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Abstract. Machine learning models fail to perform well on real-world
applications when 1) the category distribution P (Y ) of the training
dataset suffers from long-tailed distribution and 2) the test data is drawn
from different conditional distributions P (X|Y ). Existing approaches
cannot handle the scenario where both issues exist, which however is
common for real-world applications. In this study, we took a step for-
ward and looked into the problem of long-tailed classification under do-
main shifts. We designed three novel core functional blocks including Dis-
tribution Calibrated Classification Loss, Visual-Semantic Mapping and
Semantic-Similarity Guided Augmentation. Furthermore, we adopted a
meta-learning framework which integrates these three blocks to improve
domain generalization on unseen target domains. Two new datasets were
proposed for this problem, named AWA2-LTS and ImageNet-LTS. We
evaluated our method on the two datasets and extensive experimen-
tal results demonstrate that our proposed method can achieve superior
performance over state-of-the-art long-tailed/domain generalization ap-
proaches and the combinations. Source codes and datasets can be found
at our project page https://xiaogu.site/LTDS.

Keywords: Long Tail, Domain Generalization, Cross-Modal Represen-
tation Learning, Meta Learning

1 Introduction

Deep learning has made unprecedented achievements on various applications
ranging from self-driving [2], service robots [8], to health and wellbeing [26].
The model would perform well with the assumption that training and testing
data are independent identically distributed (i.i.d.); however it seldomly holds
for real-world applications. The violation of i.i.d. assumption could hinder the
performance of deep learning models upon practical deployment. Without loss
of generality, we denote the data and label as X and Y , the joint distribution
as P (X,Y ), the latter of which can be formulated by P (Y )P (X|Y ). We argue
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Fig. 1. Visual illustrations of the issues complicated with long-tailed category dis-
tribution and conditional distribution shifts across domains. The overall dataset1 is
long-tailed distributed over classes. Meanwhile, with data collected from multiple do-
mains (e.g., different styles), head classes (e.g., Dog) can be observed in most domains,
whereas tail classes (e.g., Horse) only contain a few samples in certain specific domains.

that the reason why current models fail to generalize well in real-world applica-
tions is rooted in both the categorical distribution P (Y ) and class conditional
distribution P (X|Y ).

On one hand, real-world data exhibits long-tailed distribution over categories,
with only a few classes (head) accounting for the major proportions, whilst many
more classes (tail) presenting extremely limited samples [43]. For instance, in ac-
tion recognition, the case of “open door” is common in daily activities, whereas
some actions such as “repair door” occur much less frequently. This leads to
a long-tailed label distribution of P (Y ), where conventional training strategies
that apply common classification losses (mostly cross-entropy) on instance-level
sampled batches would fail. In this case, the trained model would gain high per-
formance on the head classes but behave poorly on tail classes, failing to achieve
consistently good performance across all categories. On the other hand, the con-
ditional distribution P (X|Y ) is also prone to changes in the real world [35]. Dif-
ferent styles of image recognition data, camera viewpoints of action recognition
data, acquisition protocols of medical images, etc., would alter the distribution
of P (X|Y ), leading to diversified distributions, a.k.a. domain shifts.

In this regard, long-tailed categorical distribution (LT) [43] and domain shifts
(DS) [35] have been two major issues concerned with real-world datasets. Al-
though increasing research efforts have been made, these two issues are so far
tackled individually, with their complex co-existence situation not being consid-
ered yet. Existing solutions cannot deal with the entanglement of LT and DS,
since a balanced distribution P (Y ) or identical P (X|Y ) are their prior assump-

1Images are adopted from PACS [15]. Its distribution originally is not long-tailed.
Here just for intuitive explanation of our focused problem.
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tions of those DS [6,35] and LT [27,13,17] solutions, respectively. As we know, in
real-world scenarios, these two issues often come together. Take medical image
data as an example, the conditional distribution varies across different hospitals,
and, there are a large population of patients with common diseases whilst some
patients with rare diseases. In addition, the low prevalence of those rare diseases
may lead to the inclusion of corresponding patients only by certain hospitals.
This also similarly applies to many other applications [4] where the head classes
are common in most domains, whilst tail classes only appear in certain domains
due to the low-frequency. Such combination of LT and DS leads to a more chal-
lenging, yet more practical scenario where P (Y ) of each individual domain is not
only imbalanced, but also partial. Ideally a reasonable model should be robust
across classes and generalize across domains, simultaneously.

We argue that there are three main challenges posed by the problem of LT-
DS (cf. Fig. 1). 1) Because of the existence of multiple domains, the categorical
distributions P (Y ) are different across domains. Given the relatively low fre-
quency of non-head classes, their corresponding samples may be collected only
in certain domains. As a result, the spurious correlation between non-head classes
and domain-specific characteristics might be learned as biased shortcuts. 2) The
conditional distributions P (X|Y ) are varied significantly across domains. It is
expected that the model can handle such shifts, with domains aligned and un-
biased representations learned. 3) It is hard to explicitly model the distribution
of tail classes P (X|Y = tail), as only a paucity of domain-specific samples ex-
ist. This poses challenges to avoiding overfitting on the tails. Hence, research is
desperately needed to solve the co-occurrence of these issues in LT-DS.

