1 Experiment Settings

1.1 Datasets

AWAZ2-LTS and ImageNet-LTS: These two datasets were modified from
the well-established AWA2 [7] and ImageNet-LT [3] datasets. The former (50
categories) is a benchmark for zero-shot learning, whilst the latter (1000 cate-
gories) has been widely used for long-tailed visual recognition. To accommodate
our practical needs for benchmarking LT-DS, the following steps were applied.

First of all, for ImageNet-LT, the training/validation/testing splits are
defined in [3], where the training subset is long-tailed distributed whilst vali-
dation and testing ones are balanced sampled. Our further processing of each
subset was based on the original splits. For AWAZ2, we randomly extracted
50 samples of each category for testing, and 30 samples for validation. Since
the training data of AWAZ2 is not long-tailed originally, we performed ran-
dom sampling to convert the training subset of AWAZ2 to a long-tailed ver-
sion with the maximum number 1565, and the minimum number 20, following

Ne = {nmm exp(—~ 07_1 x log Z"‘#)J , where c refers the sorted class index, start-

ing from 1 to the class number C' = 50.

Subsequently, for the training data, each image was assigned a style randomly
selected from the five ones (i.e., Original, Hayao, Shinkai, Vangogh, Ukiyoe). To
simulate the realistic scenario where head classes are common across domains
whilst non-head classes appear in only certain specific domains due to their low-
frequency, we deliberately reduced the number of domain candidates for those
non-head classes. The categorical distributions of the training subset in each
domain are shown in Figs. 1(a) and 1(b).
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Fig. 1. Categorical Distribution of Training Subset of Each Domain. Left: AWA 2-
LTS; Right: ImageNet-LTS. The bottom row shows the categorical distribution
across domains and categories, whereas the top row presents the existence of classes in
the training subset of each domain (grey indicates non-existence).

Regarding the validation subset, after assigning each image with a style with
equal probability, we only kept those seen classes in the training subset of each
individual domain. This ensures that the training label set and validation label



set of each domain are totally the same. Regarding the testing subset, each image
was assigned with a style randomly picked from five styles, and all classes were
kept, so that all the classes are seen in each domain.

In total, for AWA2-LTS, totally 50 classes and 5 domains exist, whereas
1000 classes and 5 domains for ImageNet-LTS. Detailed instructions for gen-
erating the proposed LT-DS datasets and the indexes of corresponding train-
ing/validation/testing splits for all images for benchmarking can be found at
https://github.com/guxiao0822/LT-DS/tree/main/dataset.

1.2 Implementation Details

Architectures: For AWA2-LTS and ImageNet-LTS, we applied the ResNet-
10 as the feature extractor f, and a fully connected (FC) layer as the classifier
h. For d and e, they are composed of a FC | BatchNorm, and ReLU layer. The
whole network was randomly initialized without applying pretrained weights, so
as to avoid the overlap of classes between our proposed datasets and the original
ImageNet.

Training Details: We utilized SGD for optimization. The random seed was set
as 0 for reproduction purposes. The parameters used in this paper was listed as
in Table 1. In addition, B3 were decayed by 0.1 after 40 and 80 epochs.

Table 1. Hyperparameters (HP) in our experimental settings.

HP Description ‘ AWAZ2-LTS ImageNet-LTS
51 meta-train learning rate 0.2 0.2

B2 final learning rate 0.1 0.1

k top k similarity 5 5 -
A augmentation intensity 5 5

B batch size of each domain 48 64

e margin of contrastive loss 0.1 0.1

T temperature scaling constant 1/30 1/50

Tmaz maximum training step (corresponding epoch number) 100 100

Tx  covariance tracking milestone step (corresponding epoch number) 40 40

wy weight of Lz25 0.1 0.1

w2 weight of Lga2g 0.1 0.1

w3 weight of Lg22 0.1 0.1

wy  weight of Laug and Lasaug 0.1 0.1

Wmte weight of Lote 0.3 0.3

For the compared methods, we used the same backbone for fair comparison,
with the hyperparameter settings adopted in their original implementations.

