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Abstract. Binary Neural Networks (BNNs) show great promise for real-
world embedded devices. As one of the critical steps to achieve a power-
ful BNN, the scale factor calculation plays an essential role in reducing
the performance gap to their real-valued counterparts. However, existing
BNNs neglect the intrinsic bilinear relationship of real-valued weights
and scale factors, resulting in a sub-optimal model caused by an in-
sufficient training process. To address this issue, Recurrent Bilinear
Optimization is proposed to improve the learning process of BNNs
(RBONNs) by associating the intrinsic bilinear variables in the back
propagation process. Our work is the first attempt to optimize BNNs
from the bilinear perspective. Specifically, we employ a recurrent opti-
mization and Density-ReLU to sequentially backtrack the sparse real-
valued weight filters, which will be sufficiently trained and reach their
performance limits based on a controllable learning process. We obtain
robust RBONNs, which show impressive performance over state-of-the-
art BNNs on various models and datasets. Particularly, on the task of
object detection, RBONNs have great generalization performance. Our
code is open-sourced on https://github.com/SteveTsui/RBONN.

Keywords: Binary neural network, Bilinear optimization, Image clas-
sification, Object detection

1 Introduction

Computer vision has been rapidly promoted, with the widespread application
of convolutional neural networks (CNNs) in image classification [37,8], seman-
tic segmentation [9], and object detection [6,22]. It does, however, come with
a huge demand for memory and computing resources. These computation and
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Fig. 1. An illustration of the RBONN framework. Conventional gradient-based algo-
rithms assume that the hidden variables in bilinear models are independent, which
causes an insufficient training of w due to neglecting the relationship with A as shown
in the loss surface (right part). Our RBONN can help w escape from local minima
(green dotted line) and achieve a better solution (red dotted line).

memory costs are incompatible with the computing capabilities of devices, par-
ticularly those with low resources, e.g., mobile phones and embedded devices.
As a result, substantial research has been invested to reduce storage and compu-
tation cost. To accomplish this, a number of compression methods for efficient
inference have been proposed, including network pruning [15,13,16], low-rank
decomposition [5,20], network quantization [34,29,18], and knowledge distilla-
tion [36]. Network quantization, for example, is particularly well suited for using
on embedded devices since it decreases the bit-width of network weights and
activations. Binarization, a particularly aggressive kind of quantization, reduces
CNN parameters and activations into 1 bit, reducing memory usage by 32× and
calculation costs by 58× [34]. Binarized neural networks (BNNs) are employed
for a wide range of applications, such as image classification [34,29,28], object
detection [41,43] and point cloud recognition [42]. With high energy-efficiency,
they are potent to be directly applied on AI chips. However, due to the limited
representation capabilities, BNNs’ performance remains considerably inferior to
that of their real-valued counterparts.

Previous methods [10,24] compute scale factors by approximating the real-
valued weight filter w such that w ≈ α ◦ bw, where α ∈ R+ is the scale factor
(vector) and bw = sign(w) to enhance the representation capability of BNNs. In
essence, the approximation can be considered as a bilinear optimization problem
with the objective function as

argmin
w,α

G(w, α) = ∥w − α ◦ bw∥22 +R(w),

or

argmin
w,A

G(w,A) = ∥bw −Aw∥22 +R(w), (1)
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where A = diag( 1
α1

, · · · , 1
αN

), N is the number of elements in α. ◦ denotes
the channel-wise multiplication, and R(·) represents the regularization, typically
the ℓ1 or ℓ2 norm. G(w,A) includes a bilinear form of Aw widely used in the
field of computer vision [4,30,14]. Note that the bilinear function is Aw rather
than G(w,A) in Eq. 1. Eq. 1 is rational for BNNs with A and w as bilinear
coupled variables, since w is the variable and bw is just the sign of w. However,
such bilinear constraints will lead to an asynchronous convergence problem and
directly affect the learning process of A and w. We can know that the variable
with a slower convergence speed (usually w) is not as sufficiently trained
as another faster one. Moreover, BNNs are based on non-convex optimization,
and will suffer more from local minima problem due to such an asynchronous
convergence. A powerful instance is that w will tendentiously fall into the local
optimum with low magnitude when the magnitude of A is much larger than 0
(due to bw ∈ {−1,+1}). On the contrary, w will have a large magnitude and
thus slowly converge when elements of A are close to 0.

In this paper, we introduce a recurrent bilinear optimization for binary neural
networks (RBONNs) by learning the coupled scale factor and real-valued weight
end-to-end. More specifically, recurrent optimization can efficiently backtrack
the weights, which will be more sufficiently trained than conventional methods.
To this end, a Density-ReLU (DReLU) is introduced to activate the optimization
process based on the density of the variableA. In this way, we achieve a controlled
learning process with a backtracking mechanism by considering the interaction
of variables, thus avoiding the local minima and reaching the performance limit
of BNNs, as shown in Fig. 1. Our contributions can be summarized as

– We are the first attempt to address BNNs as a bilinear optimization problem.
A recurrent bilinear optimization is introduced for BNNs (RBONNs), which
can more sufficiently train BNNs and approach its performance limit.

