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Abstract. Vision Transformer (ViT) has recently emerged as a new
paradigm for computer vision tasks, but is not as efficient as convolu-
tional neural networks (CNN). In this paper, we propose an efficient
ViT architecture, named Doubly-Fused ViT (DFvT), where we feed low-
resolution feature maps to self-attention (SA) to achieve larger context
with efficiency (by moving downsampling prior to SA), and enhance it
with fine-detailed spatial information. SA is a powerful mechanism that
extracts rich context information, thus could and should operate at a
low spatial resolution. To make up for the loss of details, convolutions
are fused into the main ViT pipeline, without incurring high computa-
tional costs. In particular, a Context Module (CM), consisting of fused
downsampling operator and subsequent SA, is introduced to effectively
capture global features with high efficiency. A Spatial Module (SM) is
proposed to preserve fine-grained spatial information. To fuse the het-
erogeneous features, we specially design a Dual AtteNtion Enhancement
(DANE) module to selectively fuse low-level and high-level features.
Experiments demonstrate that DFvT achieves state-of-the-art accuracy
with much higher efficiency across a spectrum of different model sizes.
Ablation study validates the effectiveness of our designed components.

Keywords: Vision Transformer, Convolutional Neural Networks, Effi-
cient Network

1 Introduction

For quite some time now, convolutional neural networks (CNN) [24, 43, 45, 29]
have dominated computer vision (CV) tasks, such as image classification, ob-
ject detection, semantic segmentation, and tracking. CNN extracts information
hierarchically, and high-level feature representations are obtained by gradually
processing features from the bottom to top layers. In addition, using weight shar-
ing and pooling, CNN has the nice property of (approximate) shift-invariance
and equivariance. Nevertheless, the CNN architecture has its drawbacks. A con-
volution kernel is localized and has a fixed size, so local information is efficiently

Code is available at https://github.com/ginobilinie/DFvT
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Fig. 1. Scatterplot of top-1 accuracy on ImageNet-1K validation set with respect to
speed. The proposed Doubly-Fused ViT (DFvT) achieves state-of-the-art performance
with high efficiency, outperforming popular convolution and transformer backbones.

captured, but large receptive fields and long-range dependencies can only be rep-
resented by either increasing the depth of the network or utilizing large kernels,
both with much higher computation cost. Also, the weights of the convolution
kernels are fixed when training is over, and the filter weights cannot be adjusted
when the input changes.

Transformer [50] was first proposed for Natural Language Processing (NLP)
[10, 23, 61], showing to be superior in performance on machine translation tasks.
Instead of localized convolution, transformer uses self-attention mechanisms to
capture global contextual information and establishes long-range dependencies,
proving a powerful paradigm for feature extraction. One pioneering work of
transformer for computer vision tasks is ViT [11], which applies the encoder in
the standard transformer to visual tasks by dividing an input image into patches
and making an analogy between patches and tokens in NLP.

The ViT design and its follow-up show great promises in achieving higher
performance on a variety of vision tasks, but they have disadvantages. Firstly,
the patch stem of ViT greatly reduces the resolution of the input image and is
not friendly to downstream tasks that require dense pixel prediction, such as se-
mantic segmentation. Secondly, the computational complexity of the vanilla ViT
is quadratic in the number of patches/tokens, which leads to a high amount of
computation. Many researches has been undertaken to alleviate these two issues.
Some efforts [25, 34, 15, 64, 44] introduced hierarchical constructions (commonly
used in CNN) to build hierarchical transformers. Others [13, 57, 14] incorporated
CNN to add inductive bias to transformers to help improve performance. There
were also studies on reducing the computational costs of transformers [49, 4,
12, 32], such as decreasing the number of tokens or modifying the self-attention



DFvT 3

Layer Normalization

Window Self-Attention

Layer Normalization

MLP

(a) (b)

Layer Normalization

Window Self-Attention

Layer Normalization

MLP

Down-Sampling

(c)

Layer Normalization

Window Self-Attention

Layer Normalization

MLP

Down-Sampling

Co
nv

s

(d)

