓ+ 1) dimensional column vector w = [w0; . . . ;wℓ], we have{
w0 ∈ S3

wi ∈ {w0, 0}
⇔

{
tr(w0w

⊤
0 ) = 1

wiw
⊤
0 = wiw

⊤
i

⇔

{
tr
(
[ww⊤]00

)
= 1

[ww⊤]0i = [ww⊤]ii.
(8)

In the last equivalence of (8) we used the notation [ · ]ij of Section 1. Having confirmed
(8), we can now equivalently transform (7) into the following (QCQP):

min
w∈R4(ℓ+1)

tr
(

Qww⊤
)
+

ℓ∑
i=1

c2i (QCQP)

s.t. [ww⊤]0i = [ww⊤]ii, ∀ i ∈ {1, . . . , ℓ} (9)

tr
(
[ww⊤]00

)
= 1 (10)

In (QCQP), Q is our 4(ℓ+ 1)× 4(ℓ+ 1) data matrix, symmetric and satisfying{
[Q ]0i = [Q ]i0 = 1

2 (Qi − c2i I4), ∀ i ∈ {1, . . . , ℓ}
all other entries of Q are zero.

(11)

It is now not hard to derive the semidefinite relaxation (SDR) and dual program (D)
from (QCQP) via lifting and standard Lagrangian calculation respectively:

Lemma 2 ((SDR) and (D)). The dual and semidefinite relaxation of (QCQP) are

max
µ,D

µ+

ℓ∑
i=1

c2i s.t. Q − µB − D ⪰ 0 (D)

min
W⪰0

tr
(

QW
)
+

ℓ∑
i=1

c2i (SDR)

s.t. [W ]0i = [W ]ii, ∀ i ∈ {1, . . . , ℓ} (12)

tr
(
[W ]00

)
= 1 (13)

In the dual (D), B is a matrix of zeros except [B]00 = I4, while D ∈ R4(ℓ+1)×4(ℓ+1) is
a matrix of dual variables accounting for the ℓ constraints of (9), i.e., D satisfies{

D is symmetric, [D]ii + 2[D]0i = 0, ∀ i ∈ {1, . . . , ℓ}
all other entries of D are zero.

(14)

In (D), we omitted constraint (14) on D for simplicity, but we will keep it in mind.

2.2 The Tightness and KKT Optimality Conditions

Studying the interplay among (D), (SDR), and (QCQP) is the main theme of the paper,
which will be discussed in more detail in Section 3. Here we give some basic results,
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to begin with. Note that weak duality between (QCQP) and (D) holds as a result of
Lagrangian calculation. Also, with D of the form (14) satisfying [D]0i :=

1
2 (Qi+c2i I4)

and with µ sufficiently small, it is not hard to show that Q − µB − D ≻ 0 (cf. the proof
of Theorem 1), thus (µ,D) is a strictly feasible point of (D) and the Slater’s condition is
satisfied, hence strong duality between (D) and (SDR) holds. In summary, we have

µ̂+

ℓ∑
i=1

c2i = ĝD = ĝSDR ≤ ĝQCQP, (15)

where the last three terms of (15) are the optimal objective values of (D), (SDR), and
(QCQP), respectively. The next question is whether there are conditions under which
the last inequality becomes an equality, i.e., ĝSDR = ĝQCQP. A (seemingly) stronger
version of this objective value equality is the following notion of tightness:

Definition 1 (Tightness). (SDR) is said to be tight if it admits ŵ(ŵ)⊤ as a global
minimizer, where ŵ ∈ R4(ℓ+1) globally minimizes (QCQP).

The following proposition provides a starting point for tightness analysis whose
proof follows from a standard duality argument:

Proposition 1 (Optimality Conditions). Recall that B is defined in Lemma 2 and ŵ
denotes a global minimizer of (QCQP). Let µ̂ be such that µ̂+

∑ℓ
i=1 c

2
i globally mini-

mizes (D). (SDR) is tight if and only if there is a matrix D̂ of the form (14) that satisfies

(i) (Q − µ̂B − D̂)ŵ = 0
(ii) Q − µ̂B − D̂ ⪰ 0

(iii) The minimum µ̂+
∑ℓ

i=1 c
2
i of (SDR) is also the minimum of (QCQP).

Next, we simplify the above optimality conditions to ease the use.

