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Abstract. The transformer models have shown promising effectiveness
in dealing with various vision tasks. However, compared with training
Convolutional Neural Network (CNN) models, training Vision Trans-
former (ViT) models is more difficult and relies on the large-scale training
set. To explain this observation we make a hypothesis that ViT models
are less effective in capturing the high-frequency components of images
than CNN models, and verify it by a frequency analysis. Inspired by this
finding, we first investigate the effects of existing techniques for improv-
ing ViT models from a new frequency perspective, and find that the
success of some techniques (e.g., RandAugment) can be attributed to
the better usage of the high-frequency components. Then, to compen-
sate for this insufficient ability of ViT models, we propose HAT, which
directly augments high-frequency components of images via adversarial
training. We show that HAT can consistently boost the performance of
various ViT models (e.g., +1.2% for ViT-B, +0.5% for Swin-B), and
especially enhance the advanced model VOLO-D5 to 87.3% that only
uses ImageNet-1K data, and the superiority can also be maintained on
out-of-distribution data and transferred to downstream tasks. The code
is available at: https://github.com/jiawangbai/HAT.

1 Introduction

Recently, transformer models have shown high effectiveness in various vision
tasks and attracted growing attention. The pioneering work is Vision Trans-
former (ViT) [20], which is a full-transformer architecture directly inherited from
natural language processing [55] but taking raw image patches as input. After
that, many ViT variants [21,40,13,32,59,69,60] have been proposed and achieved
competitive performance with Convolutional Neural Network (CNN) models.
Though promising in vision tasks, ViT models suffer training difficulty and re-
quire significantly more training samples [20] compared with CNN models.
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Fig. 1: Comparison of ViT-B, ResNet-50, ResNet-101, and ViT-B(+KD) on low-
and high-pass filtered validation set with different filter sizes. ViT-B is the base
ViT model taking as input a sequence of 16×16 patches. KD denotes knowledge
distillation, where the teacher model is a RegNetY-16GF [46] following [54]. The
top-1 accuracy of ViT-B, ResNet-101, ResNet-50, and ViT-B (+KD) on the
ImageNet validation set is 82.0%, 79.8%, , 81.6%, and 83.6%, respectively.

One reason for this difficulty may be that ViT models can not effectively
exploit the local structures as they split an image to a sequence of patches
and model their dependencies with the self-attention mechanism [68,44]. In con-
trast, CNN models can effectively extract local features within the receptive
fields [3,23] with convolution operation. From some previous studies [6,17,53],
the local structures (e.g., edges and lines) are more related to the high-frequency
components of the images. We then naturally make such a hypothesis: ViT mod-
els are less effective in capturing the high-frequency components of images than
CNN models.

To verify our hypothesis, we use the discrete Fourier transform (DFT) to de-
compose the original images into the low- and high-frequency components and
evaluate the model performance on them respectively [67,57]. Figure 1 shows a
comparison between ViT-B [20] and ResNet-50 [28], where a larger filter size
for the low- and high-pass filtering means more low- and high-frequency compo-
nents, respectively. In our experiments, ViT-B has a higher top-1 accuracy on
the original ImageNet validation set (82.0% vs. 79.8%) and a larger model size
(86.6M vs. 25.6M). We can see that ViT-B performs better than ResNet-50 on
the low-frequency components (Figure 1 (a)), but worse than ResNet-50 on the
high-frequency components (Figure 1 (b)), which supports our hypothesis.
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Motivated by the above observation, we study existing techniques for ViT
models from a frequency perspective, including knowledge distillation [37,54], ar-
chitecture design [21,40,13], and data augmentations [54,44], and provide some
useful insights which are beneficial to improving performance of ViT models.
Through extensive experiments, we find that i) knowledge distillation is helpful
to a ViT model using a CNN teacher in capturing high-frequency components of
the images; ii) compared to the original ViT [20], some advanced architectures
utilizing convolutional-like operation [21] or multi-scale feature maps [40,13] can
more effectively exploit high-frequency components of the images; iii) RandAug-
ment [14] is more helpful for catching high-frequency components of the images
than CutMix [70] and Mixup [73].