In this work, we propose an effective solution to tackle all of the aforemen-
tioned challenges. First, a novel domain-specific distribution calibrated loss is
introduced to address the infinite imbalance ratio of each domain. Subsequently,
we leverage class distributional embeddings as unbiased semantic features, to
align the derived visual representations to unbiased semantic space via the align-
ment between domain-specific visual prototypes and semantic embeddings. Fur-
thermore, we propose a semantic-similarity guided module by leveraging the
knowledge learned from head classes, for implicit augmentation of tail classes.
In addition, to ensure the model is capable of handling out-of-distribution data
in unseen domains, a meta-learning framework integrating the above three core
modules is proposed to boost the generalization capability. To evaluate the ef-
fectiveness of the proposed method, we developed two datasets with LT-DS
problems, namely AWA2-LTS and ImageNet-LTS, and conducted extensive
comparison experiments on both datasets. Results demonstrate that our pro-
posed method exceeds state-of-the-art LT or DS methods by a large margin.

2 Related Works

Long-Tailed Category Distribution. To learn from class imbalanced train-
ing data, one line of existing works aims to manipulate class-wise contributions
by resampling [1,9], reweighting [11,38,19], logits adjustment [27,10], and two-
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stage training [14,32]. Another emerging line has made attempts at ensemble
learning under long-tailed settings, such as contrastive learning [36], knowledge
distillation [12], variance-bias calibration [37]. In particular, RIDE [37] indicates
that the predictions of head classes would be of larger intra-class variances,
whereas tail classes would exhibit larger biases. This becomes more serious in
the LT-DS scenario, since the intra-class variances are related to not only se-
mantics but also domains shifts; whereas the representations of non-head classes
may easily be biased by domain-specific characteristics. Unfortunately, most of
the existing methods do not take into account conditional-distribution-shift in-
troduced biases, instead assuming identical in their work. Similar issues exist
in recent meta-learning based approaches. To ensure good performance across
all classes, recent works investigated the category shift between long-tailed and
balanced distributions, and introduced meta-learning strategies to optimize pa-
rameters on a held-out balanced meta-test subset [13,17]. This is not applicable
for LT-DS, since it is impossible to sample a held-out meta-test proportion with
balanced category distribution without conditional distribution shifts.

Model Generalization at Domain Shifts. Domain generalization (DG) aims
to develop computational models that are capable of handling data from unseen
domains. Existing domain generalization solutions are varied, including align-
ing intra-class representations across domains [18], factoring out domain-specific
information [34,7], simulating domain gaps via sophisticated training strategies
[6,16], or performing data augmentation [22,44]. The shortcomings of most so-
lutions become apparent when faced with LT-DS, as LT-DS poses imbalanced
distribution over a large number of classes. For the methods benefiting from
explicit categorical distribution alignment [18], it is computationally prohibitive
to design class-specific aligning models, and impossible to align domain-specific
tail classes. Furthermore, the large class number makes sampling classes from
multiple domains intractable, thus being difficult to cover relatively large por-
tions of the label set in a mini batch [6]. Even worse, for those tail classes, since
they are only available in certain domains due to the low-frequency, some short-
cuts of the classifier may be learned due to the spurious correlation between the
domain-specific information and the occurrence of associated tail classes.

On the other hand, most current domain generalization approaches assume
similar categorical distribution across domains, yet this can hardly hold true
in the real world [20,29,42]. A similar issue has been raised in [29] referred to
as open domain generalization, where the distribution and label sets of each
source domain and target domain can be different. Shu et al. [29] introduced
the domain-specific model in each individual source domain and applied a meta
learning strategy to generalize each domain-specific model to other domains,
by knowledge distillation from other domains. However, this framework cannot
well apply to LT-DS settings. To be specific, the knowledge derived from each
domain is easy to get biased due to the specific long-tailed and incomplete cat-
egorical distribution in each domain. Even worse, there is no guarantee that
under such bias, the spurious correlation between non-semantic domain-specific
characteristics and domain-specific classes can be avoided.
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Cross-Modal Representation Learning. Leveraging information from mul-
tiple modalities is popular for related multi-modality applications [30,25] to fa-
cilitate effective representation learning of each individual modality. One of the
related applications is few/zero-shot learning, where one line of research aims to
establish the relationship between semantic space and visual space [41]. Mani-
yar et al. [23] leveraged the semantic space to enable zero-shot domain general-
ization, and Mancini et al. [22] used the semantic embeddings as the classifier
for zero-shot learning in unseen domains. These inspired our work; however as a
different task setting, our goal is to derive unbiased predictor under long-tailed
settings such that the missing classes in seen domains can be recognized as well.