Proposition 2 (Simplified Optimality Conditions). Let Q1, . . . ,Qk∗ be inliers and
Qk∗+1, . . . ,Qℓ outliers. Let ŵ0 globally minimize (TLS-Q). Assume (TLS-Q) pre-
serves all inliers and rejects all outliers. Then the 4(ℓ + 1) dimensional vector ŵ =
[ŵ0; . . . ; ŵ0; 0; . . . , 0], where ŵ0 appeared k∗ + 1 times, is a global minimizer of
(QCQP), and the optimality conditions of Proposition 1 can be simplified as follows:

– If µ̂ =
∑k∗

i=1

(
ŵ⊤

0 Qiŵ0 − c2i
)
, condition (i) of Proposition 1 is equivalent to{(

2[D̂]0i +Qi − c2i I4
)
ŵ0 = 0, ∀i ∈ {1, . . . , k∗}(

2[D̂]0j + c2jI4 −Qj

)
ŵ0 = 0, ∀j ∈ {k∗ + 1, . . . , ℓ}.

(O1)

– Condition (ii) of Proposition 1 is equivalent to (∀zi ∈ R4)

−µ̂
∥∥z0∥∥22 + 2

ℓ∑
i=1

z⊤
i [D̂]0izi −

ℓ∑
i=1

z⊤
0

(
2[D̂]0i −Qi + c2i I4

)
zi ≥ 0. (O2)

– Condition (iii) of Proposition 1 is equivalent to

µ̂ =

k∗∑
i=1

(
ŵ⊤

0 Qiŵ0 − c2i
)
. (O3)
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Thanks to Propositions 1 and 2, establishing whether (SDR) is tight or not reduces to
finding dual certificates [D̂]0i’s (and µ̂) that fulfill the (simplified) optimality conditions.
Identifying eligible [D̂]0i’s or showing that such [D̂]0i’s do not exist is a core idea in
proving our Theorems 1-6, which we discuss in greater detail in the next section.

3 Main Results
In this section we present our main results regarding the tightness of (SDR). Our results
are naturally categorized into four subsections. Section 3.1 treats the simplest noiseless
+ outlier-free case (Theorem 1). Sections 3.2 and 3.3 consider the case where the data
is corrupted by outliers (Theorems 2 and 3) and noise (Theorems 4 and 5), respectively,
and Section 3.4 brings them together for the noisy + outliers case (Theorem 6).

3.1 The Noiseless + Outlier-Free Case

Theorem 1 (Noiseless and Outlier-Free Point Sets). In the absence of noise and out-
liers, (SDR) is tight, meaning that w∗(w∗)⊤ globally minimizes (SDR), where w∗ =
[w∗

0 ; . . . ;w
∗
0 ] ∈ R4(ℓ+1) is a global minimizer of (QCQP).

Proof. Note that w∗ = [w∗
0 ; . . . ;w

∗
0 ] is a global minimizer of (QCQP) that results in

the optimal value 0. Let D̂ satisfy the constraint (14) with [D̂]0i :=
1
2 (Qi + c2i I4) for

every i = 1, . . . , ℓ and let µ̂ := −
∑ℓ

i=1 c
2
i . Then, with Qiw

∗
0 = 0 (Lemma 1), one

easily verifies that optimality conditions (O1) and (O3) of Proposition 2 hold. It remains
to prove condition (O2). Substitute the values of [D̂]0i, µ̂ into (O2) and it simplifies:

ℓ∑
i=1

c2i
∥∥z0∥∥22 + ℓ∑

i=1

z⊤
i

(
Qi + c2i I4

)
zi − 2

ℓ∑
i=1

c2iz
⊤
i z0 ≥ 0, ∀zi ∈ R4 (16)

⇔
ℓ∑

i=1

(
c2i
∥∥z0 − zi

∥∥2
2
+ z⊤

i Qizi

)
≥ 0, ∀zi ∈ R4 (17)

Thus (O2) holds, as every Qi is positive semidefinite (Lemma 1). One also observes
that the equality is attained if and only if z0 = · · · = zℓ = w∗

0 or z0 = · · · = zℓ = 0.