2 Equation Proof

2.1 Distribution Calibrated Classification Loss

The distribution calibrated classification loss aims to calibrate the classification
loss to a balanced category distribution, so that meta-train and meta-test both
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aim to achieve ideal performance on balanced distributions.
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Without loss of generality and for simplicity, we denote the logits of class i
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Based on Bayesian theorem, the probability ¢¢ in domain d is formulated as
below,
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Based on the property that the summed probability over all classes equals to
one, we can derive
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Then, based on Equations (6) and (7), it can be derived that
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In our case, d’ is recognized as a training domain with imbalanced distribution
and d as a testing domain with balanced distribution. Since n? are equal across

classes, the probability of class ¢ in d’ can be rewritten as below,
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Till now, Equation (1) is sorted. It should be noted that we do not calibrate
the classification loss from meta-train domain category distributions to meta-
test distributions. This is because each individual domain exists unseen classes
(impossible to be rebalanced), and however our final goal is to achieve good
performance over all classes. Instead, for both meta-train and meta-test, we aim
to calibrate the classification loss to a balanced distribution.

2.2 Augmentation Loss

Below are the surrogate loss for implicitly augmenting the feature diversity.

Denote the distribution of class ¢ to be a multivariate Gaussian distribution,
where f(x) of class ¢ obeys N (u,., X.). Consider a feature f(x;) sampled along a
direction from N (., AX.), where A indicates the augmentation intensity. Then
the upper bound of classification loss can be viewed as below,
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where Equation (12) is derived based on the convex property of log, whilst
Equation (13) is based on the property that Elexp(tX)] = exp(tp—+ 202t?), X ~
N (u1,0%). Tt should be noted that the bias [by,bs, ..., bc]? was not considered
in the main text for simplicity, yet was taken into account during our practical
implementations.

Online Estimation of Visual Feature Prototype and Feature Covari-
ances. The online estimation of visual feature prototype is formulated in Equa-
tion (14). For each batch from {z;,y;}2 ; from domain n, if there are samples
from class ¢, then its v is updated as below,

1
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where |A.| denotes the sample number of class ¢ from current batch.
The covariance X is online estimated in the same manner as [6].

3 Supplementary Results and Discussions

3.1 Further Discussions on Ablation Studies

Here we added more discussions in terms of our ablation studies. The three
core modules in our meta-learning framework were derived from Equation 1 in
the main paper. We perform ablation studies to show the effectiveness of each
module design, as well as their complementary benefits to each other. Below we
give discussions based on the results in Tables 2.4 of the main paper.

(1) We proposed distribution-calibrated loss L. align the classification loss to
a canonical balanced distribution, aiming to handle P(Y) shifts across domains.
It outperforms BSCE, as shown in Table 2-BSCE.

(2) In addition, L4, can unify both losses on D¢ and D,yyee to the same bal-
anced distribution, showing better results when applying cross entropy instead
in the meta learning setting (Table 4-d vs Table 4-c¢).

(3) Our Visual-Semantic mapping aims to learn domain-aligned unbiased rep-
resentation by bidirectional Visual-Semantic mapping (Table 4-¢.f,¢) and cross
prototype alignment. To validate the effectiveness of performing cross prototype
alignment, in Table 4-k, we performed ablation study with a uni-domain pro-
totype for alignment, and performance decrease can be noted. Since P(Y) of
each domain is different, it is more flexible to build domain-specific prototype
for cross-domain alignment, and it simultaneously mitigates the memory bottle-
neck issue, compared to directly sampling intra-class inter-domain samples for
alignment. Moreover, our meta-learning setting can align the feature from D,
to the prototype of D4, which further helps feature alignment across domains.

(4) The feature learned by Visual-Semantic mapping is also important for
the augmentation module, otherwise domain shifts may dominate intra-class
variances, as demonstrated in Table 4-h.

(5) In the augmentation module, we adopted the weighted term ny in Equa-
tion 7. This leads to the situation where “header” classes would contribute more
to updating the covariance matrix of tail classes, whereas “tailer” less to head
classes. We performed the additional experiments by removing mng, with results
presented in Table 4-1.