Recently, Samuel et al. [28] leveraged class descriptors to facilitate long-tailed
classification. It developed a dual network to derive both visual features and
semantic features from the input image, and then fused these two together to
boost the performance of long-tailed classification. Although it applied semantic
embeddings similar to our work, our task aims to address a more challenging
problem, where both imbalance and conditional distribution shifts exist.

3 Methodologies

3.1 Problem Setup and Preliminaries

Unseen Domains

Non-open Classes Open Classes

Seen Classes

Unseen Classes

Seen Domains

Fig. 2. Illustrations of domain splits, open/non-open classes, and seen/unseen classes.

We denote the input and label spaces as X and Y, and the domain space as
D. D consists of totally K domains {Dk}Kk=1 and there are totally C categories
in the label space. Each sample is denoted as {xi, yi, di}, where i indicates the
sample index, xi the input sample, yi the ground truth label, and di the domain
index; 1 ≤ di ≤ K. The training domains and testing domains are denoted
as Dtr and Dte, respectively, where Dtr ⊂ D and Dte = D. The categorical
distribution pk(y) of each training domain k follows a long-tailed distribution,
and the low prevalence of tail classes may lead to the failure of collecting training
samples from rare classes, i.e., Yk ⊂ Y. We denote the label set of all training

data as Ytr =
⋃|Dtr|

k=1 Yk. To test the overall performance across all classes, test
data is sampled under balanced distribution over all classes. Since there might be
domain-specific non-head classes in each domain, open classes exist in the testing
domains, namely Ytr ⊂ Y, Yte = Y. A visual illustration is presented in Fig. 2.
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Our ultimate goal is to build a computational model that is able to recognize all
the non-open classes across domains, as well as open classes belonging to Y\Ytr.

The computational model g : X → Y maps raw input to the final prediction.
Following previous domain generalization works [6], it can be decoupled into a
feature extractor f and a head classifier h, where f : X → Z, and h : Z → RC .
The final prediction ŷ = g(x) = h ◦ f(x). With the loss function denoted as
L(h ◦ f(x), y), we derive the estimated error ϵ on test data as:

ϵ = Em∼PDte
E(x,y)∼pm(x,y)L(h ◦ f(x), y)

= Em∼PDte
n∼PDtr

E(x,y)∼pn(x,y)L(h ◦ f(x), y)p
m(f(x), y)

pn(f(x), y)

= Em∼PDte
n∼PDtr

E(x,y)∼pn(x,y)L(h ◦ f(x), y)p
m(y)pm(f(x)|y)
pn(y)pn(f(x)|y)

,

(1)

where PDtr&PDte denotes the probability of sampling data from training or
testing domains.

To minimize ϵ as in Equation (1), it is of paramount significance to model

the term pte(y)pte(f(x)|y)
ptr(y)ptr(f(x)|y) to ensure the robustness under LT-DS. However, there

exist several issues that are challenging to resolve:
1) pn(y) of each individual training domain is imbalanced. Even through

a balanced resampling on seen classes, those unseen classes of each individual
domain still leads to “imbalance” with an infinite ratio.

2) It comes with challenges in aligning the distribution of pn(f(x)|y) to an
unbiased and semantically meaningful space, since there are some classes unseen
in each individual domain, especially for those tail classes.

3) The distributions of tail classes p(f(x)|y) are difficult to model compared
to head classes, as caused by the limited sample number in certain domains.

4) Since we aim to model and align pn(f(x)|y) rather than pn(x|y), it is
important to make sure that f is able to handle out-of-distribution data itself,
thus enabling extracting domain-invariant and discriminative features by f(x).

It should be noted that Equation (1) gets some inspirations from the recent
work [13], while they are conceptually different. To be specific, Jamal et al. [13]
considers the distribution shifts across long-tailed and balanced distributions;
whereas the shifts of P (X|Y ) like style changes are not taken into consideration.

In the following, we first go through the core functional blocks to address
aforementioned issues, followed by a meta-learning based framework to integrate
these functional blocks.

3.2 Core Functional Blocks

Distribution Calibrated Classification Loss-Model pm(y)
pn(y) . Considering the

term pm(y)
pn(y) , we aim to tackle the imbalance of training data pn(y) so as to work

on balanced distribution pm(y) with distribution calibrated classification loss. In
[27], Ren et al. proposed a variant version of softmax function to approximate
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Fig. 3. Transformation between semantic space s and visual feature prototypes
vn of each domain Dn. s denotes semantic features based on word embeddings from
class names or sentence embeddings from class descriptors. In each iteration, based
on sampled batch from domain Dn, its visual prototype vn is updated by exponential
moving average (EMA). After transforming it to the semantic space sn by e, the missing
entries in vn are filled by the corresponding semantic embeddings in s to derive the
complete ŝn and then converted back to the visual space as v̂n.
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Fig. 4. Illustration of visual-
semantic mapping to derive
domain-invariant and unbi-
ased pn(f(x)|y) across do-
mains.
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Fig. 5. Illustration of semantic-
similarity guided augmentation to
facilitate distribution modelling of
tail classes by utilizing the seman-
tic relationship between tail and
head classes.

