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A Proofs

Remark 1. Aggregating parameters by averaging is equivalent to taking a gradi-
ent step from the current parameter state in the direction of the average of the
clients’ pseudo-gradients, or mathematically it is θ̄t ← 1

|St|
∑

i∈St θt
i = θt−1−ḡt.

Proof.

θ̄t ← 1

|St|
∑
i∈St

θt
i = θt−1 − 1

|St|
∑
i∈St

θt−1 − θt
i

= θt−1 − 1

|St|
∑
i∈St

gt
i

= θt−1 − ḡt .

Theorem 1. In FedDyn, ∥ht∥2 ≤ ∥ht−1∥2 requires

cos(∠(ht−1, ḡt)) ≤ − |P
t|

2|St|
∥ḡt∥
∥ht−1∥

Proof. According to Algorithm 1,

ht ← ht−1 +
|Pt|
|St|

ḡt.

Applying 2-norm squared on both sides gives

∥ht∥2 = ∥ht−1∥2 +
(
|Pt|
|St|

)(2)

∥ḡt∥2 + 2
|Pt|
|St|
⟨ht−1, ḡt⟩.

https://orcid.org/0000-0002-4691-5412
https://orcid.org/0000-0002-5737-3188
https://orcid.org/0000-0003-4163-9591
https://orcid.org/0000-0003-1848-9935
https://orcid.org/0000-0001-6629-8434
https://orcid.org/0000-0002-3603-5067


2 F. Varno et al.

Considering the proposition, we have

∴ ∥ht∥2 ≤ ∥ht−1∥2 =⇒ 2⟨ht−1, ḡt⟩ ≤ −|P
t|

|St|
∥ḡt∥2.

with dividing both sides on some positive values, we get

⟨ht−1, ḡt⟩
∥ḡt∥∥ht−1∥

≤ − |P
t|

2|St|
∥ḡt∥
∥ht−1∥

,

which is equivalent to the

cos(∠(ht−1, ḡt)) ≤ − |P
t|

2|St|
∥ḡt∥
∥ht−1∥

.

Remark 2. θ̄t−1 − θ̄t is equivalent to ht−1 + ḡt in AdaBest.

We first add and remove θt−1 from the first side of the equation,

θ̄t−1 − θ̄t = θ̄t−1 − θ̄t + θt−1 − θt−1

= (θ̄t−1 − θt−1) + (θt−1 − θ̄t).

Then, we replace some terms using Equation 1 and Remark 1 to get

θ̄t−1 − θ̄t = ht−1 + ḡt.

Remark 3. Cloud pseudo-gradients of AdaBest form a power series of ht =∑t
τ=0 β

(t−τ+1)ḡτ , given that superscript in parenthesis means power.

Proof. We make the induction hypothesis ht−1 =
∑t−1

τ=0 β
(t−τ)ḡτ . We need to

prove that ht =
∑t

τ=0 β
(t−τ+1)ḡτ . From Algorithm 1 we have

ht = β(θ̄t−1 − θ̄t).

Additionally, using Remark 2 it could be rewritten as

ht = β(ht−1 + βḡt).

Replacing the induction hypothesis changes it to

ht = β(

t−1∑
τ=0

β(t−τ)ḡτ + βḡt)

=

t−1∑
τ=0

β(t−τ)ḡτ+1 + β(2)ḡt

=

t∑
τ=0

β(t−τ+1)ḡτ .
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Remark 4. FedAvg is a special case of AdaBest where β = µ = 0.

Proof. In AdaBest, µ = 0 makes ht
i zero for all feasible i and t. The resulting

local update is identical to that of FedAvg. Similarly, ht becomes zero at all
rounds if β = 0. So AdaBest would also have the same server updates as of
FedAvg.

Remark 5. Server update of FedDyn is a special case of AdaBest where β = 1

except that an extra |P|
|S| scalar is applied which also adversely makes

FedDyn require prior knowledge about the number of clients.