(6) The proposed meta-learning framework integrating the three modules is
effective for LT-DS (Table 4-1 vs Table 4-j).

3.2 Selection of Different Embeddings

We utilized typical embeddings as they are available along with previous open-
source works on these datasets. Here, we added additional experiments compar-
ing BERT, CLIP, and GloVe on AWA2-LTS. Results in Table 2 show that the
embedding types do not affect the performance much, and our method consis-
tently outperforms Agg w. Embs .
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Table 2. Results of different embed-
ding types based on Agg and Ours. Table 3. Performance changes with
different imbalance ratios.

Methods Acc-U_ Ace H Ratio Methods Acc-U Acc H
Agg 26.6 31.8 37.8

Agg 26.6 318 37.8
Agg w. BERT 28.2 33.1 39.1 (NS 357 49.0 446
Agg w. CLIP  27.6 32.8 39.2
Agg w. GloVe  27.0 324 38.2 50 e 21.7 276 328

Ours 32.0 37.6 41.0
Ours w. BERT 35.7 42.0 44.6

Agg 139 18.2 20.7
Ours w. CLIP 35.8 41.4 43.6 10 Ours 24.0 23.1 32.1

Ours w. GloVe 354 41.3 445

3.3 Sample Complexity

Here, we added experiments with AWA2-LTS by changing the imbalance ratio
of the training set (change head sample number), while kept using the same test
set. Results in Table 3 show that ours outperforms Agg counterparts by a large
margin in all settings.

3.4 PACS-ODG

Our targeted problem LT-DS has a similar setting to open domain generaliza-
tion (ODG) proposed in [5]. We also evaluated our proposed framework on the
open domain generalization task on the PACS-ODG dataset introduced in [5].
We followed the settings of [5]. The original class number and domain number of
PACS [1] is 7 and 4, respectively. Each domain has its predefined training/vali-
dation/testing splits [1]. In the settings of open domain generalization, only part
of the label set was selected in each individual training domain, and the trained
model is tested on the held-out testing domain consisting of all classes. Following
[5], three domains are used for training and validation, and the held-out domain
is for testing. In line with [5], we reported the metrics Acc-U and H-U on the
held-out domain. In addition, during testing, we also validated on the testing
data of all the domains, where the domain-average accuracy of all non-open
classes Acc were reported. The detailed split settings are listed in Table 4, and
the domain order of each leave-one-domain-out loop is CPS-A, PAC-S, ACS-P,
SPA-C.

Under the same experimental settings, we compared our results of Acec-U
and H-U with the results of Agg, Epi-FCR [2], CuMix [4], DAML [4] reported
in [5]. We leveraged the source-code of DAML [4] and reported its Acc result!.
We also applied state-of-the-art domain generalization algorithm Mixstyle [8]
for comparison. We used the ResNet-18 pretrained from ImageNet as f follow-
ing previous works [4,5]. We did not apply Semantic-Similarity Augmentation
module for PACS-ODG due to the limited class number and the non-existing
long-tailed issue of this dataset.

'similar Ace-U and H-U results can be achieved as [5]



Table 4. Settings of Open Domain Generalization of PACS-ODG.

Domain Training Testing

Domain 1 0,1,3 0,1,2,3,4,5
Domain 2 0,2,4 0,1,2,3,4,5
Domain 3 1,2,5 0,1,2,3,4,5
Domain 4 - 0,1,2,3,4,5,6

Table 5. Results on PACS-ODG dataset.