Layer Normalization

Window Self-Attention

Layer Normalization

MLP

Down-Sampling

Co
nv

s

Down-Sampling

pre-SA fusion

Post-SA fusion

Spatial 
Module

Context Module

MaxPool

Fig. 2. Different transformer designs (we use a pyramid ViT with window SA as base-
line.). (a) Baseline ViT (e.g., [28]). Token maps are (spatially) down-sampled at the
end. (b) Downsampled ViT: placing down-sampling at the beginning, before the main
transformer block. Computation and memory costs are greatly reduced, but there is a
loss of information (and lower accuracy). (c) Parallel ViT: one way to compensate for
information loss is to supplement transformer with a separate CNN path (e.g. [9]). Note
that the input of CNN and transformer has the same resolution and dimension, which
is computation demanding and memory consuming. (d) We propose Doubly-Fused ViT
(DFvT), which opens up the transformer block and enhance it with convolution, both
before and after self-attention. This design tightly integrates transformer and convo-
lution with CM and SM complementing each other, achieving high accuracy and high
speed. See ablation studies.

mechanism. So far, we do not yet have good designs that can make transformers
achieves both high performance and high efficiency.

In this work, we propose a simple yet novel vision transformer architecture,
named Doubly-Fused ViT (DFvT), which is efficient in both speed and memory
comparable to CNN, while retaining ViT’s high performance. This is achieved by
opening up and redesigning the transformer block and tightly integrating it with
convolutions. Specifically, our first change is proposing a Context Module (CM),
which moves the downsampling operation (e.g., convolution with stride 2), usu-
ally at the end of the transformer block (in a hierarchical design e.g. [28]), to the
beginning of the block. Our intuition is that self-attention in the transformer is
powerful at capturing large contexts, and this can be done with a low spatial
resolution. As a result, computation and memory costs of the transformer are
substantially reduced. However, this downsampling operation in CM does result
in a serious loss of information, that of spatial details, and a much lower perfor-
mance. Our second change is to enhance the transformer with detailed spatial
information through convolution, with two fusions at distinctive locations, both
prior to and after self-attention (SA). The first fusion is in the CM to provide di-
versified and salient information as input to self-attention; for the second fusion,
we introduce a Spatial Module (SM) to provide local details that can be easily
missed by the downsampled self-attention which mainly focus on global infor-
mation. Considering the heterogeneous nature of the two information paths, we
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designed a Dual AtteNtion Enhancement (DANE) module to fuse the features.
It turns out that our design is effective: DFvT can achieve competitive accuracy
with compelling efficiency, validated at multiple model sizes. A plot of speed-
accuracy on the small version DFvT is shown in Fig. 1. Several design choices are
outlined in Fig. 2, and their performances are compared in the ablation studies.

The contributions of our work are as follows:

– We proposed the Doubly-Fused ViT (DFvT), a general vision transformer
backbone with high performance (comparable to standard ViT) and high
efficiency (comparable to CNN). We regroup the downsampling operators
and self-attention to formulate a Context Module (CM) which can efficiently
and effectively capture global information. We also design a Spatial Module
(SM) to preserve local details. The context features and fine details are fused
with a DANE module.

– A Dual AtteNtion Enhancement (DANE) module is carefully designed to
fuse spatial details and contextual features. In DANE, channel attention
is adopted to cope with contextual features since no channel interaction
in self-attention, and spatial attention is dedicated to local features. Then
a automatically selective mechanism is introduced to finally fuse the two
heterogeneous features so that we can capture features at different scales
(for instance, local and contextual).

– The DFvT design can be instantiated at multiple model sizes (at the level
of ResNet101, ResNet50-ResNet18, and MobileNet). We carry out a series
of experiments to show that DFvT is flexible and can apply to varying com-
putational demands, outperforming the state-of-the-art (of both transformer
and CNN).