Proof. According to Algorithm 1, on the server side AdaBest and FedDyn are
different in their update of ht. Based on Remark 2, for β = 1 AdaBest update is

ht ← ht−1+ ḡt. Comparably the same update in FedDyn is ht ← ht−1+ |Pt|
|St| ḡ

t.

Involving ∥St∥ in the update means assuming that prior knowledge on number
of total clients is available from the beginning of the training. On the other hand,
β = 0 leads to ht = 0 and consequently the update on the cloud model become
θt ← θ̄t which is identical to the server update of FedAvg.

Theorem 2. If S be a fixed set of clients, θ̄ does not converge to a stationary
point unless h→ 0.

Proof. With a minor abuse in our notation for the case of SCAFFOLD/m (the
difference only is applying h on the clients after θ is sent to them), we can
generally state that

θ̄t ← θt−1 − ḡt = θ̄t−1 − (ht−1 + ḡt).

With S being fixed, upon t→∞, and convergence of θ̄, we expect that gt → 0,
so the optimization does not step out of the minima. In that case. we also expect
θ̄t ≈ θ̄t−1. On the other hand, above formula results in θ̄t ≈ θ̄t−1 − ht−1 which
holds if h→ 0.

B Algorithm Notation

Following [4] and [2], for the sake of simplicity and readability, we only pre-
sented Algorithm 1 for the balanced case (in terms of number of data samples
per client). According to [1], SCAFFOLD and FedDyn also need the prior
knowledge about the number of clients in order to properly weight their ht ac-
cumulation in the case of unbalance data samples. These weights are used in the
form of average samples per client in [1]. We eliminate such dependency in our
algorithm by progressively calculating this average throughout the training. We
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also confirm that applying the same modification on SCAFFOLD and FedDyn
does not impede their performance nor their stability (experiments on FedDyn
and SCAFFOLD still are done with their original form). For the experiments,
we implemented SCAFFOLD as introduced in the original paper [4]; However,
for more clarity a modification of it (SCAFFOLD/m) is contrasted to other
methods in Algorithm 1 in which only the model parameters are sent back to
the server (compare it to Algorithm 1 in [4]). Note that this difference in pre-
sentation is irrelevant to our arguments in this paper since the more important

factor for scalability in the recursion is |St|−1
|St| .

C Algorithmic Costs

In this section, we compare compute, storage and bandwidth costs of AdaBest
to that of FedAvg, SCAFFOLD/m and FedDyn.

C.1 Compute Cost

Table 3 shows the notation we use for formulating the costs of these algorithms.
Algorithm 2 is an exact repetition of Algorithm 1 except that the compute cost
of operations of interest are included as comments. These costs are summed in
tables Table 4 and Table 5 for the client and server sides, respectively. According
to these tables, AdaBest has lower client-side and server-side compute costs
than SCAFFOLD/m and FedDyn.

Table 3. Summary of notion used to formulate the algorithm costs

Notation Meaning

n Number of parameters of the model := |θ|
g Cost of computing local mini-batch gradients
s Cost of summing two floating point numbers
m Cost of multiplying two floating point numbers

C.2 Storage Cost

All the three algorithms require the same amount of storage, on the clients and
the server. Each client is supposed to store a set of local gradient estimates
with size n (see Table 3), noted as ht

i. Likewise, each algorithm stores the same
number of variables on the server so that estimates are forwarded to the next
rounds. These variables are introduced with ht in SCAFFOLD/m and FedDyn
but with θ̄t−1 in AdaBest.
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Table 4. Comparing AdaBest to FedAvg, SCAFFOLD/m, FedDyn in their com-
pute cost of local (client side) operations. See Algorithm 2 for more detailed comparison

Algorithm Client side compute cost

FedAvg K(g + ns+ nm)
SCAFFOLD/m K(g + ns+ nm) + 2Kns+ 2n(s+m)
FedDyn K(g + ns+ nm) + 3Kns+Knm+ n(s+m)
AdaBest K(g + ns+ nm) +Kns+ n(s+m)

