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Abstract. In Federated Learning (FL), a number of clients or devices
collaborate to train a model without sharing their data. Models are opti-
mized locally at each client and further communicated to a central hub for
aggregation. While FL is an appealing decentralized training paradigm,
heterogeneity among data from different clients can cause the local op-
timization to drift away from the global objective. In order to estimate
and therefore remove this drift, variance reduction techniques have been
incorporated into FL optimization recently. However, these approaches
inaccurately estimate the clients’ drift and ultimately fail to remove it
properly. In this work, we propose an adaptive algorithm that accurately
estimates drift across clients. In comparison to previous works, our ap-
proach necessitates less storage and communication bandwidth, as well
as lower compute costs. Additionally, our proposed methodology induces
stability by constraining the norm of estimates for client drift, making
it more practical for large scale FL. Experimental findings demonstrate
that the proposed algorithm converges significantly faster and achieves
higher accuracy than the baselines across various FL benchmarks.

Keywords: Federated Learning, Distributed Learning, Client Drift, Bi-
ased Gradients, Variance Reduction

1 Introduction

In Federated Learning (FL), multiple sites with data often known as clients
collaborate to train a model by communicating parameters through a central
hub called server. At each round, the server broadcasts a set of model parameters
to a number of clients. Selected clients separately optimize towards their local
objective. The locally trained parameters are sent back to the server, where they
are aggregated to form a new set of parameters for the next round. A well-known
aggregation is to simply average the parameters received from the participating
clients in each round. This method is known as FedAvg [17] or LocalSGD [25].
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In order to reduce the communication costs as well as privacy concerns [32],
multiple local optimization steps are often preferable and sometimes inevitable
[17]. Unfortunately, multiple local updates subject the parameters to client drift
[7]. While SGD is an unbiased gradient descent estimator, LocalSGD is bi-
ased due to the existence of client drift. As a result, LocalSGD converges to a
neighborhood around the optimal solution with a distance proportionate to the
magnitude of the bias [2]. The amount of this bias itself depends on the het-
erogeneity among the clients’ data distribution, causing LocalSGD to perform
poorly on non-iid benchmarks [31].

One effective way of reducing client drift is by adapting Reduced Variance
SGD (RV-SGD) methods [6,22,23,19] to LocalSGD. The general strategy is
to regularize the local updates with an estimate of gradients of inaccessible
training samples (i.e., data of other clients). In other words, the optimization
direction of a client is modified using the estimated optimization direction of
other clients. These complementary gradients could be found for each client i by
subtracting an estimate of the local gradients from an estimate of the oracle’s6

full gradients. In this paper, we refer to these two estimates with hi and h,
respectively. Therefore, a reduced variance local gradient for client i would be
in general form of ∇Li + (h− hi) where ∇Li corresponds to the true gradients
of the local objective for client i.

The majority of existing research works on adapting RV-SGD to distributed
learning do not meet the requirement to be applied to FL. Some proposed algo-
rithms require full participation of clients [24,21,15], and thus are not scalable to
cross-device FL7. Another group of algorithms require communicating the true
gradients [14,18] and, as a result, completely undermine the FL privacy concerns
such as attacks to retrieve data from true gradients [32].

SCAFFOLD [7] is an algorithm that supports partial participation of clients
and does not require the true gradients at the server. While SCAFFOLD shows
superiority in performance and convergence rate compared to its baselines, it
consumes twice as much bandwidth. To construct the complementary gradients,
it computes and communicates h as an extra set of parameters to each client
along with the model parameters. FedDyn [1] proposed to apply h in a single
step prior to applying any local update, and practically found better performance
and convergence speed compared to SCAFFOLD. Since applying h uses the
same operation in all participating clients, [1] moved it to the server instead of
applying on each client. This led to large savings of local computation, and more
importantly to use the same amount of communication bandwidth as vanilla
LocalSGD (i.e., FedAvg), which is half of what SCAFFOLD uses.

FedDyn make several assumptions that are often not satisfied in large-scale
FL. These assumptions include having prior knowledge about the total number
of clients, a high rate of re-sampling clients, and drawing clients uniformly from

6 Oracle dataset refers to the hypothetical dataset formed by stacking all clients’ data.
Oracle gradients are the full-batch gradients of the Oracle dataset.