Furthermore, we propose to compensate for the insufficient capacity of ViT
models in capturing the high-frequency components of the images by directly
augmenting the high-frequency components via adversarial training [43,72]. Specif-
ically, we craft adversarial examples by altering clean images with high-frequency
perturbations, and jointly train ViT models over clean images and adversarial
examples. Our results indicate that this training strategy improves the perfor-
mance of the ViT model by compensating for its ability to capture the high-
frequency components of the images. Moreover, since adversarial perturbations
can naturally influence the high-frequency components in our case, we directly
use adversarial perturbations without high-frequency limitation, resulting in a
simple but effective method, named HAT, standing for improving ViT models on
the high-frequency components via adversarial training. Note that HAT does not
bring extra complexity during the inference stage or alter the model architecture.

Our main contributions are summarized as follows:

– Based on our frequency analysis, we validate that compared to CNN models,
ViT models are less effective in capturing the high-frequency components of
images, which may lead to the difficulty of training ViT models.

– We analyze the effects of existing techniques for improving the performance
of ViT models from a frequency perspective.

– We propose HAT, which improves the performance of ViT models by influ-
encing the high-frequency components of images directly.

– Our results on ImageNet classification and out-of-distribution data demon-
strate the superiority of HAT. We also find that pre-trained models with HAT

are beneficial to downstream tasks.

2 Related Work

Transformer Models in Vision Tasks. Transformer models [55] entirely rely
on the self-attention mechanism to build long-distance dependencies, which have
achieved great success in almost all natural language processing tasks [19,39,4].
Vision Transformer (ViT) [20] is one of the earlier attempts to introduce trans-
former models into vision tasks, which applies a pure transformer architecture on
non-overlapping image patches for image classification and has achieved state-of-
the-art accuracy. Since ViT models excel at capturing spatial information, they
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have also been extended to more challenging tasks, including object detection
[7,77,15], segmentation [52,50], image enhancement [9,66], and video process-
ing [75,71,61]. Besides, many efforts have been devoted to designing new ViT
architectures [21,40,13,32,59,69,60]. For example, Liu et al. [40] presented a hi-
erarchical architecture with shifted window based attention that can efficiently
extract multi-scale features; Yuan et al. [69] introduced outlook attention to
efficiently encode finer-level features and contexts into tokens.
Training Strategies for ViT Models. It is shown that training ViT models
is more challenging than training CNN models, and requires large-scale datasets
(e.g., ImageNet-22K [18] and JFT-300M [51]) to perform pre-training [20]. To
enable ViT to be effective on the smaller ImageNet-1K dataset [18], many train-
ing strategies have been explored. In [54,49], applying strong data augmentation
and model regularization makes a quick solution to this problem. Among them,
CutMix [70], Mixup [73], and RandAugment [14] are proven to be particularly
helpful [54]. Besides, some customized augmentations for training ViT models
are presented [10,59]. Utilizing a trained CNN teacher, knowledge distillation
(KD) [54,37] can significantly boost the performance of ViT models. There are
also some works solving this problem by using a better optimization strategy,
such as promoting patch diversification [24] and sharpness-aware minimizer [11].
Unlike these works, we focus on directly compensating for the ability of ViT
models in capturing the high-frequency components for better performance.

3 Revisiting ViT Models from a Frequency Perspective

To investigate ViT models from a frequency perspective, we use the discrete
Fourier transform (DFT) to evaluate the model performance on certain frequency
components of test samples [67]. Let x ∈ RH×W (omitting the dimension of
image channels) and y ∈ RC represent an image in the spatial domain and its
label vector, where C is the number of classes. We transform x to the frequency
spectrum by the DFT F : RH×W → CH×W and transform signals of the image
from frequency back to the spatial domain by the inverse DFT F−1 : CH×W →
RH×W . In this work, the low-frequency components are shifted to the center of
the frequency spectrum.

For a maskm ∈ {0, 1}H×W , the low-pass filteringMS
l and high-pass filtering

MS
h with the filter size S are formally defined as:

MS
l(x)=F−1(m⊙F(x)), where mi,j=

{
1, if min(|i−H

2 |, |j−
W
2 |)⩽ S

2
0, otherwise

, (1)

MS
h(x)=F−1(m⊙F(x)),where mi,j=

{
0, if min(|i−H

2 |, |j−
W
2 |)⩽ min(H,W )−S

2
1, otherwise

,

(2)

where ⊙ is element-wise multiplication and mi,j denotes the value of m at po-
sition (i, j). For images containing multiple color channels, the filtering operates
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Fig. 2: Comparison of ViT-B, ConViT-B, Twins-SVT-L, and Swin-B on low- and
high-pass filtered validation set with different filter sizes. The top-1 accuracy of
ViT-B, ConViT-B, Twins-SVT-L, and Swin-B on the ImageNet validation set
is 82.0%, 82.3%, 83.7%, and 83.5%, respectively.

on each channel independently. To make a comprehensive analysis, we evaluate
various ViT architectures and training strategies with different filter sizes based
on the ImageNet validation set. We provide the visualized examples in Figure 1.