2 Related Work

2.1 CNNs

CNNs have achieved great success and dominated computer vision in the past
decade [22, 43, 45, 40, 30, 39, 16]. The basic building block in CNNs is a standard
convolutional layer, which does well in capturing local details but not in model-
ing long-range dependency due to limited receptive field. The network requires
sufficient context information to perform strong recognition. Stacking convolu-
tional layers is one way to learn context information. With batch normalization
(BN) [42] and residual block [16], modern CNNs can go through as deep as 1,000
layers and achieve SoTA performance on many vision tasks. Efforts have been
made to improve context modeling in CNN. [35] explored the role of large ker-
nels in segmentation and concluded that large kernels work better than stacking
small filters. [63] utilized dilated convolution to aggregate multi-scale features.
[8] presented a novel convolution operation with learnable offsets to model long-
range dependency and geometric shapes. [55] employed non-local blocks (i.e.,
self-attention) to increase the receptive field and learn better context.
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2.2 Vision Transformer

The pioneering vision transformer (ViT) [11] has recently achieved competitive
performance to CNNs, especially when using a large amount of data, which
demonstrates the capability and potential of transformers in computer vision.
Follow-up research to improve ViT can be roughly categorized into three di-
rections. One is to improve building components of the vision transformer [65,
58, 48, 20, 2] under the isotropic structure (i.e., fixed token numbers and chan-
nels) like ViT, for example: T2T-ViT [65] developed a Tokens-to-Token (T2T)
transformation to embed local structure for each token instead of using naive
tokenization. CaiT [48] proposed a layer-scalar for training a deeper network to
achieve better performance, and LV-ViT [20] improved the model training by ap-
plying CutMix [66]. CrossViT [2] proposed a dual-path architecture (each with
a different scale) to learn multi-scale features. A second direction for improving
vision transformer is to introduce pyramid structure [17, 1, 67, 53, 6]. PVT [53]
and PiT [17] introduced the pyramid structure which is standard in most CNN
models, making PVT and PiT more suitable for image recognition tasks due to
the multi-scale features. Swin [28], ViL [67] and Twins [7] further constrained
self-attention into a local region and then proposed different strategies to allow
information interactions among local regions, leading to even higher recognition
accuracy and less computational complexity. RegionViT [3] employed a novel
regional-to-local attention within the pyramid structure to boost information
communication. The third direction is to combine convolution with transformer.
DeiT [47] proposed an efficient training scheme that allows vision transformer
to achieve competitive performance with CNN models while training only on
ImageNet-1K. LocalViT [26] and ConT [60] presented methods to mix convolu-
tions with self-attention to encode locality information.

2.3 Efficient Architecture for CNNs and ViTs

Computational efficiency is critical for large-scale training, reducing cost, and
deployment on edge devices. It is common to reduce the model size by redesigning
the model architecture. In CNNs, scaling dimensions of depth/width/resolution [46]
and designing efficient operations (e.g., separable convolution [41] and shuffle
block [31]) are the widely adopted strategies to build efficient networks. In ViTs,
pyramid structure (e.g. [28]) and token sparsification (e.g. [38]) are common ways
to design efficient models. Besides, carefully combining CNNs and ViTs can also
improve efficiency. For instance, ConViT [9] introduced a form of positional self-
attention to control the balance between content-based self-attention and the
convolutionally initialized positional self-attention. CvT [57] utilized convolu-
tion for token embedding and designed the convolutional transformer block in
each stage to bring desirable properties of CNN to ViT and obtained a more effi-
cient model than plain ViT. Mobile-Former [5] utilized a parallel structure with
a two-way bridge in-between to combine MobileNet and Transformer, endow-
ing the model with local processing and global interaction capabilities. Mobile-
ViT [32], another lightweight model with transformer, introduced transformer
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Fig. 3. The pipeline of the proposed Doubly-Fused ViT (DFvT) for image classifi-
cation, where the number of tokens is reduced as the network goes deeper with a
hierarchical representation. We design our efficient transformer block (Spatial Module
(SM), Context Module (CM) and DANE). In the CM, we place the downsampling
prior to SA to reach larger context information and reduce computation and memory
costs simultaneously. Note we use convolved features to make up for the serious loss of
information in the CM. To further compensate for the loss of information, we design
the SM to retain local details. Moreover, we design a Dual AtteNtion (DANE) module
fusing local details and global contexts.

as convolution to rebuild MobileNet, achieving a lightweight and low-latency
network on vision tasks. These designs are efficient, but they typically result in
a loss of performance, trading accuracy for efficiency.