7 In contrast to cross-silo FL, cross-device FL is referred to a large-scale (in terms of
number of clients) setting in which clients are devices such as smart-phones.
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Fig. 1. Asymptotic instability of FedDyn as a results of unbounded increase of ∥ht∥.
From top to bottom test loss (log scale), norm of cloud parameters, and test accuracy
are shown in subplots. The shared horizontal axis shows the number of communication
rounds. Each experiment is repeated 5 times with different random seed of data parti-
tioning. Solid lines and shades represent mean and standard deviation respectively

a stationary set. Even with these assumptions, we show that h in FedDyn is
pruned to explosion, especially in large-scale setting. This hurts the performance
and holds the optimization back from converging to a stationary point.

This paper proposes AdaBest, a Reduced Variance LocalSGD (RV-LSGD)
solution to minimize the client drift in FL. Compared to the baselines, we define
a simpler yet more elegant method of incorporating previous observations into
estimates of complementary gradients. Our solution alleviates the instability of
the norm of h in FedDyn (see Figure 1 for empirical evaluation) while consum-
ing the same order of storage and communication bandwidth, and even reducing
the compute cost (see supplementary material for quantitative comparison). Un-
like previous works, our algorithm provides a mechanism for adapting to changes
in the distribution of client sampling and does not require prior knowledge of
the entire set of clients. These characteristics of AdaBest, combined with its
stability, provide a practical solution for large-scale cross-device FL. Our main
contributions are as follows:

– We show that the existing RV-LSGD approaches for cross-device FL fail
to efficiently converge to a stationary point. In particular, the norm of the
parameters in FedDyn is pruned to explosion (see section 3.4 for discussion).
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– We formulate a novel arithmetic approach for implicit accumulation of pre-
vious observations into the estimates of oracle full gradients (h).

– Using the new formulation, we present AdaBest, a novel algorithm that can
be thought as a generalization of both FedAvg and FedDyn. We introduce
a new factor β that stabilizes our algorithm through controlling the norm of
h. As a result, the optimization algorithm converges to a stationary point
(see Sections 3.4 for detailed discussion). Unlike baselines, AdaBest does
not assume that the set of training clients are stationary nor it requires a
prior knowledge about its cardinality.

– We conduct various experiments under different settings of number of clients,
balance among partitions, and heterogeneity. Our results indicate superior
performance of AdaBest in nearly all benchmarks (up to 94% improvement
in test accuracy compared to the second best candidate; almost twice better),
in addition to significant improvements in stability and convergence rate.

2 Related Work

A major challenge in FL is data heterogeneity across clients where the local
optima in the parameter space at each client may be far from that of the global
optima. This causes a drift in the local parameter updates with respect to the
server aggregated parameters. Recent research has shown that in such heteroge-
neous settings, FedAvg is highly pruned to client drift [31].

To improve the performance of FL with heterogeneous data, some previous
works use knowledge distillation to learn the cloud model from an ensemble of
client models. This approach has been shown to be more effective than simple
parameter averaging in reducing bias of the local gradients [16,12,33].

Another group of methods can be categorized as gradient based in which
the gradients are explicitly constrained on the clients or sever for bias removal.
FedProx [13] penalizes the distance between the local and cloud parameters
whereas [26] normalizes the client gradients prior to aggregation. Inspired by
momentum SGD, [29] uses a local buffer to accumulate gradients from previous
rounds at each client and communicate the momentum buffer with the server as
well as the local parameters which doubles the consumption of communication
bandwidth. Instead of applying momentum on the client level, [5,27] implement
a server momentum approach which avoids increasing communication costs.

Inspired by Stochastic Variance Reduction Gradients (SVRG) [6], some
works incorporate variance reduction into local-SGD [1,14,7,15,30,9,18,19].DANE
[24],AIDE [21], andVRL-SGD [15] incorporatedRV-SGD in distributed learn-
ing for full client participation. FedDANE [14] is an attempt to adapt DANE
to FL setting8, though it still undermines the privacy concerns such as attacks
to retrieve data from true gradients [32]. Different from our work, most meth-
ods in this category such as VRL-SGD [15], FSVRG [9], FedSplit [20] and
FedPd [30] require full participation of clients which makes them less suitable

8 Recall that Federated Learning is a sub-branch of distributed learning with specific
characteristics geared towards practicality[17].