Our contribution here is a shorter proof for Theorem 1 than that in [57]. Besides Lemma
1, another key idea that shortens the proof is our construction of the dual certificate D̂
(or [D̂]0i’s). While constructing dual certificates might be an art as there might not exist
general approaches for doing so, our experience is to (1) start with the simplest case
(e.g., noiseless + outlier-free), (2) make observations: observe the optimality conditions
(cf. Proposition 1), inspect the first and second order Riemannian optimality conditions
(cf. [6]), discover some properties of data (e.g., Lemma 1), (3) repeatedly try different
choices of certificates. In what follows, due to space limitations, we not always provide
full proofs of our theorems, but we always provide a sketch of the dual certificate.

3.2 The Noiseless + Outliers Case

Different from Theorem 1, in this case the tightness of (SDR) depends on both the data
and truncation parameter c2i , as stated in the following result.



8 L. Peng et al.

Theorem 2 (Noiseless Point Sets with Outliers). Suppose there is no noise. Consider
(TLS-Q) with outliers Qk∗+1, . . . ,Qℓ (k∗ < ℓ). Recall w∗

0 denotes the unit quater-
nion that represents the ground-truth rotation R∗

0. Let w∗ := [w∗
0 ; . . . ,w

∗
0 ; 0; . . . ; 0] ∈

R4(ℓ+1), where w∗
0 appears k∗ + 1 times, and let W ∗ := w∗(w∗)⊤. Then we have:

– If 0 < c2j < λmin(Qj), for all j = k∗ +1, . . . , ℓ, then (SDR) is tight, admitting W ∗

as a global minimizer.
– If c2j > (w∗

0)
⊤Qjw

∗
0 for some j ∈ {k∗ + 1, . . . , ℓ}, then W ∗ is not a global

minimizer of (SDR).

Proof (Sketch). For the first part, note that c2j < λmin(Qj), ∀j = k∗ + 1, . . . , ℓ, so
(TLS-Q) rejects all outliers and preserves all inliers, w∗

0 globally minimizes (TLS-Q),
and w∗ globally minimizes (QCQP) with the minimum value

∑ℓ
j=k∗+1 c

2
j . Let [D̂]0i :=

1
2 (Qi + c2i I4) (∀i = 1, . . . , k∗), [D̂]0j := 1

2 (Qj − c2jI4) (∀j = k∗ + 1, . . . , ℓ), and

µ̂ := −
∑k∗

i=1 c
2
i . With Qiw

∗
0 = 0, ∀i = 1, . . . , k∗, (Lemma 1), one easily verifies

conditions (O1) and (O3) of Proposition 2 hold. Condition (O2) is the same as

k∗∑
i=1

(
c2i
∥∥z0 − zi

∥∥2
2
+ z⊤

i Qizi

)
+

ℓ∑
j=k∗+1

z⊤
j (Qj − c2jI4)zj ≥ 0, ∀zi ∈ R4, (18)

which holds true because Qi’ are positive semidefinite as per Lemma 1 and Qj ⪰
c2jI4. This proves the first part. For the second part, it suffices to prove that, given
c2ℓ > (w∗

0)
⊤Qℓw

∗
0 , the three conditions of Proposition 1 (or Proposition 2) can not be

simultaneously satisfied by w∗ and any µ̂ and D̂, where D̂ is of the form (14). This is
proved by constructing a specific counterexample; see our full paper [45] for details.

Remark 1 (Noiseless Point Sets with Random Outliers). If outlier (yj ,xj) is randomly
drawn from R3 × R3 according to some continuous probability distribution, then with
probability 1 we have ∥yj∥2 ̸= ∥xj∥2 (Lemma 2 of [53]), which implies λmin(Qj) > 0.
Thus, (SDR) is always tight to such random outliers, if c2j → 0. Note that this discussion
is theoretical and does not apply to the case where

∣∣∥yj∥2 − ∥xj∥2
∣∣ is nonzero but is

below machine accuracy, as c2j can not be set even smaller (the case c2j = 0 is trivial).

If the condition c2j < λmin(Qj) of the first statement in Theorem 2 holds then Qj

will always be rejected by (TLS-Q) as an outlier. In fact, since λmin(Qj) can be easily
computed (Lemma 1), in practice one usually throws away the point pairs (yj ,xj)’s
for which c2j < λmin(Qj) as a means of preprocessing (cf. [11,46]), and these point
pairs might not enter into the semidefinite optimization. Thus, Theorem 2 suggests that
(SDR) can distinguish this type of “simple” outliers, as long as c2j is properly chosen.