3 Method

The strength of transformer lies in its multi-head self-attention, which can ef-
fectively capture context information (i.e., long-range information dependency
modeling) from shallow layers [37]. However, self-attention has a high computa-
tional cost which limits the efficiencies of the ViTs. Many works are conducted to
reduce the computational complexity in a theoretic aspect, e.g., from quadratic
to linear, however, performance drop usually comes together with them. Also,
these approaches cannot decrease the memory cost. We propose a simple yet ef-
fective method, that is, we reduce the size of the features fed into self-attention
to achieve more context with high efficiency, set up a spatial path to retain the
detailed information, and specially design a module to fuse the features. The
overall framework of the proposed DFvT is presented in Fig. 3. Given an RGB
image with a shape ofH×W×3, it is first encoded into overlapped patches by two
consecutive convolutions. The patches can be viewed as tokens in NLP. Unlike
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the patch stem in ViT [11], which uses large-kernel plus large-stride convolu-
tions to extract features, we adopt traditional convolution stem (two sequential
convolutions with the kernel of 3 × 3 to strike a balance between inductive bi-
ases and the representation learning ability of the following transformer blocks
[59]). Then several layers of a redesigned transformer block, tightly enhanced
by convolution, are applied to these patches to extract higher-dimensional fea-
tures. In this work, we adopt the hierarchical modeling approach following [28],
so the number of tokens is reduced and the dimension is increased as the layers
go deeper. After the last block, the tokens are fed into a global average pooling
layer and a fully connected layer to produce the prediction maps.

As shown in Fig. 3, there are four stages in our pipeline, and each stage
consists of three modules: a Context Module (CM) to capture large context, a
Spatial Module (SM) to retain local details, and a Dual AtteNtion Enhancement
module (DANE) to fuse features from the SM and CM. It can be seen that
transformer and convolution blocks are tightly integrated, and both fusion steps
take place before transformer’s FFN step.

3.1 Context Module

We first adopt a convolution block for fast downsampling to obtain high-level
semantic context information with three consecutive convolutions. Following the
design in ResNet [16], there are a 1×1 convolution, a 3×3 separable convolution
with stride 2 for downsampling, and a 1× 1 projection convolution to integrate
channel information. The convolution kernels extract low-resolution features and
allow the following steps to have larger respective field.

Then we adoptN window-based self-attention modules following Swin Trans-
former [28], which are responsible for extracting medium- and high-level (and
long-distance) information. Note that the tokens fed into transformer are down-
sampled to reduce computational and memory costs and expand the receptive
field.

The Context Module (CM) is designed to efficiently and effectively learn con-
text information. The CM downsamples the feature maps and then feed them
into self-attention, which ensures the self-attention mechanism has much smaller
computational (also memory) costs, and can obtain larger receptive field to en-
large the context.

Pre-SA Fusion We downsample the input feature map of the CM before com-
puting W-MHSA to reduce the amount of computation (approximately a factor
of 4 for window-based SA, 1/16 for regular self-attention). However, this reduc-
tion in resolution would result in a loss of information, especially salient features.
We propose to compensate for this loss in a parameter-free way (i.e., maxpool-
ing) before it is processed by self-attention. Features from the maxpooling steps
could be used for such enrichment, as those features are notable ones and can
provide translation/rotation for the following transformer.
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To this end, we add the feature map from the maxpooling step to that of
the convolutions in the transformer. The pre-SA fusion and the output of the
W-MHSA in CM can be expressed as:

FCM = W -MHSA(LN(maxpool(F) + Conv(F)))

+maxpool(F) + Conv(F)
(1)

where F represents the input feature maps to both CM and SM, and Conv
denotes three consecutive convolutions, respectively.

3.2 Spatial Module

It has been observed that preserving the detailed spatial information is crucial to
high performance in recognition tasks [51, 62, 33]. However, the CM has seriously
lost the fine-detailed features. To compensate the local details, we propose a spa-
tial module (SM) which maintains the large spatial size of tokens. In particular,
we adopt separable convolution with a 3× 3 kernel to encode the local features.
Since the spatial module does not involve any global operator, the spatial details
are well preserved in this path.