AdaBest: Minimizing Client Drift in Federated Learning 5

for cross-device setting where only a fraction of clients participate in training
at each round. While FedDANE [14] works in partial participation, empirical
results show it performs worse than Federated Averaging [1]. More comparable
to our method are those capable of learning in partial participation setting. In
particular, SCAFFOLD [7] uses control variates on both the server and clients
to reduce the variance in local updates. In addition to the model parameters, the
control variates are also learned and are communicated between the server and
the clients which take up additional bandwidth. [18] also reduces local variance
by estimating the local bias at each client and using an SVRG-like approach
to reduce the drift. While SCAFFOLD applied variance reduction on clients,
FedDyn [1] applies it partly on the server and partly on the clients. Our pro-
posed method, is probably closer to FedDyn than to others; however, they differ
in the way gradients are estimated. See section 3.4 for detailed comparison of
AdaBest with FedDyn and SCAFFOLD.

3 Method

In this section, we present an overview of the general FL setup and further
introduce our notation to formulate the problem statement. Next we detail the
proposed algorithm and how to apply it. Finally, we demonstrate the efficacy of
our technique by comparing it with the most closely related approaches.

3.1 Federated Learning

We assume a standard FL setup in which a central server communicates parame-
ters to a number of clients. The goal is to find an optimal point in the parameter
space that solves a particular task while clients keep their data privately on their
devices during the whole learning process.

Let St be the set of all registered clients at round t and Pt be a subset of it
drawn from a distribution P (Sτ ; τ = t). The server broadcasts the cloud model
θt−1 to all the selected clients. Each client i ∈ Pt, optimizes the cloud model
based on its local objective and transmits the optimized client model, θt

i back
to the server. The server aggregates the received parameters and prepares a new
cloud model for the next round. Table 1 lists the most frequently used symbols
in this paper along with their meanings. Note that the aggregate model (client
gradients) is an average of client model (client gradients) over values of i ∈ Pt.

3.2 Adaptive Bias Estimation

Upon receiving the client models of round t ({∀i ∈ Pt : θt
i}) on the server, the

aggregate model, θ̄t is computed by averaging them out.

Definition 1. Pseudo-gradient of a variable u at round t is ut−1 − ut.

Remark 1. Aggregating client models by averaging is equivalent to applying a
gradient step of size 1 from the previous round’s cloud model using average of
client pseudo-gradients or mathematically it is θ̄t ← 1

|St|
∑

i∈St θt
i = θt−1 − ḡt.
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Table 1. Summary of notion used in this paper

ut, ut
i, ut,τ

i variable u at {round t, and client i, and local step τ}
| . |, ⟨ . , . ⟩, u(v) cardinality, inner product, power

∥.∥2, ∠(., .) 2-norm squared, angle
St, Pt set of {all, round} clients

θt, θ̄t, θt
i , θt,τ

i {cloud, aggregate, client, local} model

gt, ḡt, gt
i , gt,τ

i {oracle, aggregate, client, local} gradients
ht, ht

i {full, client} gradients estimates

Next, the server finds the cloud model θt by applying the estimate of the oracle
gradients ht; that is

θt ← θ̄t − ht, (1)

where ht is found as follows

ht = β(θ̄t−1 − θ̄t). (2)

In section 3.5, we further discuss the criteria for chosen β which leads to a
fast convergence. The described cycle continues by sending the cloud model to
the clients sampled for the next round (t + 1) while the aggregate model (θ̄t)
is retained on the server to be used in calculation of ht+1 or deployment. A
schematic of the geometric interpretation of the additional drift removal step
taken at the server is shown in Figure 2.