In the second statement of Theorem 2, if the condition c2ℓ > (w∗
0)

⊤Qℓw
∗
0 holds true

for outlier Qℓ, then (TLS-Q) would attempt to minimize w⊤
0 Qℓw0 +

∑k∗

i=1 w
⊤
0 Qiw0

over w0 ∈ S3 at least—an outlier showed up in the eigenvalue optimization—thus the
global minimizer of (TLS-Q) is unlikely to be w∗

0 . This is why we do not expect W ∗ to
globally minimize (SDR); our theorem confirms this.
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Admittedly, Theorem 2 leaves a gap: What if c2j is sandwiched between λmin(Qj)

and (w∗
0)

⊤Qjw
∗
0? Or what can we say about the tightness of (SDR) if

λmin(Qj) < c2j < (w∗
0)

⊤Qjw
∗
0 ? (19)

While our empirical observation suggests that W ∗ does not globally minimize (SDR)
if (19) holds (with k∗ < ℓ), the analysis of this case without further assumptions on the
outliers appears hard. The difficulty is that the outliers Qj’s could be so adversarial that
(w∗

0)
⊤Qjw

∗
0 is arbitrarily close6 to 0 while λmin(Qj) = 0 for every j > k∗. Thus, the

value of Theorem 2 is in that it shows that (SDR) can only handle “simple” outliers that
can be filtered out, and thus reveals a fundamental limit on the performance of (SDR).

Next, we consider the situation where outliers Qj’s can not be simply removed by
preprocessing, e.g., λmin(Qj) = 0. In particular, we assume the outliers are clustered
and show that the (SDR) under investigation is even more vulnerable:

Theorem 3 (Noiseless Point Sets with Clustered Outliers). With the notation of The-
orem 2, further suppose outliers Qk∗+1, . . . ,Qℓ are “clustered” in the sense that

Qk∗+1w
cl
0 = · · · = Qℓw

cl
0 = 0 (20)

with wcl
0 ∈ S3 some unit quaternion that is different from ±w∗

0 . If

1−
∑ℓ

j=k∗+1 c
2
j

2
∑k∗

i=1 c
2
i

<
∣∣(wcl

0 )
⊤w∗

0

∣∣, (21)

then W ∗ does not globally minimize (SDR).

Proof (Sketch). The proof uses the same idea as in proving the second statement of
Theorem 2: Prove via counterexamples that the three conditions of Proposition 2 can no
hold simultaneously. They differ though, in how the counterexamples are constructed.

The clustered outliers of Theorem 3 defined in the sense of (20) mean that the outlier
pairs (yj ,xj) (j > k∗) are related by the same 3D rotation Rcl

0 that correspond to wcl
0 ,

that is yj = Rcl
0xj , ∀j > k∗ (Lemma 1). Clustered outliers can be thought of as a

special type of adversarial outliers, the latter usually used to study the robustness of
algorithms in the worse case; it should be distinguished from data clustering [32,22].

To understand condition (21) of Theorem 3, consider a situation where all truncation
parameters are equal, c21 = · · · = c2ℓ . Then (21) simplifies to 1 − (ℓ − k∗)/(2k∗) <∣∣(wcl

0 )
⊤w∗

0

∣∣; also note that
∣∣(wcl

0 )
⊤w∗

0

∣∣ ∈ [0, 1). Thus, if ℓ−k∗ > 2k∗, then (21) always
holds, and so W ∗ never globally minimizes (SDR), which is forgivable as in this case
w∗

0 neither globally minimizes (TLS-Q). However, even if the number of outliers is only
half the number of inliers, i.e., ℓ − k∗ = k∗/2, Theorem 3 implies that W ∗ would still
fail to globally minimize (SDR) as long as

∣∣(wcl
0 )

⊤w∗
0

∣∣ > 3/4, but w∗
0 would in general

globally minimize (TLS-Q) with suitable c2j (cf. [59]). Then one might conclude that
(SDR) is strictly less robust to outliers than (TLS-Q).