Comparison of ViT and CNN Models. Firstly, we compare the performance
of ViT-B with ResNet-50 and ResNet-101, which are trained with the same data
augmentations. The plots in Figure 1(a) show that ViT-B surpasses ResNet on
the low-frequency components of images. However, although ViT-B achieves a
higher accuracy (82.0%) than ResNet-50 (79.8%) and ResNet-101 (81.6%) on
the original ImageNet validation set, its performance is lower than CNN models
on the high-frequency components of images, as shown in Figure 1(b). This
observation indicates that ViT models can capture the global contexts effectively,
but fails to well leverage local details compared to CNN models. It may be
because cascading self-attention blocks in ViT models is equivalent to repeatedly
applying a low-pass filter, corresponding to the theoretical justification in [58],
while CNN models utilizing convolution operations behave like a series of high-
pass filters [44] to catch more high-frequency components [57].

We further study the distillation method introduced in [54], i.e., transferring
the learned knowledge in a ViT model using a CNN teacher. We use a RegNetY-
16GF model [46] as a teacher with the hard-label distillation, and adopt all
settings in [54]. The results in Figure 1 show that the improvement of KD (from
82.0% to 83.6%) is primarily attributed to the stronger ability to exploit the high-
frequency components of images. It also confirms that there is a gap between the
abilities of ViT and CNN models in capturing the high-frequency components.

Various ViT Architectures. Recently, various ViT architectures are proposed
and show excellent results [21,40,13]. We compare ViT-B with three advanced
architectures, including ConViT-B [21], Twins-SVT-L [40], and Swin-B [13], with
a similar model size, and present a reason for the success of these architectures
from the frequency perspective. As shown in Figure 2, all architectures perform
similarly on the low-frequency components, while three advanced architectures
achieve higher accuracy than ViT-B on the high-frequency components. Our
results also provide evidence for the effects of the proposed components of these
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Fig. 3: Comparison of vanilla training and three data augmentations on low- and
high-pass filtered validation set with different filter sizes. The top-1 accuracy of
Vanilla, +CutMix, +Mixup, and +RandAugment on the ImageNet validation
set is 76.7%, 80.8%, 79.9%, and 78.8%, respectively.

recent architectures. Specifically, the convolutional-like operation in ConViT and
multi-scale feature maps in Swin Transformer and Twins-SVT can help the vision
transformer capture the high-frequency components.
Data Augmentations. As demonstrated in recent works [54,44], training ViT
models relies heavily on strong data augmentation. Compared to the vanilla
training, the improvements of the commonly used augmentations are significant,
including CutMix [70] (+4.1%), Mixup [73] (+3.2%), and RandAugment [14]
(+2.1%). We make a comparison between the effects of these three augmenta-
tions from the frequency perspective. The results are shown in Figure 3. We
can see that the ranking of these three augmentations w.r.t. improvements they
bring is CutMix > Mixup > RandAugment on the low-frequency components.
However, on the high-frequency components, the case is opposite: RandAugment
> Mixup > CutMix. Our observation reveals that CutMix can help ViT models
leverage the global context information of an image by removing a random region
and replacing it with a patch from another image. Moreover, it also indicates
that the transformations used in RandAugment can force the trained model to
pay more attention to high-frequency information.

4 The Proposed Method

In this section, we firstly describe the proposed HAT, and then demonstrate its
effects on ViT models via a case study.

4.1 Adversarial Training with High-frequency Perturbations

As demonstrated by the analysis in Section 3, the ability of ViT models to cap-
ture the high-frequency components is limited, and compensating for this limi-
tation is a key to boosting their performance. Therefore, different from previous
data augmentation methods, we propose to directly augment the high-frequency
components during the training stage. We alter the high-frequency components
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of training images by adding adversarial perturbations and training ViT mod-
els on these altered images. It corresponds to adversarial training [43,72] with
high-frequency perturbations and is stated formally below.