θ̄t−1 −ht−1

θt−1

−ḡt

− 1
β
ht

θ̄t

−ht

θt

Fig. 2. Geometric interpretation of AdaBest’s correction applied to the server up-
dates. Server moves the aggregate parameters in the direction of θ̄t−1 − θ̄t before
sending the models to the next round’s clients

After receiving the cloud model, each client i ∈ Pt, optimizes its own copy of
the model towards its local objective, during which the drift in the local optimiza-
tion steps is reduced using the client’s pseudo-gradients stored from the previous
rounds (see Algorithm 1). The modified client objective is argminθ Ri(θ

t) where

Ri(θ
t) = Li(θ

t)−µ⟨θt,h
t′i
i ⟩, where Li is the local empirical risk defined by the

task and data accessible by the client i, and t′i is the last round that client i par-
ticipated in the training. Accordingly, the local updates with step size η becomes

θt,τ
i ← θt,τ−1

i − η(∇Li(θ
t,τ−1
i )− µh

t′i
i ), (3)
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where µ is the regularization factor (FedDyn has a similar factor; see supple-
mentary material for further discussion on the choice of optimal value for µ).

After the last local optimization step, each sampled client updates the esti-
mate for its own local gradients and stores it locally to be used in the future
rounds that the client participate in the training. This update is equivalent to
ht
i =

1
t−t′i

ht′i+gt
i where g

t
i = θt−1−θt

i . Finally, the participating clients send the

optimized model θt
i back to the server. Our method along with SCAFFOLD

and FedDyn is presented in Algorithm 1.

3.3 Relation to RV-SGD

Stochastic Variance Reduction Gradients (SVRG) [6] and its variants[19,4,8,3,28]
are of the most recent and popular RV-SGD algorithms. Given parameters w
and an objective function ℓ to minimize it modifies SGD update from wk ←
wk−1 − η∇ℓ(wk−1,xk) to

wk ← wk−1 − η(∇ℓ(wt−1,xk) + G(w̃)− ℓ(w̃,xk)), (4)

where xk is a sample of data, w̃ is a snapshot of w in the past and G(w̃) is
full batch gradients at w̃. The analytic result of this unbiased modification is
that if the empirical risk is strongly convex and the risk function over individual
samples are both convex and L-smooth then the error in estimating gradients
of G(w̃) is not only bounded but also linearly converges to zero (refer to [6]
for proof). Under some conditions, [3] showed that this convergence rate is not
largely impacted if a noisier estimate than original G(w̃) proposed by SVRG is
chosen for full batch gradients. [4] investigated applying SVRG in non-convex
problems and [8] generalized it for mini-batch SGD. [19] proposed SARAH, a
biased version of SVRG that progressively updates the estimate for full gradients
for optimizations steps applied in between taking two snapshots. Our algorithm
could be thought as a distributed variant of SARAH where

1. G(w̃) is approximated by biased pseudo-gradients (and renamed to h).

2. The outer loop for taking the snapshot is flattened using an exponential
weighted average.

3.4 Relation to FL Baselines

Algorithm 1 demonstrates where our method differs from the baselines by color
codes. Compared to the original SCAFFOLD, we made a slight modification in
the way communication to the server occurs, preserving a quarter of the commu-
nication bandwidth usage. We refer to this modified version as SCAFFOLD/m.
In the rest of this section, we will discuss the key similarities and differences be-
tween our algorithm, FedDyn and SCAFFOLD in terms of cost, robustness
and functionality.
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Algorithm 1 SCAFFOLD/m , FedDyn , and AdaBest

Input: T,θ0, µ, β
for t = 1 to T do

Sample clients Pt ⊆ St.
Transmit θt−1 to each client in Pt

Transmit ht−1 to each client in Pt (SCAFFOLD/m)

for each client i ∈ Pt in parallel do
/* receive cloud model */

θt,0
i ← θt−1

/* locally optimize for K local steps */

for k = 1 to K do
Compute mini-batch gradients Li(θ

t,k−1
i )

gt,k−1
i ← ∇Li(θ

t,k−1
i )− h

t′i
i + ht (SCAFFOLD/m)

gt,k−1
i ← ∇Li(θ

t,k−1
i )− h

t′i
i − µ(θt−1 − θt,k−1

i ) (FedDyn)

gt,k−1
i ← ∇Li(θ

t,k−1
i )− h

t′i
i (AdaBest)