Table 5. Comparing AdaBest to FedAvg, SCAFFOLD/m, FedDyn in their com-
pute cost of global (server side) operations. See Algorithm 2 for more detailed compar-
ison

Algorithm Server side compute cost

FedAvg |Pt|ns
SCAFFOLD/m |Pt|ns+ 2ns+ 2nm
FedDyn |Pt|ns+ 3ns+ nm
AdaBest |Pt|ns+ 2ns+ nm

C.3 Communication Cost

AdaBest and FedDyn are not different in the way information is communi-
cated between the server and clients; thus, they do not differ in terms of costs of
communication bandwidth. That is sending n parameters from server to each se-
lected client at each round and receiving the same amount in the other direction
(from each client to the server). The original SCAFFOLD needs doubling the
amount of information communicated in each direction (2n). However, SCAF-
FOLD/m reduces this overhead to 1.5 times (of that of AdaBest) by avoiding
to send the extra variables from clients’ to the server (1.5 n).

More accurate costs requires exact specifications of the system design. For
example, the aggregation operation on the server if done in a batch (from a
buffer of client delivered parameters) requires more storage but can decrease the
compute cost using multi-operand adders on floating-point mantissas such as
Wallace or Dadda tree adders. However, these design choices do not appear to
make a difference in the ranking of the costs for algorithms compared in this
paper.

For cost estimates to be more precise, system design specifications must be
considered. For instance, using multi-operand adders on floating-point mantis-
sas, such as Wallace or Dadda tree adders, can reduce the compute cost of the
aggregation operation on the server if it is performed in a batch (from a buffer of
client-delivered parameters) but requires more storage. However, it does not ap-
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Algorithm 2 Compute cost of SCAFFOLD/m , FedDyn , AdaBest . Op-

erations that are common among all three algorithms are grayed out. The com-
pute cost of other operations are shown with a comment in front of each line.
The variables used to represent the cost of each micro-operation are introduced
in Table 3

Input: T,θ0, µ, β
for t = 1 to T do

Sample clients Pt ⊆ St.
Transmit θt−1 to each client in Pt

Transmit ht−1 to each client in Pt (SCAFFOLD/m)

for each client i ∈ Pt in parallel do
θt,0
i ← θt−1

for k = 1 to K do
k = 1 Compute mini-batch gradients Li(θ

t,k−1
i ) /* g */

gt,k−1
i ← ∇Li(θ

t,k−1
i )− h

t′i
i + ht (SCAFFOLD/m) /* 2ns */

gt,k−1
i ← ∇Li(θ

t,k−1
i )− h

t′i
i − µ(θt−1 − θt,k−1

i ) (FedDyn) /* 3ns + nm */

gt,k−1
i ← ∇Li(θ

t,k−1
i )− h

t′i
i (AdaBest) /* ns */

θt,k
i ← θt,k−1

i − ηgt,k−1
i /* ns + nm */

end for
gt
i ← θt−1 − θt,K

i

ht
i ← |St|−1

|St| ht−1
i + |Pt|

Kη|St| (θ
t−1 − θ̄t) (SCAFFOLD/m) /* 2ns + 2nm */

ht
i ← h

t′i
i + µgt

i (FedDyn) /* ns + nm */

ht
i ← 1

t−t′i
h

t′i
i + µgt

i (AdaBest) /* ns + nm */

t′i ← t
Transmit client model θt

i := θt,K
i

end for
θ̄t ← 1

|Pt|
∑

i∈Pt θ
t
i /* |Pt|ns */

ht ← |St|−1
|St| ht−1 + |Pt|

Kη|St| (θ
t−1 − θ̄t) (SCAFFOLD/m) /* 2ns + 2nm */

ht ← ht−1 + |Pt|
|St| (θ

t−1 − θ̄t) (FedDyn) /* 2ns + nm */

ht ← β(θ̄t−1 − θ̄t) (AdaBest) /* ns + nm */

θt ← θ̄t (SCAFFOLD/m)

θt ← θ̄t − ht (FedDyn) /* ns */

θt ← θ̄t − ht (AdaBest) /* ns */

end for

pear that these design decisions affect the ranking of the costs for the algorithms
compared in this paper.
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D Experiments Details

D.1 Evaluation

There are two major differences between our evaluation and those of prior works.