6 Alternatively, if (w∗
0)

⊤Qjw
∗
0 is small, then Qj might be treated as noisy data rather than an

outlier. We consider such noisy case in Sections 3.3 (without outliers) and 3.4 (with outliers).
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Finally, we note that Theorem 3 might be overly pessimistic. In fact, experiments
show that (SDR) is robust to 40%-50% outliers (yj ,xj)’s, where yj and xj are sampled
uniformly at random from S2 (so λmin(Qj) = 0 by Lemma 1). Two factors account
for this empirically better behavior: i) Such random outliers are less adversarial than
clustered ones, ii) the extra projection step that converts the global minimizer of (SDR)
to a unit quaternion alleviates to some extent the issue of W ∗ not minimizing (SDR).
In retrospect, there are two downsides in our analysis of Theorems 2 and 3: (1) We
have not taken such extra projection step into account, and (2) we only showed that W ∗

might not minimize (SDR) but have not proved how far the global minimizers of (SDR)
can be from W ∗, the latter being much more challenging though, in our opinion.

3.3 The Noisy + Outlier-Free Case

The noisy case, even without outliers, is more difficult to penetrate than previous cases.
A general reason for this is that the global minimizers of (QCQP) and (SDR) are now
complicated functions of noise. Since we already have Theorem 1, one might wonder
whether it can be extended to the noisy + outlier-free case using some continuity argu-
ment. In fact, [20] shows that, under certain conditions, if the noiseless version of the
Schor relaxation of some QCQP is tight, then its noisy version is also tight. While this
result is quite general, its conditions are abstract and hard to verify. In fact, it is not
applicable to our case directly, as in our problem the truncation parameters c2i also have
impacts on the tightness, and the approach of [20] does not model, and thus could not
control the values of c2i . Instead, our analysis must take both c2i and noise into account.

We begin by decomposing Qi of (TLS-Q) into the pure data part and noise part :

Lemma 3. Let R0 ∈ SO(3). If (yi,xi) is an inlier that obeys (1), then we have∥∥yi −R0xi

∥∥2
2
= w⊤

0 Qiw0, Qi = Pi +Ei +
∥∥ϵi∥∥22I4, (22)

where w0 ∈ S3 is the unit quaternion representation of R0, and Pi and Ei are 4 × 4
symmetric matrices that repsectively satisfy the following properties:

– Pi is positive semidefinite with its entries depending on yi and xi, and it has two
different eigenvalues 4∥xi∥22 and 0, each of multiplicity 2. The ground-truth unit
quaternion w∗

0 is an eigenvector of Pi corresponding to eigenvalue 0, i.e., Piw
∗
0 =

0. In particular, we have Qiw
∗
0 = Piw

∗
0 = 0 in the noiseless case.

– Ei has entries depending on yi, xi, and noise ϵi, and has two different eigenvalues
2ϵ⊤i R

∗
0xi+2∥ϵi∥2∥xi∥2 and 2ϵ⊤i R

∗
0xi−2∥ϵi∥2∥xi∥2, each of multiplicity 2. We

have w⊤
0 Eiw0 = 2ϵ⊤i (R

∗
0xi −R0xi) and in particular (w∗

0)
⊤Eiw

∗
0 = 0.

A Warm-Up Result We first consider a simple case where c2i is sufficiently large:

Theorem 4 (Noisy and Outlier-Free Point Sets {(yi,xi)}ℓi=1). Consider (TLS-Q)
with noisy inliers {Qi}ℓi=1 and ŵ0 ∈ S3 its global minimizer. Let ŵ := [ŵ0; . . . ; ŵ0].
If c2i > λmax(Qi) for every i = 1, . . . , ℓ, then (SDR) is tight as it admits ŵ(ŵ)⊤ as
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a global minimizer, and, moreover, the angle τ̂∗0 between ŵ0 and the ground-truth unit
quaternion w∗

0 ∈ S3 grows proportionally with the magnitude of noise ϵi:

sin2(τ̂∗0 ) ≤
4
∑ℓ

i=1

∥∥ϵi∥∥2∥∥xi

∥∥
2

λmin2
(∑ℓ

i=1 Pi

) , sin2(τ̂∗0 ) := 1− (ŵ⊤
0 w

∗
0)

2 (23)

In (23), each Pi corresponds to the “pure data” part of Qi that satisfies Piw
∗
0 =

0,Pi ⪰ 0 (Lemma 3), and λmin2
(
·) denotes the second smallest eigenvalue of a matrix.