θt,k
i ← θt,k−1

i − ηgt,k−1
i

end for
/* update local gradient estimates */

gt
i ← θt−1 − θt,K

i

ht
i ← |St|−1

|St| ht−1
i + |Pt|

Kη|St| (θ
t−1 − θ̄t) (SCAFFOLD/m)

ht
i ← h

t′i
i + µgt

i (FedDyn)

ht
i ← 1

t−t′i
h

t′i
i + µgt

i (AdaBest)

t′i ← t
Transmit client model θt

i := θt,K
i .

end for
/* aggregate received models */

θ̄t ← 1
|Pt|

∑
i∈Pt θ

t
i

/* update oracle gradient estimates */

ht ← |St|−1
|St| ht−1 + |Pt|

Kη|St| (θ
t−1 − θ̄t) (SCAFFOLD/m)

ht ← ht−1 + |Pt|
|St| (θ

t−1 − θ̄t) (FedDyn)

ht ← β(θ̄t−1 − θ̄t) (AdaBest)
/* update cloud model */

θt ← θ̄t (SCAFFOLD/m)

θt ← θ̄t − ht (FedDyn)

θt ← θ̄t − ht (AdaBest)

end for
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Cost SCAFFOLD consumes twice as much communication bandwidth as Fed-
Dyn and AdaBest. This should be taken into account when comparing the
experimental performance and convergence rate of these algorithms. All of these
three algorithms require the same amount of storage on the server and on
each client. Finally, AdaBest has a lower compute cost compared to FedDyn,
SCAFFOLD both locally (on clients) and on the server. We provide quantita-
tive comparison of these costs in supplementary material.

Robustness According to the definition of cross-device FL, the number of
devices could even exceed the number of examples per each device [17]. In such
a massive pool of devices, if the participating devices are drawn randomly at
uniform (which our baselines premised upon), there is a small chance for a client
to be sampled multiple times in a short period of time. In FedDyn, however,

ht =
∑t

τ=1
|Pt|
|St| ḡ

t, making it difficult for the norm of h to decrease if pseudo-

gradients in different rounds are not negatively correlated with each other (see
Theorem 1 and its proof in supplementary material). In case clients are not re-
sampled with a high rate then this negative correlation is unlikely to occur due
to changes made to the state of the parameters and so the followup pseudo-
gradients (see Section 3.5 for detailed discussion). A large norm of ht leads to

a large norm of θt and in turn a large ∥θ̄t+1∥2. This process is exacerbated
during training and eventually leads to exploding norm of the parameters (see
Figure 1). In Section 3.5, we intuitively justify the robustness of AdaBest for
various scale and distribution of client sampling.

Theorem 1. In FedDyn, ∥ht∥2 ≤ ∥ht−1∥2 requires

cos(∠(ht−1, ḡt)) ≤ − |P
t|

2|St|
∥ḡt∥
∥ht−1∥

. (5)

Functionality AdaBest allows to control how far to look back through the
previous rounds for effective estimation of full and local gradients compared to
existing RV-LSGD baselines. To update the local gradient estimates, we dy-
namically scale the previous values down because the period between computing

and using h
t′i
i on client i (the period between two participation, i.e., t−t′i) can be

long during which the error of estimation may notable increase. See Algorithm 1
for comparing our updates on local gradients estimation compared to that of the
baselines. Furthermore, at the server, ht is calculated as the weighted difference
of two consecutive aggregate models. Note that, if expanded as a power series,
this difference by itself is equivalent to accumulating pseudo-gradients across
previous rounds with an exponentially weighted factor. This series is presented
in Remark 3 for which the proof is provided in the supplementary material. Un-
like previous works, proposed pseudo-gradients’ accumulation does not necessi-
tate any additional effort to explicitly maintain information about the previous
rounds. Additionally, it reduces the compute cost as quantitatively shown in the
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supplementary material. It is a general arithmetic; therefore, could be adapted
to work with our baselines as well.

Remark 2. θ̄t−1 − θ̄t is equivalent to ht−1 + ḡt in AdaBest.

Remark 3. Cloud pseudo-gradients of AdaBest form a power series of ht =∑t
τ=1 β

(t−τ)ḡt, given that superscript in parenthesis means power.