the discrepancy of the posterior distributions between training and testing data.
Similar ideas have also been introduced in [10]. Based on [27,10], the distribution
calibrated classification loss is formulated as:

Ldc(xi, yi, di; f, h) = − log
ndi
yi
exp ([h ◦ f(xi)]yi

)∑C
c=1 n

di
c exp([h ◦ f(xi)]c)

, (2)

where ndi
c denotes the sample number of class c in the training domain Ddi

.
Please see supplementary material for proof.

Visual-Semantic Mapping-Align pn(f(x)|y). To ensure unbiased and seman-
tically meaningful representations, we leverage the semantic embeddings based
on word embeddings from class names or sentence embeddings from class de-
scriptors, inspired by existing zero-shot learning works [23,22]. With totally C
classes and feature dim as ds, the semantic embedding is denoted as s ∈ RC×ds ,
with its c element sc corresponding to the embedding of class c.
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On the other hand, for each domain n with classes C in total and feature
dim as dv, we have a visual prototype vn ∈ RC×dv , which is derived in an online
manner by exponential moving average (EMA). Some entries of vn are probably
empty caused by the missing categories in each individual domain n. The index
mask of valid entries is denoted as Mn for convenience.

To achieve the alignment between visual feature prototype {vn} and s, we
introduce another two functions e and d, where e : Z → S and d : S → Z. {vn}
is firstly transformed to the semantic space by e as sn and subsequently, the
missing entries of sn are filled by the corresponding semantic features in s to ŝn,
by e(vn) ·Mn⊕s ·M̃n. By the function d, ŝn is transformed back to visual space
as v̂n. The data flow is visualized in Fig. 3.

We introduce three typical losses to fulfill the goal of visual-semantic align-
ment, which are visually illustrated in Fig. 4. First of all, Lz2s of Equation (3)
is utilized to align each training sample to its corresponding semantic feature.
In Equation (3), we adopt margin contrastive loss on a unit-normalized embed-
ding space, where the margin α is inspired by [33] as to encourage more tight
distribution of intra-class embeddings, and τ is the temperature constant.

Furthermore, to avoid shifts across domains, we enforce a cross-prototype
contrastive loss as in Equation (4), which aims to decrease intra-class inter-
domain discrepancies and enlarge inter-class distances. Additionally, to enforce
the manifold constraint of our learned feature representation, we convert ŝnv back
to visual space v̂n and apply Ls2s as in Equation (5). It applied the classifica-
tion loss based on the visual classifier h, and also aims to align v̂n to semantic
embeddings by Ls2s([e(v̂

n)], s) similar to a cycle loss [45]. To deal with the class
imbalance in each batch, Lz2s is further integrated with the last module when
calculating the loss.

Lz2s(xi,yi,s; e,f)=−log
exp(([e ◦ f(xi)]

⊺syi − α)/τ)

exp(([e◦f(xi)]⊺syi−α)/τ)+
∑

j ̸=yi

exp(([e◦f(xi)]⊺sj)/τ)
, (3)

Ls2s(ŝ
m, ŝn)=Ec

[
−log

exp((ŝm⊺
c ŝnc −α)/τ)

exp((ŝm⊺
c ŝnc −α)/τ)+

∑
j ̸=c

exp(ŝm⊺
c ŝnj /τ)+

∑
j ̸=c

exp(ŝm⊺
c ŝmj /τ)

︸ ︷︷ ︸
enlarge inter-class inter-/intra-domain distance

]
,

(4)

Ls2z(v̂
n; e, h) = Ei

[
− log

exp([h(v̂n
i )]i)∑C

c=1 exp([h(v̂
n
i )]c)

]
+ Ls2s([e(v̂

n)], s). (5)

Semantic-Similarity Guided Augmentation-Model p(f(x)|y). Another trou-
bling issue lies in the poor diversity of tail classes. In addition to achieving
semantically meaningful and unbiased representations, it is also expected that
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overfitting on the tail classes can be avoided. It emphasizes the importance of
adding to the diversity and richness of tail classes. Therefore, a semantic simi-
larity guided feature augmentation method is proposed as below.

We define the conditional feature distribution (assumed as multi-variate
Gaussian distribution, aggregated from all domains) as p(f(x)|c) ∼ N (µc,Σc).
The classifier h is composed of a weight matrix [w1, ..., wC ]

⊺ and biases [b1, ..., bC ]
⊺.

Without loss of generality and for simplicity, we only consider the weight ma-
trix in the following. The upper bound of softmax cross entropy loss [39] can
therefore be derived as in Equation (6), with proof in supplementary material.