Proof (Sketch). Let D̂ satisfy (14) with [D̂]0i = 1
2

(
c2i I4 − Qi

)
,∀i = 1, . . . , ℓ, and

let µ̂ =
∑ℓ

i=1

(
ŵ⊤

0 Qiŵ0 − c2i
)
. Since c2i > λmax(Qi), the minimum of (QCQP) is∑ℓ

i=1 ŵ
⊤
0 Qiŵ0. Again, one easily verifies conditions (O1) and (O3) of Proposition 2

hold. Moreover, condition (O2) of Proposition 2 is equivalent to (∀zi ∈ R4)

ℓ∑
i=1

(
(zi − z0)

⊤(c2i I4 −Qi

)
(zi − z0) + z⊤

0

(
Qi −

(
ŵ⊤

0 Qiŵ0

)
I4

)
z0

)
≥ 0,

which holds, as c2i I4 −Qi ⪰ 0 and ŵ⊤
0

(∑ℓ
i=1 Qi

)
ŵ0 is the minimum eigenvalue of∑ℓ

i=1 Qi. This proves the tightness. For the proof of bound (23), see our full paper [45].

First we note that the error bound (23) becomes zero as ϵi → 0 and thus ŵ0 = w∗
0 , pro-

vided that ∥xi∥2/λmin2
(∑ℓ

i=1 Pi

)
is not too large. The denominator λmin2

(∑ℓ
i=1 Pi

)
seems inevitable, as it usually determines the stability of solving a minimum eigenvalue
problem: If λmin2

(∑ℓ
i=1 Pi

)
→ 0 = λmin

(∑ℓ
i=1 Pi

)
, then ŵ0 can be arbitrarily far

from w∗
0 even in the slightest presence of noise. Similarly, the bound can be trivial if

∥xi∥2 is too large. However, one can show that, for ℓ large enough, if the entries of each
xi are i.i.d. Gaussian, then λmin2

(∑ℓ
i=1 Qi

)
is a positive multiple of

∑ℓ
i=1 ∥xi∥22 with

high probability; see our paper [45] for rigorous statements. In other words, for random
Gaussian data, ∥xi∥2/λmin2

(∑ℓ
i=1 Pi

)
is small and the bound (23) is well-behaved.

Condition c2i > λmax(Qi) guarantees that no Qi will get rejected as an outlier. In
fact, it implies that the inner minimization of (TLS-Q) always “chooses” the quadratic
term w⊤

0 Qiw0 for any unit quaternion w0. While (SDR) “is aware of” c2i > λmax(Qi)
(e.g., when it holds, (SDR) is tight), this condition presents a gap from Theorem 1:
λmax(Qi) ̸= 0 even in the absence of noise but Theorem 1 holds for every c2i > 0.
Thus, while Theorem 4 promises the tightness if c2i is large enough, it leads us to the
task of finding the smallest possible c2i for which (SDR) remains tight. This turns out
to be very challenging. In what follows, we give our efforts to this task, which we hope
will provide further insights into the noisy and outlier-free case.

Smaller Truncation Parameters for The Tightness The smaller truncation parame-
ters c2i that we find are tightly related to the eigengap ζ, defined as the ratio between the
second smallest eigenvalue λmin2(·) of

∑ℓ
i=1 Qi and its minimum eigenvalue:

ζ :=
λmin2

(∑ℓ
i=1 Qi

)
λmin

(∑ℓ
i=1 Qi

) (24)
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In analysis of eigenvalue algorithms (cf. [17]), the eigengap is typically defined as the
difference between two consecutive eigenvalues of some matrix. Our eigengap (24) that
takes the division of two smallest eigenvalues is not standard, but it will be convenient
for our purpose. Also note that, Qi is a perturbed version of Pi by noise ϵi (Lemma 3),
so λmin

(∑ℓ
i=1 Qi

)
is in general nonzero, while it indeed approaches zero if ϵi → 0.

Clearly ζ ≥ 1. Moreover, we have the following immediate observation:

Remark 2. If (TLS-Q) has a unique solution and if c2i > ŵ⊤
0 Qiŵ0 (∀i), then ζ > 1.