3.5 Adaptability

As indicated earlier, the error in estimation of oracle full gradients in FedDyn
is only supposed to be eliminated by using pseudo-gradients. A difficult learn-
ing task, both in terms of optimization and heterogeneity results in a higher
variance of pseudo-gradients when accompanies with a low rate of client partic-
ipation. The outcome of constructing a naive estimator by accumulating these
pseudo-gradients is sever. This is shown in Figure 1, where, on average, there is
a long wait time between client re-samples due to the large number of partic-
ipating clients. The results of this experiment empirically validates that ∥θt∥2

in FedDyn grows more rapidly and to a much higher value than AdaBest.
SCAFFOLD is prune to the same type of failure; however, because it scales
down previous values of h in its accumulation, the outcomes are less severe than
that of FedDyn. In the supplementary material, we present, similar analysis,
for a much simpler task (classification on EMNIST-L). It is important not to
confuse the source of FedDyn’s instability with overfitting (see supplementary
material for overfitting analysis). However, our observations imply that the sta-
bility of FedDyn decreases with the difficulty of the task.

Our parameter β solves the previously mentioned problem with norm of h.
It is a scalar values between 0 and 1 that acts as a slider knob to determine
the trade-off between the amount of information maintained from the previous
estimate of full gradient and the estimation that a new round provides. On an
intuitive level, a smaller β is better to be chosen for a more difficult task (both in
terms of optimization and heterogeneity) and lower level participation–and cor-
respondingly higher round to round variance among pseudo-gradients and vice
versa. We provide an experimental analysis of β in the supplementary material;
however, in a practical engineering level, β could be dynamically adjusted based
on the variance of the pseudo-gradients. The goal of this paper is rather showing
the impact of using β. Therefore, we tune it like other hyper-parameters in our
experiments. We leave further automation for finding an optimal β to be an open
question for the future works.

Remark 4. FedAvg is a special case of AdaBest where β = µ = 0.

Remark 5. Server update of FedDyn is a special case of AdaBest where β = 1

except that an extra |P|
|S| scalar is applied which also adversely makes

FedDyn require prior knowledge about the number of clients.

Theorem 2. If S be a fixed set of clients, θ̄ does not converge to a stationary
point unless h→ 0.
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As mentioned in Section 3.4 and more particular with Theorem 1, FedDyn is
only able to decrease norm of h if pseudo-gradients are negatively correlated
with oracle gradient estimates which could be likely only if the rate of client
re-sampling is high. Therefore, with these conditions often being not true in
large-scale FL and partial-participation, it struggles to converge to an optimal
point. SCAFFOLD has a weighting factor that eventually could decrease ∥h∥
but it is not controllable. Our algorithm enables a direct decay of h through
decaying β. We apply this decay in our experiments when norm of h plateaus
(see Section 4.4). This is consistent with Theorem 2 which states that converging
to a stationary point require h→ 0.

4 Experiments

4.1 Setup

We evaluate performance and speed of convergence of our algorithm against
state-of-the-art baselines. We concentrate on FL classification tasks defined us-
ing three well-known datasets. These datasets are, the letters classification task
of EMNIST-L [11] for an easy task, CIFAR10 [10] for a moderate task and
CIFAR100 [10] for a challenging task. The training split of the dataset is par-
titioned randomly into a predetermined number of clients, for each task. 10%
of these clients are set aside as validation clients and only used for evaluating
the performance of the models during hyper-parameter tuning. The remaining
90% is dedicated to training. The entire test split of each dataset is used to
evaluate and compare the performance of each model. Our assumption through-
out the experiments is that, test dataset, oracle dataset, and collective data of
validations clients have the same underlying distribution.

To ensure consistency with previous works, we follow [1] to control hetero-
geneity and sample balance among client data splits. For heterogeneity, we eval-
uate algorithms in three modes: IID, α = 0.3 and α = 0.03. The first mode
corresponds to data partitions (clients’ data) with equal class probabilities. For
the second and third modes, we draw the skew in each client’s labels from a
Dirichlet distribution with a concentration parameter α. For testing against bal-
ance of sample number, we have two modes: balanced and unbalanced such that
in the latter, the number of samples for each client is sampled from a log-normal
distribution with concentration parameter equal to 0.3.