3.3 DANE

The features of CM and SM represent different scales of information, i.e., SM
means local features and CM represents global contexts, it is not a good idea to
just simply add the heterogeneous features up. Instead, we design a fusion mod-
ule called Dual AtteNtion Enhancement (DANE), which consists of a channel
attention, a spatial attention and a automatic selective mechanism to allocate
attentions to enhance context and spatial features respectively. The structure of
the proposed module is shown in Fig. 4.

Since the features extracted by CM lack interaction between channels (self-
attention has no inter-channel integration), we perform the channel-wise atten-
tion to enhance the useful features of the CM and suppress noise information.
This generates a set of global dependencies on channel dimension by aggregating
the feature maps in its spatial dimension. Let the token map output from the
CM be FCM , we use a global average pooling operation, and two consecutive
FC layers for squeeze and excitation [19], to get the channel-wise weights as
described below:

Wc = fex(fsq(avgpool(FCM ))) (2)

The feature maps of the SM contain rich fine-grained spatial information, but
lack global context information, so we use spatial-wise attention on SM features
to learn spatial weighting, enhancing useful spatial areas and suppressing irrel-
evant ones. Let the SM output be FSM , the spatial-wise weights are generated
by aggregating the feature maps in the channel dimension with a FC layer as
follows:

Ws = fsq(FSM ) (3)
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Fig. 4. The framework of the proposed DANE module, which fuses the information
from SM and CM with both spatial and channel attention.

With the weight parameters learned, the tokens can learn high- and low-level
features from both SM and CM simultaneously, which are calculated as:

W = sigmoid(Wc +Ws),

F = FCM ∗W +FSM ∗ (1−W)
(4)

After DANE being introduced, SM and CM are complementary to each other
for higher performance. That is, each token in the feature map can obtain both
high-level context information and low-level spatial information by adaptively
adjusting the weight parameters balancing between SM and CM (sum to 1).
This module introduces a small number of parameters but can effectively fuse
different level of information representation from these paths.

With fully fusing information from SM and CM, the final output of the
transformer block is:

F = MLP (LN(F)) +F (5)

Finally, a standard layernorm operation and a fully connected layer are applied
to the feature maps to increase the dimension. After all the basic blocks, the
tokens go through global average pooling and a fully connected layer to obtain
final predictions.

3.4 Model Scaling

By simply adjusting the dimension and the number of transformer blocks (also
with minor adjustment of some other configurations), we can adapt our design
to a range of model complexity (and computational cost), namely: Tiny (0.3
GFLOPs), Small (0.8 GFLOPs), and Base (2.5 GFLOPs). These models roughly
correspond to MobileNet, ResNet and Swin-T, respectively. Their peformance
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Results on ImageNet-1K validation set

Group Model Image Size Params(M) FLOPs(G) Memory(GB) throughput(images/s) Top-1 Acc.(%)

0.2G FLOPs
and More

MobileNetV1[18] 224 4.2 0.6 5.0 3247.5 70.6
MobileNetV2[41] 224 3.5 0.3 4.4 2780.6 72.0

ShffleNetV1 1.5x [69] 224 3.4 0.3 3.3 3140.3 71.6
ShffleNetV2 1.0x [31] 224 2.3 0.2 2.4 7285.2 69.4
MobileFormer-52M [5] 224 3.5 0.6 1.8 3033.8 68.7

PvTv2-B0[52] 224 3.4 0.6 2.5 1624.3 70.5
DFvT-T 224 4.0 0.3 1.5 4760.1 73.0

0.8G FLOPs
and More

ResNet18[16] 224 11.7 1.8 1.0 2506.4 69.8
ResNet34[16] 224 21.8 3.7 1.5 1329.4 75.8
ResNet50[16] 224 25.6 4.1 3.2 879.0 76.2