Ef(xi)

[
− log

exp(w⊺
yi
f(xi))∑C

c=1 exp(w
⊺
c f(xi))

]
⩽ log

[ C∑
c=1

exp((w⊺
c − w⊺

yi
)µyi

+
λ

2
(w⊺

c − w⊺
yi
)Σyi

(wc − wyi
))
]
.

(6)

This indicates that by adding the penalty of λ
2 (w

⊺
c −w⊺

yi
)Σyi

(wc −wyi
), the

up-boundary of classification loss can be approximated by implicit augmentation,
where λ can be considered as a term to control the augmentation degree [39].

Thus far, we assume a nearly-identical visual space (i.e., similar f(x|y = c) ≈
µc across domains) after visual-semantic mapping; however the estimation of Σc

is hardly possible for tail classes. Guided by the semantic inter-class relationship
from s, we select the top k classes that are most similar to the corresponding
class c (including c itself). This stems from the observation that similar classes
are supposed to have similar semantic variances. For example, deer and antelope
may share similar characteristics of the variations of shape, color, etc. Motivated
by this, we introduce a weighted covariance estimation strategy to leverage the
knowledge learned from head classes,

Simc = {s⊺c si|i = 1, 2,..., C};kc = {i|s⊺c si ∈ topk(Simc)},

Σ′
c =

∑
k∈kc

nkΣk∑
k∈kc

nk
.

(7)

Afterwards, we applied an surrogate loss introduced in Equation (6) to opti-
mize the boundary of classification loss by adding implicit augmentation terms:

Laug(xi, yi; f, h) = −log
exp(w⊺

yi
f(xi))∑C

c=1 exp(w
⊺
yif(xi) +

λ
2 (wc − wyi)

⊺Σ′
yi
(wc − wyi))

.

(8)
In practice, the covariance Σ is online calculated from TΣ steps onwards to avoid
the effect of inter-domain variances.

3.3 Meta-Learning Based Generalization

The objective of meta-learning is to ensure that the trained models are robust
against domain shifts and perform well on all seen and unseen classes. If combin-
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ing the functional blocks introduced above, we can obtain relatively good results
by conventional training strategies. However, the generalization capability on
unforeseen domains is not guaranteed. Thus, we apply meta-learning to simu-
late the domain distribution gaps in an episodic manner, inspired by previous
DG works [6]. The optimization process is illustrated in Algorithm 1. For each
iteration, the training domains are randomly divided into two splits, Dmtr and
Dmte. We make sure that data in Dmte always come from different domains from
Dmtr. After training on Dmtr, the model is expected to perform well on unseen
domains (especially for domain-unique tail classes) in Dmte.

Meta Train. Over the course of meta-training, we make the model trained on
Dmtr able to derive semantically meaningful and unbiased representations. With

a batch data of sizeB sampled from each domain inDmtr, i.e., {xi, yi, di}B×|Dmtr|
i=1 ,

we exert the following typical loss functions.
First of all, in order to calibrate the loss from imbalanced distributions

to balanced ones, we apply the domain calibrated softmax loss with LCls =
1

B×|Dmtr|
∑

i Ldc(xi, yi, di; f, h). In this way, we can improve the performance

over all classes and not propagating discouraging gradients to unseen classes.
Subsequently, to build unbiased representations, the visual-semantic alignment
loss LZ2S = 1

B×|Dmtr|
∑

i Lz2s(f(xi), yi, s; e) is adopted to align the embed-

dings in the semantic space. Furthermore, to enable domain-invariant feature
learning as well as to avoid the prohibitive costs of sampling all classes in
all domains when the class number is huge, a prototype alignment loss is uti-
lized, LS2S = Em,n∈Dmtr

Ls2s(ŝ
m, ŝn)+En∈Dmtr

Ls2s(ŝ
n, s). In addition, we apply

LS2Z = En∈Dmtr
Lz2s(v̂

n; e, h) to further constrain the semantic manifold.
With intra-class inter-domain distribution aligned, the intra-class variances

would be more semantically relevant. We then track the covariance of f(x) fea-
ture distribution from TΣ steps onwards, and apply the surrogate augmentation
loss, LAug = 1

B×|Dmtr|
∑

i Laug(xi, yi; f, h), to increase the diversity of feature

distributions, especially for the tail classes. LAug is set to 0 before TΣ .
The overall meta-training loss is formulated as Lmtr = LCls + w1LZ2S +

w2LS2S +w3LS2Z +w4LAug, where w1, w2, w3, w4 are weight hyperparameters.
The model parameters θ{f, h, e, d} at step t are firstly updated based on Lmtr

with an optimization step with learning rate β1:

θt{f ′, h′, e′, d′} = θt{f, h, e, d} − β1▽Lmtr. (9)