We are now ready to state the following result:

Theorem 5 (Noisy and Outlier-Free Point Sets, Version 2). Suppose ζ ≥ ℓ/(ℓ− 1).
The same conclusion of Theorem 4 holds true if

c2i > ŵ⊤
0 Qiŵ0 +

∥∥Qiŵ0

∥∥
2
+

|di|+ di
2

, ∀i = 1, . . . , ℓ (25)

with di :=

∑ℓ
i=1 ŵ

⊤
0 Qiŵ0

ℓ
− ŵ⊤

0 Qiŵ0 +
λmax

(∑
j ̸=i

(
Qi −Qj

))
ζ(ℓ− 1)

. (26)

Proof (Sketch). Let V̂ := [V̂0, ŵ0] ∈ R4×4 form an orthonormal basis of R4; V̂0 ∈
R4×3 satisfies V̂ ⊤

0 ŵ0 = 0 and V̂ ⊤
0 V̂0 = I3. Let µ̂ :=

∑ℓ
i=1

(
ŵ⊤

0 Qiŵ0 − c2i
)

and

[D̂]0i := V̂

T̂i 0

0 0

 V̂ ⊤ − 1

2

(
Qi − c2i I4

)
, ∀i = 1, . . . , ℓ (27)

where T̂i is a 3× 3 symmetric matrix defined as

T̂i :=
ζ − ℓ

ℓ−1

ζ
V̂ ⊤
0 QiV̂0 +

∑ℓ
j=1 V̂

⊤
0 QjV̂0

ζ(ℓ− 1)
−

(∑ℓ
i=1 ŵ

⊤
0 Qiŵ0

)
I3

ℓ
. (28)

Then, similarly to the proof sketch of Theorem 4, it is not hard to show that conditions
(O1) and (O3) of Proposition 2 are satisfied. Yet, proving (O2) under assumptions (25)
and ζ ≥ ℓ/(ℓ− 1) is not that obvious, and we omit it here in interest of space.

Theorem 5 is better understood via numerics. We take randomly generated ℓ = 100
point pairs (yi,xi)’s with xi ∼ N (0, I3), and add different levels of Gaussian noise
ϵi ∼ N (0, σ2I3), where σ ranges from 1% to 10%. The values of λmin

(∑ℓ
i=1 Qi

)
and

λmin2
(∑ℓ

i=1 Qi

)
, and thus ζ, are shown in Figure 1a, where one might observe that

ζ ≈ 250 for 10% noise, ζ ≈ 25000 for 1% noise, and, in general, ζ = ∞ for the
noiseless case. This empirically validates the assumption ζ ≥ ℓ/(ℓ− 1) = 100/99.

We then elaborate the more complicated condition (25). First we recall that c2i >
ŵ⊤

0 Qiŵ0 is essential for (TLS-Q) to preserve all inliers. Second, we argue that the
term ∥Qiŵ∥2 in (25) is also essential, as it accounts for the fact that noise destroys
the inequality λmin(Qi) − ŵ⊤

0 Qiŵ0 ≥ 0 which holds in the noiseless case (where
λmin(Qi) = ŵ⊤

0 Qiŵ0 = 0) but gets violated (in general) in the presence of noise.
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Fig. 1: Numerical illustration of condition (25) of Theorem 5 (500 trials, ℓ = 100).

Finally, (25) also incurs a curious term (|di|+ di)/2, with di defined in a sophisticated
way (26). If di < 0 then this term is 0. Thus it remains to understand the values of |di|.
In particular, we plotted the values of |d1| in Figure 1b in comparison to ŵ⊤

0 Q1ŵ0 +
∥Q1ŵ∥2, and observed that |d1| is two orders of magnitude smaller (there is nothing
special about the choice of index 1). In fact, as noise approaches zero, we have Qiŵ0 →
0 and (in general) ζ → ∞, hence di → 0 by definition (26). Overall, condition (25)
degenerates into c2i > 0 in the noiseless case. Thus one might conclude that condition
(25) is tighter than c2i > λmax(Qi) of Theorem 4, as Lemma 1 implies λmax(Qi) ̸= 0
even without noise. Indeed, this is further numerically evidenced by Figure 1c where
the lower bound of (25) with i = 1 ranges from 0.04 to 0.4, while the counterpart
λmax(Q1) of Theorem 4 is roughly 12, arguably much larger.

While the term (|di|+di)/2 is quite small (Figure 1b) and sometimes harmless (e.g.,
when di < 0), it appears as an artifact of our analysis, and we expect an ideal condition
for the noisy + outlier-free case to be c2i > ŵ⊤

0 Qiŵ0 +
∥∥Qiŵ0

∥∥
2
. However, proof

under this alternative condition demands showing some matrix inequality that involves
a sum of matrix inverses always holds; we were not able to prove it.