Art Sketch Photo Cartoon Avg
Method  Acc-U Acc H-U Acc-U Acc H-U Acc-U Acc H-U Acc-U Acc H-U Acc-U Acc H-U
Agg 51.4 - 38.8 498 - 47.1  53.2 - 442 66.4 - 49.0 55.2 - 44.8
Epi-FCR[2] 54.2 - 41.2 46.4 - 46.1  70.0 - 48.4 720 - 58.2  60.6 - 48.5
CuMix[4] 53.9 - 38.7 37.7 - 28.7  65.7 - 49.3 74.2 - 47.5 579 - 41.1
DAML[5] 54.1 60.6 43.0 585 75.5 56.7 75.7 683 532 73.7 76.9 545 655 70.3 519

47.0 51.7 75.0 449 58.7 57.0 33.0 75.8 755 63.6 60.5 66.3 47.1
47.8 60.4 80.1 49.1 784 77.2 71.2 713 77.8 59.6 67.1 75.3 56.9

MixStyle[s]  56.0
Ours 58.4

D | wt
o
w | oo

As shown in Table 5, overall our method show favorable performance com-
pared to other methods. Actually, although the authors of [5] did not consider
the imbalance issue in their work, this indeed exists, since the label set is only
partial in each set, leading to the “infinite” imbalance ratio. On the other hand,
those classes common in all domains would contribute to more samples, thus
leading to an overall imbalanced distribution. This imbalance problem, inherent
in ODG, was however overlooked in existing studies.

3.5 Additional Qualitative Results

In this section, more qualitative results on AWA2-LTS are shown.

Inter-Domain Discrepancy: We present the inter-domain discrepancies on
the testing subset (all five domains) during the training procedure. The distance
is calculated by Fréchet distance. It can be observed in Fig. 2 that the inter-
domain distances were largely decreased and maintained in a small scale by our
proposed method, whilst the discrepancies under the Agg baseline are becoming
much larger after training. This emphasizes the overfitting on seen domains by
the conventional Agg method.

Covariance Similarity Before and After Semantic-Similarity Guided
Update: Fig. 3 shows the inter-class similarity of the semantic embeddings, as
well as of the original and updated covariance matrix. For visualization purposes,
Fig. 3(a) shows the cosine similarity of inter-class semantic embeddings, whereas
Figs. 3(b) and 3(c) calculates the pairwise distances between class ¢ and j by
d(i,j) = exp(—||X; — Xjl,). Guided by the similarity derived from semantic
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Fig. 2. Changes of inter-domain discrepancies on the testing subset (all five domains)

during training. The inter-domain discrepancies of Agg start to increase significantly
at a very early stage, whereas the discrepancies of our method remain more stable.

embeddings (as in Fig. 3(a), the original covariance matrix was updated by the
top k most similar classes weighted by their class numbers. With the weighted
update strategy, the covariance matrices of head classes are not affected too
much, whereas those tail covariance matrices can be much influenced by those
similar head classes for better modelling.

Similar Dissimilar

(a) Semantic Similarity  (b) Pairwise Distance of (c) Pairwise Distance of
Original Covariances Updated Covariances
Fig. 3. Pairwise Similarity of Semantic Embeddings, Original and Updated Covariance
Matrices. Based on the inter-class semantic similarity guided from (a), the covariance
matrices, especially of those tail classes, are updated based on the statistics from top
k most similar classes.

Visualizations of Top-5 Retrieval In Fig. 4, we presented a few examples
of top 5 most similar samples in the semantic embedding space when holding
Original domain out. We selected one instance from one head, middle, and tail



Seen Image Top 5 most similar samples
Domains 9 P P
5 horse antelope
8 grizzly grizzly polar grizzly siamese
. bear bear bear bear bear cat

german

mouse chihuahua shepherd

hippopotamus

Fig. 4. Representative examples of top 5 most similar samples in the semantic em-
bedding space. “Seen domains” mean the domains in the training subset of which the
current category is available.

class, separately. The seen domains of each class during training are visualized
on the left side. It can be observed from Fig. 4 that the similarity is mostly
based on its semantic meaning rather than the domain styles. For example, in
the Row 1 of Fig. 4, the most similar three samples of the Hayao horse are
from other different domains. Similarly, in the Row 3, even rat of Ukiyoe is not
seen during training, the most similar counterpart is from the same class yet
a different domain. We also noticed some fine-grained variances between some
similar classes based on this visualization, i.e., grizzly bear vs polar bear, rat
vs mouse. The incapability of distinguishing them may be due to the limited
effectiveness of the backbone. One possible direction of future work is to explore
more effective and deeper backbones to enable better recognition performance
to distinguish such small differences.
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