– A Density-ReLU (DReLU) is introduced to activate the optimization process
based on the interaction of BNN variables, which can efficiently improve the
training process of BNNs.

– Extensive experiments show that the proposed RBONN outperforms state-
of-the-art BNNs on a variety of tasks, including image classification and
object detection. For instance, on ImageNet, the 1-bit ResNet-18 achieved
by RBONN obtains 66.7% Top-1 accuracy, outperforming all prior BNNs
and achieving a new state-of-the-art.

2 Related Work

Bilinear Models in Deep Learning. Under certain circumstances, bilinear
models can be used in CNNs. One important application, network pruning, is
among the hottest topics in the deep learning community [21,30]. The vital
feature maps and related channels are pruned using bilinear models [30]. Iterative
methods, e.g., the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
[21] and the Accelerated Proximal Gradient (APG) [14] can be used to prune
bilinear-based networks. Many deep learning applications, such as fine-grained
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categorization [23,17], visual question answering (VQA) [46], and person re-
identification [39], are promoted by embedding bilinear models into CNNs, which
model pairwise feature interactions and fuse multiple features with attention.
Binary Neural Network. Based on BinaryConnect, BinaryNet [3] trains CNNs
with binary parameters. By binarizing the weights and inputs of the convolution
layer, the XNOR-Net [34] improves the efficiency of CNNs. Based on a discrete
backpropagation process, a binarization approach is proposed in [10] to learn
improved BNNs.

ReActNet [28] substitutes the traditiona sign function and PReLU [11] with
RSign and RPReLU based on learnable thresholds, resulting in improved BNN
performance. RBNN [19] rotates the real-valued weights for fruitful information,
thus improving the feature representation of BNNs. SLB [45] introduces the NAS
[26] into the binarization of weights.

Unlike prior work, our work is the first attempt to solve BNNs as a bilin-
ear optimization problem. We achieve training BNNs sufficiently to bridge the
performance gap between them and their real-valued equivalents.

3 Methodology

In this section, we describes RBONN in detail. We first describe the bilinear
model of BNNs, then introduce a recurrent bilinear optimization method to
calculate BNNs, followed by a summary of the whole training process. For a
better presentation of our approach, we first briefly describe the preliminaries.

3.1 Preliminaries

In a specific convolution layer, w ∈ RCout×Cin×K×K , ain ∈ RCin×Win×Hin , and
aout ∈ RCout×Wout×Hout represent its weights and feature maps, where Cin and
Cout represents the number of channels. (H,W ) are the height and width of the
feature maps, and K denotes the kernel size. We then have

aout = ain ⊗w, (2)

where ⊗ is the convolution operation. We omit the batch normalization (BN)
and activation layers for simplicity. The 1-bit model aims to quantize w and
ain into bw ∈ {−1,+1}Cout×Cin×K×K and bain ∈ {−1,+1}Cin×Win×Hin using
the efficient XNOR and Bit-count operations to replace real-valued operations.
Following [34], the forward process of the BNN is

aout = bain ⊙ (A−1bw), (3)

where ⊙ denotes the efficient XNOR and Bit-count operations. We divide the
data flow in BNNs into units for detailed discussions. In BNNs, the original out-
put aout is first scaled by a channel-wise scale factor (matrix) A = diag( 1

α1
, · · · ,

1
αCout

) ∈ RCout×Cout
+ to modulate the amplitude of full-precision counterparts. It

then enters several non-linear layers, e.g., BN layer, non-linear activation layer,
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and max-pooling layer. We omit these for simplification. And then, the output is
aout via the sign function. Then, baout can be utilized for the efficient operations
of the next layer.

3.2 Bilinear Model of BNNs

We formulate the optimization of BNNs as

argmin
w,A

LS(w,A) + λG(w,A), (4)

where λ is the hyper-parameter. G contains the bilinear part as mentioned in
Eq. 1. w and A formulate a pair of coupled variables. Thus, the conventional
gradient descent method can be used to solve the bilinear optimization problem
as

At+1 = |At − η1
∂L

∂At
|, (5)

(
∂L

∂At
)T = (

∂LS

∂At
)T + λ(

∂G

∂At
)T ,

= (
∂LS

∂at
out

∂at
out

∂At
)T + λwt(Atwt − bwt

)T ,

= (
∂LS

∂at
out

)T (bat
in ⊙ bwt

)(At)−2 + λwtĜ(wt,At),

(6)

where η1 is the learning rate, Ĝ(wt,At) = (Atwt−bwt

)T . Conventional gradient
descent algorithm for bilinear models iteratively optimizes one variable while
keeping the other fixed. This is actually a sub-optimal solution due to ignoring
the relationship of the two hidden variables in optimization. For example, when
w approaches zero due to the sparsity regularization term R(w), A will have
a larger magnitude due to G (Eq. 1). Consequently, both the first and second
values of Eq. 6 will be suppressed dramatically, causing the gradient vanishing
problem for A. Contrarily, if A changes little during optimization, w will also
suffer from the vanished gradient problem due to the supervision of G, causing
a local minima. Due to the coupling relationship of w and A, the gradient
calculation for w is challenging.