Meta Test. The model optimized on Dmtr is expected to perform well on held-
out domains Dmte. In other words, the optimized representations θ{f ′, h′, e′, d′}
should be unbiased and semantically meaningful, generalizing well when faced
with label distribution shifts and novel domain-specific classes. With samples

{xi, yi, di}B×|Dmte|
i=1 from Dmte, the following losses are utilized. First comes the

calibrated classification loss LMCls = 1
B×|Dmte|

∑
i Ldc(xi, yi, di; f

′, h′). Subse-

quently, with ŝn of meta training domains updated to ŝn′, another loss LMZ2S =
1

B×|Dmte|
∑

i Lz2s(f
′(xi), yi, s; e

′) + En∈DmtrLz2s(f
′(xi), yi, ŝ

n′; e′) aims to align



Tackling Long-Tailed under Domain Shifts. 11

Algorithm 1 Meta-learning for long-tailed domain generalization.

Input: Training set Dtr; semantic embeddings s; initialized visual prototype vn.
Hyperparameters: Steps TΣ , Tmax; Weights w1, w2, w3, w4, wmte; LR β1, β2.
Initialized model parameters: Feature extractor f ; classifier h; models e and d.
Output: Optimized models f and h.

1: for t ≤ Tmax do
2: Randomly split Dtr into Dmtr and Dmte.
3:
4: Sample {xi, yi, di}B×|Dmtr|

i=1 from Dmtr. ▷ Meta Train.
5: Calculate losses: LCls, LZ2S .
6: Update {vn|n ∈ Dmtr} based on f(xi).
7: Calculate new {ŝn, v̂n|n ∈ Dmtr} based on e, d,v.
8: Update Σ Σ′ when t ≥ TΣ .
9: Calculate losses: LS2S , LS2Z , and LAug.
10: Calculate meta-training loss: Lmtr=LCls+w1LZ2S+w2LS2S+w3LS2Z+w4LAug.
11: Calculate new θt{f ′, h′, e′, d′} = θt{f, h, e, d} − β1▽Lmtr.
12:
13: Sample {xi, yi, di}B×|Dmte|

i=1 from Dmte. ▷ Meta Test.
14: Calculate losses: LMCls, LMZ2S , LMAug.
15: Calculate new {ŝn′, v̂n′|n ∈ Dmtr} based on e′, d′, {vn}.
16: Calculate meta-testing loss: Lmte = LMCls + w1LMZ2S + w4LMAug.
17: Update θt+1{f, h, e, d} = θt{f, h, e, d} − β2▽(Lmtr + wmteLmte).
18: end for

the visual features to both the semantic embeddings s and the visual prototypes
of Dmtr. This ensures that the knowledge extracted from meta-training steps are
domain-invariant and semantically meaningful across all classes seen in Dmte. In
addition, the surrogate augmentation loss is enforced from TΣ onwards, to in-
crease the feature diversity, LMAug = 1

B×|Dmte|
∑

Laug(xi, yi; f
′, h′).

The overall meta-test loss is Lmte = LMCls +w1LMZ2S +w4LMAug, and we
finally update the θ{f, h, e, d} based on Lmtr + wmteLmte by learning rate β2:

θt+1{f, h, e, d} = θt{f, h, e, d} − β2▽(Lmtr + wmteLmte). (10)

4 Experiments

4.1 Experimental Settings

Datasets. Two datasets were adopted to evaluate the effectiveness of our pro-
posed methods. AWA2 [40] and ImageNet-LT [21]. To benchmark our pro-
posed task, AWA2 was firstly randomly resampled to convert to a long-tailed
version. RegardingAWA2-LT and ImageNet-LT, we applied off-the-shelf style
transfer models (Hayao & Shinkai2; Vangogh & Ukiyoe3) to simulate domain
shifts as shown in Fig. 6 and the generated new datasets are referred to as
AWA2-LTS and ImageNet-LTS, respectively. Some classes from certain do-
mains were deliberately dropped out to simulate a more realistic settings with
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Giant Panda
(AWA2)

Snowmobile
(ImageNet)

Hayao ShinkaiOriginal Vangogh Ukiyoe

Fig. 6. Examples of simulated domain
shifts by off-the-shelf style transfer mod-
els. Each original sample was randomly as-
signed a style to make up for the final
dataset. Some samples of non-head classes
in certain domains were randomly dropped
out to simulate the practical LT-DS prob-
lem studied in this work.

Fig. 7.Data distribution of AWA2-LTS.

Table 1. Dataset Details.
Dataset |D| |C| |x| Ratio*

AWA2-LTS 5 50 ∼8k ∼78
ImageNet-LTS 5 1000 ∼100k ∼256

entangled long-tailed and shifted distributions. A visual explanation of AWA2-
LTS training data distribution is given in Fig. 7. Please see Table 1 and refer to
supplementary material for more details.