1. We do not consider number of epochs to be a hyper-parameter.
Comparing two Federated Learning (FL) algorithms with different num-
ber of local epochs, is unfair in terms of the amount of local compute costs.
Additionally, it makes it difficult to justify the impact of each algorithm on
preserving the privacy of clients’ data. This is because the privacy cost is
found to be associated with the level of random noise in the pseudo-gradients.
This randomness in turn is impacted by the number of epochs (see page 8
of [3]). For an example of comparing algorithms after tuning the number
of epochs, refer to the Appendix 1 of [2] where 20 and 50 local epochs are
chosen respectively for FedAvg and FedDyn in order to compare their
performance on MNIST dataset.

2. We consider a hold-out set of clients for hyper-parameter tuning.
Although, an on the fly hyper-parameter tuning is much more appealing
in FL setting, for the purpose of studying and comparing FL algorithms,
it is reasonable to consider hyper-parameters are tuned prior to the main
training phase. However, using the performance of the test dataset in order
to search for hyper-parameters makes the generalization capability of the
algorithms that use more hyper-parameters questionable. Therefore, we set
aside a separate set of training clients to tune the hyper-parameters for each
algorithm individually. This may make our reported results on the baselines
not exactly matching that of their original papers (different size of total
training samples).

In addition, we use five distinct random seeds for data partitioning to better
justify our reported performance. Throughout all the experiments, SGD with a
learning rate of 0.1 is used6 with a round to round decay of 0.998. Batch size
of 45 is selected for all datasets and experiments. Whenever the last batch of
each epoch is less than this number, it is capped with bootstrapping from all
local training examples (which can further enhances the privacy especially for
imbalance settings). We follow [2] in data augmentation and transformation.
Local optimization on CIFAR10 and CIFAR100 involves random horizontal
flip and cropping on the training samples both with probability of 0.5. No data
augmentation is applied for experiments on EMNIST-L.

D.2 Implementation

We used PyTorch to implement our FL simulator. For data partitioning and
implementation of the baseline algorithms, our simulator is inspired from [1]
which is publicly shared by the authors of [2]. To further validate the correctness

6 We followed [2] in choosing this optimization algorithm and learning rate.
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of SCAFFOLD implementation, we consulted the first author of [4]. Addition-
ally, we cross-checked most of the results our simulator yielded to the ones made
by [1].
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Fig. 4. Highlighting the instability of FedDyn and its association with the norm of
cloud parameters. The training is performed on a comparably easy FL task but for a
large number of communication rounds. Top and bottom subplots show test accuracy
(in percentage) and norm of cloud parameters respectively. The horizontal axis which
shows number of communication rounds is shared among subplot

D.3 Stability and ∥θt∥

In Figure 1, we showed an experimental case of low client participation to demon-
strate how ∥θt∥ is associated with instability of FedDyn. In this experiment,
the training split of CIFAR100 is partitioned over 1100 clients from which 1000
is used for training. The partitioning is balanced in terms of number of examples
per client and the labels are skewed according to our α = 0.3 heterogeneity setup
(see Section 4.4 for detailed explanation). In each round, 5 clients are drawn uni-
formly at random. This low client participation rate is more likely to occur in
a large-scale (in terms of number of clients) cross-device FL compared to the
setting used for reporting the performances in Table 2 and most of those of our
prior works. In Figure 4 we repeat the same experiment; except that a much
simpler FL task is defined. In this experiment the training split of EMNIST-L
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Fig. 5. Top-1 train and test accuracy score of AdaBest and the baselines. The solid
and dash-dotted lines represent train and test, respectively

dataset is partitioned into 110 clients, 100 of which are used for training. Parti-
tions are IID (labels are not skewed). Even though this task is much simpler than
the previous one, still FedDyn fails to converge when the training continues for
a large number of rounds.