Given a ViT model f with the weights θ, fθ(x) denotes its softmax out-
put of the input sample x. Inspired by the min-max formulation of adversarial
training [43], the objective function of adversarial training with high-frequency
perturbations is as follows:

E(x,y)∼D

[
L
(
θ,x,y

)
+ max

||δ||∞⩽ϵ

(
αL

(
θ,x+MS

h(δ),y
)
+βLkl

(
θ,x+MS

h(δ),x
))]

,

(3)

where ϵ denotes the maximum perturbation strength. L(θ,x,y)=CE(fθ(x),y)
and Lkl(θ,x1,x2) =

1
2 [KL(fθ(x1), fθ(x2))+KL(fθ(x2), fθ(x1))], where CE(·)

Fig. 4: Heat maps of Fourier spec-
trum for natural images and adversar-
ial perturbations. They are obtained
by averaging over a batch of data.

and KL(·) calculate the cross-entropy
and the Kullback-Leibler divergence, re-
spectively. α and β are two hyper-
parameters. We use the high-pass filter-
ing MS

h with a given filter size to limit
the perturbations in the high-frequency
domain. Our experiments in Section 4.2
demonstrate that optimizing Eq. (3) can
compensate for the ability of the ViT
model to capture the high-frequency
components of images and thus improve
its performance.

Then, we notice that adversarial per-
turbations are naturally imposed on the
high-frequency components in our case [16,41]. It is validated in Figure 4 that
compared to natural images, adversarial perturbations show higher concentra-
tions in the high-frequency domain. Therefore, we directly use full-frequency
adversarial perturbations in our HAT with the below objective:

E(x,y)∼D

[
L
(
θ,x,y

)
+ max

||δ||∞⩽ϵ

(
αL

(
θ,x+δ,y

)
+βLkl

(
θ,x+δ,x

))]
. (4)

The inner maximization in Eq. (4) can be solved by project gradient descent
(PGD) for K steps [43]. Different from the standard PGD, following [76,22], we
accumulate the gradients of the model weights in each PGD step, and update
the parameters at once with the accumulated gradients. In this way, the pertur-
bations in each PGD step can be used for training. This procedure is detailed
in Algorithm 1 in Appendix C. Besides, to address the mismatched distribu-
tion between clean images and adversarial examples [65], we perform adversarial
training in some initial epochs (200 epochs in our setting) and train normally in
the rest epochs.
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Table 1: Comparison of the base-
line and adversarial training (AT)
with three types of perturba-
tions, where the case of using the
full-frequency perturbations corre-
sponds to the proposed HAT.

Training Strategy Top-1 ACC (%)

Baseline 82.0
+AT (Low-freq. Pert.) 81.9
+AT (High-freq. Pert.) 83.0
+AT (Full-freq. Pert.) 83.2
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Fig. 5: Comparison of the baseline and ad-
versarial training (AT) with three types of
perturbations on low- and high-pass filtered
validation set with different filter sizes.

4.2 A Case Study using ViT-B

To illustrate how the proposed method influences the ViT models, we conduct a
case study using ViT-B on ImageNet. For training ViT-B, we adopt the hyper-
parameters in [25] in all cases. Without considering our adversarial training,
these hyper-parameters result in a strong baseline with a 82.0% top-1 accuracy.
For our method, we set ϵ = 2/255, K = 3, and η = 1/255. The parameters α and
β are fixed at 3 and 0.01, respectively. We compare three types of adversarial
perturbations: low-frequency perturbations with the filter size 10, high-frequency
perturbations with the filter size 10, and full-frequency perturbations.

The results on the ImageNet validation set are shown in Table 1. We can see
that adversarial training with the high-frequency perturbations brings 1.0% gains
over the baseline. Figure 5 reveals the reason for that: the ability of ViT-B to
capture the high-frequency components of images is stronger than the baseline,
which exactly confirms our expectation. In contrast, there is no improvement for
the case of using low-frequency perturbations. For adversarial training with the
full-frequency perturbations, without the high-filter operation and setting the
filter size, it is more simple, but can also improve the performance of ViT-B. This
case study illustrates that using the full-frequency perturbations is a reasonable
choice for our HAT, which will be further verified in our below experiments.