Throughout the experiments we consistently keep the local learning rate,
number of local epochs and batch size as 0.1, 5 and 45 respectively. Local learning
rate is decayed with a factor of 0.998 at each round. As tuned by [1], the local
optimizer uses a weight decay of 10−4 for the experiments on EMNIST-L and
10−3 for the experiment on CIFAR10 and CIFAR100. Further details about
the optimization is provided in supplementary material.

To tune the hyper-parameters we first launch each experiment for 500 rounds.
µ of FedDyn is chosen from [0.002, 0.02, 0.2], with 0.02 performing best in all
cases except EMNIST-L, where 0.2 also worked well. For the sake of consistency,
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we kept µ = 0.02 for AdaBest as well. We found the rate of client participation
to be an important factor for choosing a good value for β. Therefore, for 1%
client participation experiments we search β in [0.2, 0.4, 0.6]. For higher rates
of client participation, we use the search range of [0.94, 0.96, 0.98, 1.0]. For all
these cases, 0.96 and 0.98 are selected for 10% and 100% client participation
rates, respectively (both balanced and unbalanced). We follow [1] for choosing
the inference model by averaging client models though the rounds. Experiments
are repeated 5 times, each with a different random seed of data partitioning. The
reported mean and standard deviation of the performance are calculated based
on the the last round of these 5 instance for each setting.

4.2 Model Architecture

We use the same model architectures as [17] and [1]. For EMNIST-L, the ar-
chitecture comprises of two fully-connected layers, each with 100 hidden units.
For CIFAR10 and CIFAR100, there are two convolutional layers with 5 × 5
kernel size and 64 kernels each, followed by two fully-connected layers with 394
and 192 hidden units, respectively.

4.3 Baselines

We compare the performance of AdaBest against FedAvg [17], SCAFFOLD
[7] and FedDyn [1]. These baselines are consistent with the ones that the closest
work to us [1], has experimented with9. However, we avoided their choice of
tuning the number of local epochs since we believe it does not comply with a
fair comparison in terms of computation complexity and privacy loss.

4.4 Evaluation

Table 2 compare the performance of our model to all the baselines in various
settings with 100 clients. The results show that our algorithm is effective in all
settings. The 1000-device experiments confirm our arguments about the large-
scale cross-device setting and practicality of AdaBest in comparison to the
baselines. Our algorithm has notable gain both in the speed of convergence and
the generalization performance. This gain is only reduced for some benchmarks
in full client participation settings (CP=100%) where the best β is chosen close

to one. According to Remark 5, and the fact that in full participation |Pt|
|St| = 1

and ti = t′i + 1 for all feasible i and t, FedDyn and AdaBest become nearly
identical in these settings. In Figure 3, we show the impact of scaling the number
of clients in both balanced and imbalanced settings for the same dataset and
the same number of clients sampled per round (10 clients). During the hyper-
parameter tuning we noticed that the sensitivity of FedDyn and AdaBest to
their µ is small specially for the cases with larger number of clients.

9 FedDyn additionally compares with FedProx [13]; however, as shown in their
benchmarks it performs closer to FedAvg than the other baselines.
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Fig. 3. Test accuracy on balanced (top) and unbalanced (bottom) settings for training
on 1000 (left) and 100 (right) clients. The training dataset is CIFAR100 and |P|=10

5 Conclusions

In this paper, we introduce AdaBest, an adaptive approach for tackling client
drift in Federated Learning. Unlike the existing solutions, our approach is robust
to low rates of clients re-sampling, which makes it practical for large-scale cross-
device Federated Learning. Our performance and empirical convergence rates
demonstrate the efficacy of our technique compared to all the baselines across
various benchmarks. We have a gain of up to 0.94% in test accuracy with re-
spect to the second best candidate which is nearly twice as good. Our algorithm
consumes no more communication bandwidth or storage than the baselines, and
it even has a lower compute cost. AdaBest addresses the instability of norm
of gradient estimates used in FedDyn by adapting to the most relevant infor-
mation about the direction of the client drift. Furthermore, we formulated the
general estimate of oracle gradients in a much elegant arithmetic that eliminates
the need for the explicit, recursive form used in the previous algorithms.