3.4 The Noisy + Outliers Case

Combine the proof ideas of Theorems 2 and 5, and we obtain:

Theorem 6 (Noisy Point Sets with Outliers). Let Q1, . . . ,Qk∗ be inliers, the rest
Qj’s outliers, and ŵ0 a global minimizer of (TLS-Q). Define

ζin :=
λmin2

(∑k∗

i=1 Qi

)
λmin

(∑k∗

i=1 Qi

) . (29)

Assume (1) ζin ≥ k∗/(k∗ − 1), (2) for every j = k∗ + 1, . . . , ℓ, we have 0 < c2j <
λmin(Qj), (3) for every i = 1, . . . , k∗, (25) holds with di now defined as

di :=

∑k∗

i=1 ŵ
⊤
0 Qiŵ0

k∗
− ŵ⊤

0 Qiŵ0 +
λmax

(∑
j ̸=i

(
Qi −Qj

))
ζ(k∗ − 1)

. (30)
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Then (SDR) is tight and, similarly to (23) we have

sin2(τ̂∗0 ) ≤
4
∑k∗

i=1

∥∥ϵi∥∥2∥∥xi

∥∥
2

λmin2
(∑k∗

i=1 Pi

) , sin2(τ̂∗0 ) := 1− (ŵ⊤
0 w

∗
0)

2 (31)

Here we recall that w∗
0 ∈ S3 is the ground-truth unit quaternion, and each Pi is the

“pure data” part of Qi that satisfies Piw
∗
0 = 0,Pi ⪰ 0 (Lemma 3).

Proof. The given assumptions ensure that (TLS-Q) rejects all outliers and admit all in-
liers, and the minimum of (TLS-Q) is

∑k∗

i=1 ŵ
⊤
0 Qiŵ0+

∑ℓ
j=k∗+1 c

2
j . For i = 1, . . . , k∗

let D0i be defined as in (27), and for j = k∗ + 1, . . . , ℓ let [D̂]0j := 1
2 (Qj − c2jI4).

Let µ̂ :=
∑k∗

i=1

(
ŵ⊤

0 Qiŵ0 − c2i
)
. One then verifies the optimality conditions (O1) and

(O3) of Proposition 2 are satisfied. (O2) is equivalent to (∀zi ∈ R4)

−µ̂
∥∥z0∥∥22 + k∗∑

i=1

(
2z⊤

i [D̂]0izi − z⊤
0

(
2[D̂]0i −Qi + c2i I4

)
zi

)
︸ ︷︷ ︸

Inlier Term

+

ℓ∑
i=k∗+1

Oj︸ ︷︷ ︸
Outlier Term

≥ 0,

where Oj := zj(Qj − c2jI4)zj . Since Qj ⪰ c2jI4, Oj is non-negative. Under the given
assumptions, one can replace ℓ by k∗ in the proof of Theorem 5 and then find the inlier
term is also non-negative. This finishes proving (O2) and thus the tightness of (SDR).
The error bound (31) follows from the proof of Theorem 4 with ℓ replaced by k∗.

Note that all assumptions of Theorem 6 have their counterparts in previous results (e.g.,
Theorems 2 and 5), so we omitted further explanations.

4 Discussion and Future Work

We have investigated the tightness of a semidefinite relaxation (SDR) of truncated least-
squares for robust rotation search in four different cases, and in each case we either
showed improvements over prior work or proved new theoretical results. Our investiga-
tion can potentially be borrowed to understand semidefinite relaxations of many other
geometric vision tasks; see [58] for 6 examples of truncated least-squares and see also
[20,3,10].

As is common in the optimization literature, the relaxation we analyzed is at the
first (i.e., lowest) relaxation order of the Lasserre hierarchy [36], or otherwise known
as the Shor relaxation [50]. A tighter relaxation that has quadratically more constraints
than (SDR) exists (cf. [57]). However, analyzing this tighter relaxation is significantly
harder, as one needs to either (1) construct quadratically more dual certificates during
the proof, or (2) use more abstract optimality conditions (cf. [19,20]). Therefore, we
leave this challenging question to future work.
Acknowledgments. This work was supported by grants NSF 1704458, NSF 1934979
and ONR MURI 503405-78051.
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