Model Training Setup. We deployed all models using Pytorch with NVIDIA
RTX3090. For AWA2-LTS and ImageNet-LTS, ResNet10 was adopted as the
backbone with random initialization. Regarding semantic features, Word2Vec
embeddings [24] were adopted for ImageNet-LT. BERT embeddings [5] of class
descriptors were utilized for AWA2-LTS. More details can be found in supple-
mentary material and our project page https://xiaogu.site/LTDS.

Evaluation Setup. Following [29,42], a threshold was empirically set up to
apply on the prediction confidence. Classes below the given threshold are defined
as open classes, belonging to Y \Ytr. We applied leave-one-domain-out protocol
for evaluation. We reported the Acc-U for the non-open classes in the held-out
unseen domain. In addition, the domain-averaged accuracy of non-open classes in
all the domains Acc, and harmonic score H of all the classes in all the domains
are reported. The score Acc and H take into account those classes belonging
to Ytr \ Yi of each individual domain i. Therefore both metrics can to some
extent reflect whether those domain-specific tail classes could lead to spurious
correlations during training.

4.2 Long-Tail with Conditional Distribution Shifts

We evaluated the performance under LT-DS based on two benchmarks AWA2-
LTS and ImageNet-LTS proposed in this work. For comparison, Agg Baseline,
LT solutions (cRT [14], BSCE [27], Equal [31], Remix [3]), DG solutions (Epic-
FCR [16], MixStyle [44], CuMix [22], DAML [29]) were implemented.

2https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch
3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

https://xiaogu.site/LTDS
https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Table 2. Results on AWA2-LTS based on leave-one-domain-out evaluation.

Original Hayao Shinkai Vangogh Ukiyoe

Method Acc-U Acc H Acc-U Acc H Acc-U Acc H Acc-U Acc H Acc-U Acc H

Agg 29.4 27.0 34.5 20.4 29.9 36.2 30.8 33.5 38.6 27.1 34.2 41.0 25.5 34.2 38.6

L
T

cRT[14] 30.4 29.1 34.8 23.5 33.6 38.9 34.7 35.8 39.6 28.6 35.8 43.0 28.4 36.7 35.7
BSCE[27] 41.8 35.9 41.7 24.7 36.1 41.7 30.2 35.8 40.7 29.0 37.7 43.2 25.9 33.6 35.1
Equal[31] 34.1 32.9 36.6 24.3 35.3 42.7 33.5 36.2 40.5 28.8 35.8 42.4 27.3 34.7 34.0
Remix[3] 32.7 30.3 35.9 16.9 30.7 33.3 27.6 32.0 37.5 26.9 31.8 41.2 26.5 32.0 34.9

D
G

Epi-FCR[16] 34.0 33.1 40.5 23.3 34.0 40.6 29.7 35.5 39.1 27.5 36.1 42.0 27.0 35.7 38.0
MixStyle[44] 36.7 34.0 41.2 27.1 36.2 41.7 32.0 36.2 40.6 28.4 36.0 41.9 28.8 36.2 38.3
CuMix[22] 36.1 33.8 38.6 24.7 35.3 41.0 30.2 35.1 41.4 28.2 35.1 40.9 26.5 34.7 34.6
DAML[29] 13.9 10.7 16.2 14.7 22.5 29.8 17.3 24.9 30.4 14.3 19.5 25.6 22.9 28.9 36.0
DAML[29]-Warmup 42.2 35.3 42.5 25.7 35.2 39.5 31.2 36.8 44.0 29.4 37.5 45.3 28.6 36.0 41.4

MixStyle+BSCE 40.0 36.8 41.8 28.8 39.7 43.5 32.4 38.3 44.2 30.8 38.2 43.3 29.8 38.9 39.3
Epi-FCR+BSCE 41.3 36.9 42.0 24.0 35.9 41.2 32.0 39.2 42.5 30.1 38.5 41.7 26.6 35.9 38.7

Ours 49.4 42.1 45.8 29.8 42.4 46.3 34.3 42.6 45.3 32.7 40.3 46.3 32.9 42.4 39.3

Table 3. Results on ImageNet-LTS based on leave-one-domain-out evaluation.

Original Hayao Shinkai Vangogh Ukiyoe

Method Acc-U Acc H Acc-U Acc H Acc-U Acc H Acc-U Acc H Acc-U Acc H

Agg 19.5 18.1 23.5 13.0 18.2 24.4 15.2 18.0 24.2 13.2 17.5 23.7 12.5 17.9 24.1

L
T

cRT[14] 20.7 18.7 24.8 13.8 19.0 24.3 16.2 18.8 24.8 14.0 18.4 25.5 13.6 18.7 25.3
BSCE[27] 20.8 19.1 25.6 14.3 19.4 25.2 16.5 19.1 25.2 14.7 18.8 25.5 14.1 19.1 26.4
Equal[31] 16.3 15.4 20.6 10.7 15.2 20.6 13.2 16.4 22.2 10.5 14.8 21.4 10.9 15.8 21.3
Remix[3] 14.8 13.8 18.6 10.1 14.1 20.0 11.3 14.1 22.0 11.1 13.5 18.2 10.5 14.8 20.8