MobileFormer-294M [5] 224 11.8 3.2 6.2 857.7 77.9
T2T-ViT-7[65] 224 4.3 1.2 3.0 1483.4 71.7
LocalViT-T[26] 224 5.3 1.3 4.2 1180.3 72.5
DeiT-Tiny[47] 224 5.7 1.2 2.2 1950.7 72.2
CrossViT-9[54] 224 8.6 1.8 3.7 1098.9 73.9
PVT-Tiny[53] 224 13.2 1.9 4.3 1087.8 75.1

ConViT-Ti+[9] 224 10.0 2.0 4.0 1034.4 76.7
ResT-Lite[68] 224 10.5 1.4 3.4 1246.3 77.2
DFvT-S 224 11.2 0.8 2.8 2202.3 78.3

2.5G FLOPs
and More

ResNet101[16] 224 44.5 7.8 4.7 502.6 77.4
RegNetX-4G[36] 224 22.1 4.0 7.7 789.8 78.6

ViT-Base[11] 384 86.8 17.6 OOM 235.4 77.9
DeiT-Small[47] 224 22.1 4.3 4.8 786.6 79.8
Swin-Tiny[28] 224 28.3 4.5 8.0 536.8 81.3
CrossViT-S[54] 224 26.7 5.6 7.0 533.9 81.0
PVT-Small[53] 224 24.5 3.8 7.0 594.6 79.8

PVT-Medium[53] 224 44.2 6.7 9.5 390.4 81.2
Conformer-Ti[13] 224 23.5 5.2 7.1 515.1 81.3

CvT-13[57] 224 20.0 4.5 6.6 541.9 81.6
T2T-ViT-14[65] 224 21.5 5.2 6.8 610.7 81.5
CoTNet-50[27] 224 22.2 3.3 OOM 633.3 81.3
ConViT-S[9] 224 27.8 5.4 7.9 462.0 81.3

ResT-Base[68] 224 30.3 4.3 6.4 598.5 81.6
DFvT-B 224 37.3 2.5 5.5 962.8 82.0

Table 1. Comparison of the model family of DFvT and state-of-the-art methods on
the ImageNet-1K validation set. The memory cost is tested with a batch size 64, and
when testing fps we turn up the batch size to the maximum on a single 2080 Ti GPU.
For fair comparison, we don’t adopt the mixed precision, and the results reported here
are tested on the same platform.

on ImageNet-1K are shown in Sec. 4.1. Details of these models are listed in the
supplementary material.

4 Experiments

We conduct experiments on image classification to evaluate and validate perfor-
mance and efficiency of the proposed DFvT design.

4.1 Image Classification on ImageNet-1K

For the task of image classification, DFvT is trained on ImageNet-1K [22] train-
ing set, which contains 1.28 million images of 1k classes, and is tested on the
validation set that includes 50k images. In the experiments, image size is set to
224 × 224, and top-1 accuracy on a single crop is reported. Efficiency is mea-
sured using FLOPs, actual throughput (images/sec), and memory usage. We
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Fig. 5. Illustrations of top-1 accuracy in ImageNet-1K validation set with respect to
memory and computational cost.

use AdamW [21] as the optimizer with a cosine decay learning rate scheduler for
300 epochs and linear warm-up for 20 epochs. We set the batch size to 1024 for
DFvT-T and DFvT-S, 512 for DFvT-B, the initial learning rate to 1e-3, weight
decay to 0.05. The data augmentation and regularization strategies follow [28].
The models are trained on 4 NVIDIA GeForce RTX 2080 Ti GPUs implemented
using PyTorch.

The results are shown in Table 1. Our model, DFvT-S achieves 78.3% top-
1 accuracy, which is higher than ResNet101 (77.4%) [16] in terms of accuracy,
and is approximately 4 times faster with 90% less computational complexity (in
FLOPs). Our model also costs 35% less memory. DFvT-S can even compare
to small ResNet (i.e., ResNet18) in terms of computational cost and inference
throughput, but our model provides a much better accuracy (i.e., 8.5 % higher
for top-1 accuracy). Compared to the widely adopted ResNet50, DFvT-S out-
performs it in all perspectives.