D.4 Overfitting Analysis

It is important not to confuse FedDyn’s source of instability with overfitting.
To confirm this, we can compare the average train and test accuracy of the same
rounds while the model is being trained. Figure 5 compares SCAFFOLD, Fed-
Dyn, and AdaBest in this manner. The configuration used in this experiment
is identical to the configuration of the experiment in Figure 1, with the excep-
tion that it corresponds to a single data partitioning random seed for clarity.
The train accuracy is calculated by averaging the train accuracy of participat-
ing clients. The results suggest that train accuracy of the baselines is severely
declined as the training continues while AdaBest is much more stable in this
regard.
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D.5 µ-sensitivity

During the hyper-parameter tuning phase, we only tune β of AdaBest and set
its µ constantly to 0.02. This is done throughout all the experiments except the
experiment presented in this section which especially investigates the sensitivity
of AdaBest to varying µ. Therefore, in practice we have not treated µ as a
hyper-parameter but rather chose the value that works best for FedDyn. For
this experiment, we use the same setup as the one presented in Section D.3
on EMNIST-L dataset. The only difference is that we vary µ in the range of
{0.02 × 2(k)}k=3

k=1. Figure 6 depicts the outcome of this experiment along with
the result of the same analysis on FedDyn so it would be easy to compare the
sensitivity of each of these algorithms to their local factor µ. As suggested by
the top left subplot in this Figure, AdaBest can even achieve higher numbers
in terms of the test accuracy than what is reported in Table 2. The scales on the
vertical axis of the subplots related toAdaBest (on the left column) are zoomed-
in to better show the stability of our algorithm throughout the training. On the
other hand, the performance and stability of FedDyn shows to be heavily relied
on the choice of µ when the training continues for a large number of rounds.
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Fig. 6. µ sensitivity for AdaBest (on the left) and FedDyn (on the right). The hori-
zontal axis which shows the number of communication rounds is shared for each column
of subplots. Top and bottom row show the test accuracy (in percentage) and norm of
cloud parameters respectively. Note that the vertical axis is not shared as for clarity.
This means that the scale of difference between converging point of ∥θt∥ in AdaBest
is largely different from the divergence scale of the same quantity for FedDyn
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Fig. 7. The sensitivity of the test accuracy (in percentage) for different rates of client
participation and values of β. The training is done on a partitioning of CIFAR100
with 1000 training clients. The numbers on the horizontal axis show the fractions of
the total clients sampled at each round

D.6 β-sensitivity

To investigate how the choice of β impacts the generalization performance, we
conduct an experiment with varying β and the rate of client participation. The
relation comes from the fact that in lower rates of client participation, the vari-
ance of the pseudo-gradients is higher and so a lower β is required both in order
to avoid explosion of ∥θt∥ and also to propagate estimation error from the previ-
ous rounds as explained in 3.5. For this experiment we use the same setup as the
one used in Figure 1 (see Section D.3 for details). Figure 7 implies that when the
rate of client participation is 0.005 (5 clients participating in each round out of
1000 training clients) the optimal β is between 0.8 and 0.95. With a larger rate
of client participation, the optimal value moves away from 0.8 towards between
0.95 and 1.0;

This observation is aligned with our hypothesis on the impact of variance
of pseudo-gradients on the estimation error and norm of the cloud parameters.
Another interesting point is that for a wide range of β values, the performance
remains almost stable regardless of the rate of client participation. Additionally,
β values closer to 1 seem to be suitable for higher rates of client participation,
which is suggested by the curve corresponding to β = 1.0 rising as the rate
of client participation increases. This case (β = 1.0) is the most similar to
formulation of our baselines where the estimations of oracle gradients are not
scaled properly from one round to another.
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