D
G

Epi-FCR[16] 19.2 18.8 23.1 13.5 19.0 23.3 15.0 20.0 25.1 12.2 18.0 23.8 13.0 17.5 25.2
MixStyle[44] 17.7 16.4 22.0 12.1 16.7 22.1 13.6 16.5 22.9 11.8 16.0 22.9 11.5 16.2 21.4
CuMix[22] 18.2 17.2 23.7 13.2 17.5 22.7 14.2 17.1 22.4 12.1 16.8 22.3 12.1 17.1 23.7
DAML[29]-Warmup 14.7 12.7 18.2 10.5 13.0 18.2 11.5 13.2 18.0 9.7 12.8 16.9 10.1 13.0 18.6

Ours 24.3 20.8 25.9 16.3 21.3 25.4 17.4 20.9 25.8 14.3 20.3 26.6 15.4 20.3 26.7

Quantitative Results. As shown in Tables 2 & 3, our method achieves overall
superior performance compared to other methods. In addition, two combinations
MixStyle+BSCE and Epi-FCR+BSCE were applied on AWA2-LTS dataset for
comparison. We noticed the extremely low performance of DAML [29] under LT-
DS. Since it is based on the knowledge distillation from each domain-specific
model, the knowledge learned from individual long-tailed distribution would be
significantly biased towards the head classes. We simply moderated such bias by a
warm-up pretraining, and the variant is referred to as DAML-Warmup. Although
DAML-Warmup can alleviate the class imbalance issue when the imbalance ratio
and class number is small, we observed its failure on ImageNet-LTS. It may
indicate that it cannot handle the semantic information when a large proportion
of classes are missing. Overall, our results demonstrate superior performance
compared to existing methods.

Qualitative Results. We present the t-SNE visualizations of features from the
test split of AWA2-LTS in Fig. 8 along with the results from the baseline Agg.
Different colors indicate different domains on the upper row, whereas different
categories ranging from head to tail on the bottom. It can be observed that the
samples which are sampled from the same classes but from different domains
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Table 4. Ablation studies on AWA2-LTS. CE in-
dicates cross-entropy loss.

Index Ldc CE LZ2S LS2S LS2Z LAug Meta
Avg

Acc-U Acc H

a - ✓ - - - - - 26.6 31.8 37.8
b ✓ - - - - - - 30.6 36.7 39.2
c - ✓ - - - - ✓ 28.9 34.3 33.8
d ✓ - - - - - ✓ 34.3 40.0 40.2
e ✓ - ✓ - - - - 31.5 41.2 41.0
f ✓ - ✓ ✓ - - - 32.0 40.8 41.2
g ✓ - ✓ ✓ ✓ - - 32.5 40.8 42.8
h ✓ - - - - ✓ - 26.2 30.0 36.8
i ✓ - ✓ ✓ ✓ ✓ - 34.0 40.9 42.8
j ✓ - ✓ ✓ ✓ ✓ ✓ 35.7 42.0 44.6

k Single Prototype Alignment 32.5 41.0 41.6
l No-Weight Augmentation 34.6 40.7 43.0

Hayao
Shinkai

Ukiyoe
Vangogh

Original (U
nseen)

Domain

Head Tail
Class

(a) Agg (b) Ours

Fig. 8. t-SNE of AWA2-LTS
test set. Left: Agg. Right: Ours.

(including the unseen domain) are better clustered. More qualitative analysis
can be found in supplementary material.

Ablation Studies. We validate the performance of each proposed module and
the whole meta learning framework by ablation studies as shown in Table 4 in-
dicates the effectiveness of each individual modules. In particular, the ablated
model indexed by d also presents relatively good performance, demonstrating
that even without additional semantic features for alignment, it is still compa-
rable to existing solutions. We also did two another ablation studies, with just
single prototype for alignment and without weighted term in Equation (8) for
updating covariance matrix. Please see more detailed discussions in our sup-
plementary material. Additional experiments on sample complexity, choices of
embeddings, as well as results on open domain generalization datasets can also
be found in supplementary materials.

5 Conclusions

Long-tailed category distribution and domain shifts have been two major is-
sues concerned with real-world datasets, leading to degraded performance upon
practical deployment. The combination of these two problems poses a signifi-
cantly challenging scenario, where not only these two problems should be ad-
dressed, but the domain-specific non-head classes should also be paid attention
to, to avoid shortcuts. We proposed a meta-learning framework to ensure that
the model can perform well over all classes and all domains, including unseen
novel domains. We evaluated two benchmarks proposed in this paper. The ex-
perimental results demonstrate that the proposed method can achieve superior
performance, when compared to either long-tailed/domain-generalization solu-
tions or the combinations. In the future, we are going to apply our method to
more specific applications like behavioural analysis and health care.
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