5 Experiments

5.1 Experimental Setup

We evaluate the proposed method on ImageNet [18]. Our code is implemented
based on PyTorch [45] and the timm library [62]. We conduct experiments on
various model architectures: three variants of ViT [20] (ViT-T, ViT-S, and ViT-
B with 16×16 input patch size) following [54], three variants of Swin Transformer
[40] (Swin-T, Swin-S, and Swin-B), and two variants of VOLO [69] (VOLO-D1
and VOLO-D5). “T”, “S”, and “B” denote tiny, small, and base model sizes,
respectively. Following the standard training schedule, we train all models on
the ImageNet-1K training set for 300 epochs with strong data augmentation
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Table 2: Performance of various ViT architectures trained without and with the
proposed HAT on the ImageNet, ImageNet-Real, and ImageNet-V2 validation set.

Model Params FLOPs Test Size Top-1 Real Top-1 V2 Top-1

ViT-T
5.7M 1.6G 224

72.2 80.0 60.1
+HAT 73.3 81.1 61.0

ViT-S
22.1M 4.7G 224

80.1 85.7 68.2
+HAT 80.9 86.6 70.0

ViT-B
86.6M 17.6G 224

82.0 87.1 71.0
+HAT 83.2 87.9 72.6

Swin-T
28.3M 4.5G 224

81.2 86.8 70.5
+HAT 82.0 87.3 71.5

Swin-S
49.6M 8.7G 224

83.0 87.8 72.4
+HAT 83.3 87.7 72.8

Swin-B
87.8M 15.4G 224

83.5 87.9 72.9
+HAT 84.0 88.2 73.8

VOLO-D1
26.6M 6.8G 224

84.2 89.0 74.0
+HAT 84.5 89.2 74.9

VOLO-D1
26.6M 22.8G 384

85.2 89.6 75.6
+HAT 85.5 89.8 76.6

VOLO-D5
295.5M 69.0G 224

86.1 89.9 76.3
+HAT 86.3 90.2 76.8

VOLO-D5
295.5M 304G 448

87.0 90.6 77.8
+HAT 87.2 90.6 78.6

VOLO-D5
295.5M 412G 512

87.1 90.6 78.0
+HAT 87.3 90.7 78.7

(e.g., CutMix [70], Mixup [73], and RandAugment [14]) and model regularization
(e.g., stochastic depth [35] and weight decay [42]). Specifically, we use the hyper-
parameters in [25] for training ViT-B, and train ViT-T and ViT-S with the same
hyper-parameters except for throwing away EMA, resulting in strong baselines.
For training variants of Swin Transformer and VOLO, we follow the training
setup of the original paper [40,69] (including token labeling [37] for VOLO). The
default image resolution for these models is 224×224. We also finetune variants
of VOLO on larger image resolutions (384×384, 448×448, and 512×512).

For the proposed HAT, in all cases, the PGD learning rate η is 1/255, and the
parameters α and β are set to 3 and 0.01, respectively. We set the maximum
perturbation strength ϵ as 2/255 and the number of PGD steps K as 3 by
default. For VOLO-D5, the largest model in our experiments, we set K = 2
with ϵ = 1/255 to reduce the training time. For all ViT models, we adopt the
training strategy in Algorithm 1 in the first 200 epochs and perform normal
training in the rest 100 epochs. In our HAT, each PGD step requires one forward
and backward pass. Accordingly, for the whole training, HAT leads to about 1.7×
and 2.3× computation cost for K = 1 and K = 2, respectively.

5.2 Results on ImageNet Classification

Results of Various ViT Architectures. We present the results of variants of
ViT, Swin Transformer, and VOLO trained without and with our HAT in Table 2.
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Table 3: Comparison of HAT with
other training strategies. All re-
sults are based on the ImageNet-1K
training set and ViT-B. Results of
other methods are drawn from orig-
inal papers. The methods with blue
color mean self-supervised learning.

Method Top-1
Real
Top-1

V2
Top-1

Vallina 76.7 82.3 64.1
DeiT [54] 81.8 86.7 71.5
DeiT(+KD) [54] 83.4 88.3 73.2
PyramidAT [33] 81.7 86.8 70.8
TransMix [10] 82.4 - -
SAM [11] 79.9 85.2 67.5
DINO [8] 82.8 - -
MoCo v3 [12] 83.2 - -
BEiT [1] 83.2 - -
MAE [25] 83.6 - -
HAT(ours) 83.2 87.9 72.6
HAT(+KD) 84.3 88.8 73.9

“Top-1”, “Real Top-1”, and “V2 Top-1”
refer to the top-1 accuracy evaluated on
the ImageNet [18], ImageNet-Real [2], and
ImageNet-V2 [48] validation set, respec-
tively, where ImageNet-Real is built by
relabeling the validation set of the orig-
inal ImageNet for correcting labeling er-
rors and ImageNet-V2 is a newly collected
version of the ImageNet validation set.