DFvT-S is also competitive with other ViTs. In the group of 0.8G FLOPs
and more, our DFvT-S is among the top performers with respect to the accu-
racy, computational cost, and inference speed. For example, DFvT-S outper-
forms many recently developed ViT models, such as T2T-ViT-7, LocalVit-7,
CrossViT-9, PVT-Tiny, ConViT-Ti+, and ResT-Lite, concerning the accuracy,
FLOPs, inference throughput, and memory. As for MobileFormer-294M, our
model achieves comparable accuracy with substantially lower memory and com-
putational costs and higher throughput.

Model Scaling. Table 1 shows the experimental results of our scaled models on
image classification (ImageNet-1K). Our tiny model (i.e., DFvT-T) can achieve a
competitive accuracy (73.0%) compared to the SOTA lightweight models. More
importantly, DFvT-T has advantages over the SOTA methods in terms of the
FLOPs, memory costs as well as inference throughput except for ShuffleNetV2
(but note DFvT-T accuracy is 3.6% higher than ShuffleNetV2). For instance,
the throughput of DFvT-T is approximately twice as much as MobileNetV2 [41]
on a single NVIDIA 2080 Ti GPU while only using one-third of memory. As
for the DFvT-B (large model), we also achieve competitive results with lower
computational and memory costs. The scatterplots on computational/memory
costs and accuracy are shown in Fig. 5.
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4.2 Ablation Study

In this section, we conduct extensive ablation experiments to demonstrate the
overall effectiveness of our design, the necessity of Context Module (CM), Spatial
Module(SM) and DANE block.

Transformer Design Table 2 presents the four options for model design de-
picted in Fig. 2. It can be observed that baseline ViT has presented decent top-1
accuracy with a small number of parameters, but the computational cost and
inference speed are not ideal. If we directly downsampled the input size of the
input feature map (Downsampled ViT), we can largely improve the through-
put (2 times faster) and greatly reduce the computational complexity (2 times
smaller) as well as the memory cost (45% smaller). However, the accuracy be-
comes much lower, which is assumed due to the information loss. The parallel
ViT, which sets up a parallel convolution path to provide local information, can
substantially improve the accuracy compared to Downsampled ViT (71.9% to
76.9%). Nevertheless, memory and inference speed become much worse. Our de-
signed DFvT can not only save memory, computational cost, and accelerate the
inference compared to baseline and parallel ViT, it can also achieve the best
accuracy, which can attribute to the two paths design. The spatial information
from SM can be efficiently integrated to CM. As a trade-off between efficiency
and accuracy, decoupling design is the optimal choice.

Model Params(M) FLOPs(G) FPS(imgs/s) Memory(GB) Top-1 Acc.(%)

a: Baseline ViT 9.8 1.4 1168.2 3.2 74.7
b: Downsampled ViT 8.8 0.5 3091.5 1.8 71.9
c: Parallel ViT 13.1 1.1 1843.3 5.0 76.9
d: DFvT-S 11.2 0.8 2203.3 2.8 78.3
Table 2. Experimental results of models with different designs corresponding to Fig. 2.
Note that the ViT we use is a pyramid structure with window SA.

Spatial Module and Context Module Table 3 shows the effectiveness of each
components. The model gets a moderate performance of 77.0% with only CM,
which can be explained that though suffering from the lost of detailed informa-
tion, the CM has extracted enough global context information for classification.
After introducing the detailed low-level information from SM, the performance is
improved from 77.0% to 77.5%. It is because that the SM can supply the missing
local spatial information of CM, which is helpful for higher performance.

Impact of Context Module (CM) As introduced in Sec. 3.1, CM has two
major components, pre-SA fusion and window-SA. Since window-SA is a neces-
sity portion, we mainly consider the design of pre-SA.
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Model Params(M) FLOPs(G) Top-1 Acc.(%) Gains(%)

CM 10.3 0.7 77.0 -
CM + SM 11.1 0.8 77.5 +0.5

CM + SM + DANE 11.2 0.8 78.3 +1.3
Table 3. Detailed performance comparison of each component in DFvT-S.