Future work for this study includes deriving theoretical bounds for our pro-
posed algorithm. Furthermore, in the current paper, the parameter β is manually
tuned to account for the trade-off between the amount of information retained
from the previous estimations of oracle’s gradients and the estimation provided
by a new round. Developing a method for automatically tuning β is an important
direction for improving the proposed algorithm.
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Table 2. Mean and standard deviation of test accuracy for various settings. The results
are based on 5 random data partitioning seeds. Models are trained for 1k, 1.2k, and 2k
rounds, for 1%, 10% and 100% client participation settings, respectively. A smaller α
indicates higher heterogeneity. ∗CP stands for rate of client participation ( |P|

|S| )

Top-1 Test Accuracy

CP∗ Dataset Setting FedAvg FedDyn SCAFFOLD AdaBest

1%

EMNIST-L
α=0.03 94.28±0.07 92.42±0.14 93.99±0.16 94.49±0.07
α=0.3 94.47±0.10 92.64±0.31 94.34±0.23 94.72±0.22
IID 94.04±1.37 92.89±0.14 94.48±0.11 94.81±0.08

CIFAR10
α=0.03 78.18±0.80 77.91±0.79 75.83±2.36 78.44±1.12
α=0.3 82.21±0.36 82.06±0.17 82.96±0.42 83.09±0.76
IID 83.84±0.17 83.36±0.39 84.18±0.26 85.05±0.31

CIFAR100
α=0.03 47.56±0.59 46.27±0.65 47.29±0.95 47.91±0.83
α=0.3 49.63±0.47 50.53±0.36 52.87±0.61 53.62±0.23
IID 49.93±0.36 50.85±0.38 53.43±0.44 55.33±0.44

10%

EMNIST-L
α=0.03 93.58±0.25 93.57±0.20 94.29±0.11 94.62±0.17
α=0.3 94.04±0.04 93.54±0.22 94.54±0.11 94.64±0.11
IID 94.32±0.10 93.60±0.35 94.62±0.16 94.70±0.24

CIFAR10
α=0.03 74.04±0.88 76.85±0.91 77.19±1.10 79.64±0.58
α=0.3 79.74±0.07 81.91±0.19 82.26±0.38 84.15±0.36
IID 81.35±0.23 83.56±0.31 83.50±0.15 85.78±0.14

CIFAR100
α=0.03 39.18±0.56 44.24±0.66 45.80±0.36 48.56±0.45
α=0.3 38.78±0.35 48.92±0.37 46.34±0.43 54.51±0.35
IID 37.45±0.57 49.60±0.24 44.30±0.22 55.58±0.14

100%

EMNIST-L
α=0.03 93.36±0.15 94.18±0.21 94.38±0.20 94.06±0.11
α=0.3 93.99±0.19 94.23±0.14 94.53±0.16 94.40±0.21
IID 94.06±0.33 94.37±0.15 94.63±0.10 94.69±0.14

CIFAR10
α=0.03 72.97±1.09 78.24±0.77 77.64±0.25 78.07±0.71
α=0.3 79.12±0.15 83.19±0.18 82.26±0.23 83.20±0.25
IID 80.72±0.33 84.39±0.20 83.55±0.25 84.75±0.17

CIFAR100
α=0.03 38.24±0.63 46.00±0.42 46.51±0.50 46.16±0.79
α=0.3 37.03±0.35 50.42±0.29 45.48±0.38 50.90±0.42
IID 35.92±0.48 50.61±0.25 43.73±0.23 51.33±0.41
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Sallinen, S.: Stopwasting my gradients: Practical svrg. Advances in Neural Infor-
mation Processing Systems 28 (2015)

4. Bi, J., Gunn, S.R.: A variance controlled stochastic method with biased estimation
for faster non-convex optimization. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. pp. 135–150. Springer (2021)

5. Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distri-
bution for federated visual classification. arXiv preprint arXiv:1909.06335 (2019)

6. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive
variance reduction. Advances in neural information processing systems 26, 315–323
(2013)

7. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold:
Stochastic controlled averaging for federated learning. In: International Conference
on Machine Learning. pp. 5132–5143. PMLR (2020)
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