Note that these models in Table 2 are
with different architectures and sizes, and
the baselines are all carefully tuned with
various data augmentation and model reg-
ularization techniques. As can be seen,
HAT can steadily improve the performance
of all models. To be specific, we boost top-
1 accuracy on the ImageNet validation set
by 1.1%, 0.8%, and 1.2% for ViT-T, ViT-
S, and ViT-B, respectively. Even for Swin
Transformer and VOLO, more advanced
architectures, we can still consistently im-
prove the performance of their variants.
The performance gains of our method are preserved through finetuning at higher
resolutions. In particular, when the image resolution is 512×512, VOLO-D5 with
our HAT reaches a top-1 accuracy of 87.3% on the ImageNet validation set.
Comparison to Other Methods with ViT-B.We compare our proposed HAT

with other state-of-the-art training strategies in Table 3. We conduct these ex-
periments using ViT-B. Compared to DeiT [54] and TransMix [10], which utilize
data augmentations to empower ViT models, we achieve a significantly higher
top-1 accuracy. Most closely related to our work is pyramid adversarial training
(PyramidAT) [33], which leverages structured adversarial perturbations. How-
ever, due to a bigger number of PGD steps, its training cost is twice as high as
ours, but resulting in a lower top-1 accuracy than our HAT. Besides the super-
vised training methods, we also compare with the methods that pre-train on the
ImageNet-1K training set in a self-supervised manner and then perform super-
vised finetuning, including DINO [8], MoCo v3 [12], BEiT [1], and MAE [25].
Our HAT shows very competitive performance with them. Furthermore, combin-
ing the proposed HAT with knowledge distillation [54], we obtain the performance
of 84.3%, which is the highest top-1 accuracy among these methods.

5.3 Results on Out-of-distribution Data

We evaluate the proposed HAT on five out-of-distribution datasets: ImageNet-A
which contains 7,500 examples that are harder and may cause mistakes across
various models [31]; ImageNet-C [30] which applies a set of common visual cor-
ruptions to the ImageNet validation set; ImageNet-Sketch [56] which contains
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Table 4: Performance of various ViT architectures trained without and with the
proposed HAT on five out-of distribution datasets. Note that for mean Corruption
Error (mCE), lower is better. The test resolution of all below models is 224×224.

Model
ImageNet-A ImageNet-C Sketch Rendition Stylized

Top-1
+HAT

Top-1
mCE↓ +HAT

mCE↓ Top-1
+HAT

Top-1
Top-1

+HAT

Top-1
Top-1

+HAT

Top-1
ViT-T 7.7 7.3 70.0 66.8 19.8 22.9 31.9 35.8 9.5 12.5
ViT-S 18.5 23.1 53.3 49.7 29.3 32.3 41.6 45.1 15.8 18.1
ViT-B 25.3 30.6 46.4 42.2 36.1 38.5 49.6 51.3 21.8 24.7
Swin-T 22.1 25.7 58.0 53.9 28.5 31.0 41.4 43.8 13.1 13.8
Swin-S 32.7 34.6 51.8 48.6 32.7 33.9 45.2 46.5 14.2 15.1
Swin-B 35.8 40.0 51.7 46.9 32.2 36.4 45.8 49.0 15.7 16.4
VOLO-D1 39.0 42.9 46.8 43.7 38.5 39.5 50.3 51.9 19.2 21.2
VOLO-D5 50.9 54.5 41.8 38.4 44.3 45.7 57.9 59.7 24.6 25.9

sketch-like images and matches the ImageNet validation set in categories and
scale; ImageNet-Rendition [29], a 30,000 image test set containing various ren-
ditions (e.g., paintings, embroidery); Stylized ImageNet [23] which is a stylized
version of ImageNet created by applying AdaIN style transfer [36] to ImageNet
images. We report the top-1 accuracy on all datasets, except ImageNet-C where
we report the normalized mean Corruption Error (mCE) (lower is better) fol-
lowing the original paper [30].