Pre-SA has two input, max-pooling features and convolutional features. Ta-
ble 4 demonstrates the importance of each factor for the pre-SA fusion. The
accuracy will be significantly decreased by 6.1% if removing convolutional infor-
mation flow for pre-SA fusion. Similarly, we also show that the information flow
from the max-pooling operation is important because the accuracy will drop
by 0.2%. Obviously, convolutional features are more important for the pre-SA
fusion. The reason may lie in that the convolutions provide fine-grained and
diversified information, while maxpooling only retains the maximum fired neu-
rons. Nevertheless, we still keep the max-pooling operation as it can improve the
diversity of the fused information and can also contribute to the accuracy with
negligible cost.

Model Params(M) FLOPs(G) Top-1 Acc.(%) Declines(%)

DFvT-S 11.2 0.8 78.3 -
w/o maxpooling info 11.2 0.8 78.1 -0.2

w/o conv info 9.6 0.5 72.2 -6.1
Table 4. Ablation study of pre-SA fusion in Context Module in terms of the number
of parameters, FLOPs and top-1 accuracy on ImageNet-1K.

Impact of Spatial Module (SM) Table 3 proves that the Spatial Module
can improve the performance of 0.5% with little FLOPs introduced (i.e., 0.7G to
0.8G). The depthwise convolution in SM mainly focuses on encoding fine-detailed
information, thus complementing the context information from CM well.

Impact of DANE We have carefully designed the feature fusion block (i.e.,
DANE) for post-SA feature aggregation. To validate the designation, we compare
DANE with some widely used feature fusion methods, namely, “SUM”: element-
wise addition, “SUM+MUL”: element-wise addition and multiplication, “SE”:
use channel attention mechanism to fuse the features [19], “SPATIAL”: use spa-
tial attention to fuse the features [56], “rDANE”: reverse version of DANE, that
is, we use channel and spatial attention for inputs from CM and SM respectively.
The difference is not obvious since the size of our model is not large enough. We
believe that the difference will become apparent when the model size becomes
larger. Note that we do not consider concatenation because it will vastly increase
the parameters and computational cost. The experimental results are reported
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Model Params(M) FLOPs(G) Top-1 Acc.(%) Gains(%)

SUM 11.1 0.8 77.5 -
SUM+MUL 11.1 0.8 77.6 +0.1

SE 11.2 0.8 78.0 +0.5
SPATIAL 11.2 0.8 77.8 +0.3
rDANE 11.2 0.8 78.1 +0.6
DANE 11.2 0.8 78.3 +0.8

Table 5. Different designs of the feature aggregation module to fuse the information
from SM and CM.

in Table 5. The attention-based fusion strategies perform better than the pure
addition or multiplication since it is not suitable to directly fuse information
with different level of information representation. Among the attention based
fusion operators, DANE demonstrates the best performance. This confirms our
assumption that features from CM and SM exhibit different characteristics and
they are complementary to each other.

5 Conclusion

In this paper, we propose a new hybrid transformer and convolution backbone,
Doubly-Fused ViT (DFvT), for image classification, which retains the high ac-
curacy of ViT but is highly efficient in computational and memory costs. The
features in a standard transformer block are fast downsampled to extract context
information in Context Module (CM), and is enhanced with spatial information
using convolution in Spatial Module (SM). Moreover, a Dual AtteNtion Enhance-
ment (DANE) module is used for fusion by combining spatial-wise attention for
SM and channel-wise attention for CM. We also conduct model scaling to further
trade off accuracy and efficiency to provide more choices for various scenarios.
Experiments on ImageNet-1K image classification demonstrate that DFvT out-
performs the state of the art in either accuracy or speed, or both.

6 Social Impact and Limitations

Efficient algorithms, including efficient transformer designs, are appealing for
practical applications. In a world that is increasingly conscious of carbon foot-
print, it is particularly important to be able to reduce computational cost and
its associated environmental cost, hence making AI systems more feasible for
adaption. In the meantime, efficient algorithms such as efficient transformers
can also be potentially used in a wider range of scenarios and bring value to a
wider range of users.

Due to computational resource constraints, we have not studied DFvT design
on larger scale datasets. Because the DFvT design is general and performs well
under multiple settings, and transformers tend to be more data-driven, we are
optimistic about its learning ability on larger scale data.
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