The results are shown in Table 4. Note that all models are trained on the
ImageNet-1K training set and tested on these five out-of-distribution datasets.
As can be seen, our method can bring performance gains for all architectures,
demonstrating that HAT can enhance the robustness of ViT models to out-of-
distribution data. Accordingly, HAT breaks the trade-off between in-distribution
and out-of-distribution generalization [47,72], or in other words, it can achieve
better performance in these two cases simultaneously.

5.4 Transfer Learning to Downstream Tasks

ImageNet pre-training is widely used in various vision tasks [26]. For the down-
stream tasks, the backbones can be initialized by the model weights pre-trained
on ImageNet. In this section, we demonstrate that the advantages of HAT can
be transferred to the downstream tasks, including object detection, instance
segmentation, and semantic segmentation. More implementation details can be
found in Appendix D.
Object Detection and Instance Segmentation. We take three variants of
Swin Transformer trained without and with our HAT as pre-trained models to
evaluate the performance in object detection and instance segmentation. The
experiments are conducted on COCO 2017 [38] with the Cascade Mask R-CNN
object detection framework [5,27]. We present the results in Table 5. As can
be seen, HAT helps three variants of Swin Transformer achieve higher detection
performance. These results show that the superiority of HAT can be transferred
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Table 5: Object detection and instance segmentation performance of the models
pre-trained without and with HAT on COCO val 2017. We adopt the Cascade
Mask R-CNN object detection framework. APbox and APmask are box average
precision and mask average precision, respectively.

Backbone Params FLOPs APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

Swin-T
86M 745G

50.5 69.3 54.9 43.7 66.6 47.1
+HAT 50.9 69.4 55.6 43.9 66.8 47.3

Swin-S
107M 838G

51.8 70.4 56.3 44.7 67.9 48.5
+HAT 52.5 71.2 57.1 45.4 68.8 49.4

Swin-B
145M 982G

51.9 70.9 56.5 45.0 68.4 48.7
+HAT 52.8 71.5 57.5 45.6 69.1 49.6

Table 6: Semantic segmentation performance of the
models pre-trained without and with HAT on the
ADE20K validation set. We adopt the UperNet seg-
mentation framework. MS denotes testing with vari-
able input size.

Backbone Params FLOPs mIoU mIoU(MS) mAcc

Swin-T
60M 945G

44.5 46.1 55.6
+HAT 45.6 46.7 57.4

Swin-S
81M 1038G

47.6 49.5 58.8
+HAT 48.1 49.7 59.5

Swin-B
121G 1088G

48.1 49.7 59.1
+HAT 48.9 50.3 60.2

Table 7: Performance of
ViT-B trained with the
proposed HAT under dif-
ferent maximum pertur-
bation strength ϵ.

ϵ Top-1
Real

Top-1
V2

Top-1

1/255 83.1 87.8 72.4
2/255 83.2 87.9 72.6
3/255 83.1 88.0 72.5
4/255 83.1 87.9 72.5
5/255 83.0 87.9 72.3

to downstream tasks. Moreover, we would like to emphasize that HAT does not
introduce extra parameters or computation cost in inference.
Semantic Segmentation.We also use Swin Transformer to evaluate the perfor-
mance in semantic segmentation. We report results on the widely-used segmen-
tation benchmark ADE20K [74] with the UperNet [64] segmentation framework.
The results are shown in Table 6. We can see that HAT brings significant gains
for these three variants. Especially for Swin-T and Swin-S, the improvements of
HAT are more than 1.0% mIOU. These results further show the benefits of our
proposed HAT to downstream tasks.

5.5 Ablation Studies

Ablation on Maximum Perturbation Strength. We ablate the effects of
the maximum perturbation strength ϵ, where a larger ϵ indicates stronger adver-
sarial examples for the adversarial training. We test HAT with ϵ ∈ {1/255, 2/255,
3/255, 4/255, 5/255}. Correspondingly, we set the number of PGD steps as
K ∈ {2, 3, 4, 5, 6}. The PGD learning rate η is fixed at 1/255. The results are
shown in Table 7. We can see that HAT can achieve superior performance when



Improving Vision Transformers by Revisiting High-frequency Components 13

1/8 1/4 1/2 1
Size of Training Set

50

60

70

80
Ac

cu
ra

cy
 (%

)

+7.1

+4.7

+2.2

+1.2

+HAT
Baseline

Fig. 6: Performance of
ViT-B trained without
and with the proposed
HAT on various sizes of
training sets.

Fig. 7: Fourier heat maps of ViT-B trained without
and with HAT. The Fourier heat map reflects the sen-
sitivity of a model to high- and low-frequency cor-
ruptions. Error rates are averaged over the entire
ImageNet validation set.

ϵ is set as 2/255 or 3/255. It demonstrates that medium strength adversarial
examples are more helpful for training ViT models than weaker or stronger ad-
versarial examples. This ablation study and other experiments in this paper
verify that ϵ = 2/255 and K = 3 are reasonable choices in most cases.
Scaling the Training Set Size. HAT In this part, we investigate the effects of
with various training set sizes. Specifically, we experiment on training sets with
different sizes by randomly sampling 1/8, 1/4, and 1/2 images from the original
ImageNet-1K training set, resulting in training sets with 16K, 32K, and 64K
samples. Then, we train ViT-B on these datasets without and with the proposed
HAT and evaluate on the original ImageNet validation set. The comparison is
presented in Figure 6. It is shown that HAT can improve the performance of ViT-
B under all sizes of the training set. Especially for the small-scale training set,
HAT brings more gains, e.g., +7.1 for the smallest training set. It may be because
the insufficient ability of ViT models to capture high-frequency components is
amplified on the small-scale dataset and the effectiveness of HAT on compensating
for this ability is more significant in this case. In short, our results illustrate that
HAT enables ViT models to handle the small-scale training set better.

5.6 Discussions

Fourier Heat Maps of ViT Models. We investigate the effects of HAT on the
model sensitivity to low- and high-frequency corruptions. We adopt the Fourier
heat map [67], which visualizes the error rates of a model tested on perturbed
images with additive Fourier basis noise. We fix ℓ2-norm of the additive noise
as 15.7 and average the error rates over the entire ImageNet validation set.
Following [67], we present the 63×63 square centered at the lowest frequency in
the Fourier domain. The Fourier heat maps of ViT-B trained without and with
HAT are shown in Figure 7. As we can see, the baseline model is highly sensitive
to additive noise in the high-frequency. In contrast, the model trained with HAT

is more robust to the noise, especially in the high-frequency.
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Table 8: Comparison of HAT and longer
normal training with ViT-B under vari-
ous computational costs.

Cost
Normal Training +HAT

Setting Top-1 Setting Top-1

1× 300 epochs 82.0 - -
1.7× 500 epochs 82.5 K=2 83.1
2.3× 690 epochs 82.4 K=3 83.2

Table 9: Performance of CNN (ResNet-50)
and MLP (ViP-Small/7) models trained
without and with the proposed HAT.

Model Top-1 Real Top-1 V2 Top-1

ResNet-50 79.8 86.9 70.7
+HAT 80.2 87.2 71.3

ViP-Small/7 81.6 85.5 67.8
+HAT 82.2 86.1 69.6

Longer Normal Training. To further verify the effectiveness of HAT, we in-
crease the number of epochs of normal training to match the computational cost
of HAT. The results are presented in Table 8. We can see that 500 epochs are
enough for the normal training to converge, and HAT surpasses normal training
under 1.7× and 2.3× cost.
Beyond ViT Models. We explore the performance of HAT on the CNN and
MLP models. We conduct experiments on ResNet-50 [28] and ViP-Small-7 [34].
We train ResNet-50 for 800 epochs following the setup in [63] and ViP-Small-7
for 300 epochs following the setup in [34]. For our HAT, we perform adversarial
training in the first 600 epochs for ResNet-50 and in the first 200 epochs for
ViP-Small-7, and keep other settings unchanged. The results in Table 9 show
that HAT brings improvements of 0.4% and 0.6% for ResNet-50 and ViP-Small-
7, respectively. Therefore, the proposed training strategy is promising to be
extended to other models.

6 Conclusions and Future Work

In this paper, we study ViT models from a frequency perspective. We find that
compared to CNN models, ViT models can not well exploit the high-frequency
components of images. We also present a new frequency analysis of existing
techniques for improving the performance of ViT models. To compensate for
this insufficient ability of ViT models, we propose HAT, a simple but effective
training strategy based on adversarial training. Extensive experiments verify its
effectiveness on diverse benchmarks.

Despite achieving higher performance, HAT has an increased training time
compared to the normal training. Therefore, a future study is to improve the
efficiency of the proposed HAT. Also, the insights provided in this paper further
prompt us to explore other techniques to compensate for the ability of ViT
models to capture the high-frequency components of images.
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