3.3 Recurrent Bilinear Optimization

We solve the problem in Eq. 1 from a new perspective that w and A are coupled.
We aim to prevent A from going denser and w from going sparser, as analyzed
above. Firstly, based on the chain rule and its notations in [32], we have the
scalar form of the update rule for ŵi,j as

ŵt+1
i,j = wt

i,j − η2
∂LS

∂wt
i,j

− η2λ(
∂G

∂wt
i,j

+ Tr((
∂G

∂At
)T

∂At

∂wt
i,j

)),

= wt+1
i,j − η2λTr(w

tĜ(wt,At)
∂At

∂wt
i,j

),

(7)
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which is based on wt+1
i,j = wt

i,j−η2
∂L

∂wt
i,j
. ŵt+1 denotes w at the t+1-th iteration

when considering the coupling of w and A. When computing the gradient of
the coupled variable w, the gradient of its coupled variable A should also be
considered using the chain rule. Vanilla wt+1 denotes the computed w at t +
1-th iteration without considering the coupling relationship. Here we denote
I = Cout and J = Cin × K × K for simplicity. With writing w into a row
vector [w1, · · · ,wI ]

T and writing Ĝ into a column vector [ĝ1, · · · , ĝI ] and using
i = 1, · · · , I and j = 1, · · · , J , we can see that Ai,i and wnj are independent
when ∀n ̸= j. Omitting superscript ·t, we have the i-th component of ∂A

∂w as

(
∂A
∂w

)i =


0 ... . ... 0
. . .

∂Ai,i

∂wi,1
...

∂Ai,i

∂wi,j
...

∂Ai,i

∂wi,J

. . .
0 ... . ... 0

 , (8)

we can derive

wĜ(w,A) =


w1ĝ1 ... w1ĝi ... w1ĝI
. . .
. . .
. . .

wI ĝ1 ... wI ĝi ... wI ĝI

 . (9)

Combine Eq. 8 and Eq. 9, we get

wĜ(w,A)(∂A
∂w

)i =


w1ĝi

∂Ai,i

∂wi,1
... . ... w1ĝi

∂Ai,i

∂wi,j

. . .

wiĝi
∂Ai,i

∂wi,1
... . ... wiĝi

∂Ai,i

∂wi,J

. . .

wI ĝi
∂Ai,i

∂wi,1
... . ... wI ĝi

∂Ai,i

∂wiJ

 . (10)

After that, the i-th component of the trace item in Eq. 7 is then calculated by:

Tr[wĜ(
∂A
∂w

)i] = wiĝi

J∑
j=1

∂Ai,i

∂wi,j
(11)

Combining Eq. 7 and Eq. 11, we can get

ŵt+1 = wt+1 − η2λ


ĝt1

∑J
j=1

∂At
1,1

∂wt
1,j

.

.

.

ĝtI
∑J

j=1

∂At
I,I

∂wt
I,j

⊛


wt

1

.

.

.
wt

I


= wt+1 + η2λd

t ⊛wt,

(12)

where η2 is the learning rate of real-valued weight filters wi, ⊛ denotes the

Hadamard product. We take dt = −[ĝt1
∑J

j=1

∂At
1,1

∂wt
1,j

, · · · , ĝtI
∑J

j=1

∂At
i,i

∂wt
I,j

]T , which
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is unsolvable and undefined in the back propagation of BNNs. To address this
issue, we employ a recurrent model to approximate dt and have

ŵt+1 = wt+1 + U t ◦DReLU(wt,At), (13)

and

wt+1 ← ŵt+1, (14)

where we introduce a hidden layer with channel-wise learnable weights U ∈ RCout
+

to recurrently backtrack the w. To realize a controllable recurrent optimization,
we present DReLU to supervise such an optimization process. We channel-wise
implement DReLU as

DReLU(wi,Ai) =

{
wi if (¬D(w′

i)) ∧D(Ai) = 1,

0 otherwise,
(15)

where w′ = diag(∥w1∥1, · · · , ∥wCout∥1). And we judge when an asynchronous
convergence happens in the optimization based on (¬D(w′

i))∧D(Ai) = 1, where
the density function is defined as

D(xi) =

{
1 if ranking(σ(x)i)>T ,
0 otherwise,

(16)

where T is defined by T = int(Cout × τ). τ is the hyper-parameter denoting
the threshold. σ(x)i denotes the i-th eigenvalue of diagonal matrix x, and xi

denotes the i-th row of matrix x. Finally, we define the optimization of U and
as

U t+1 = |U t − η3
∂L

∂U t
|, (17)

∂L

∂U t
=

∂LS

∂wt
◦DReLU(wt−1,At), (18)

where η3 is the learning rate of U . We elaborate on the training process of
RBONN outlined in Algorithm 1.

3.4 Discussion

In this section, we first review the related methods on “gradient approximation”
of BNNs, and then further discuss the difference of RBONN with the related
methods and analyze the effectiveness of the proposed RBONN.

In particular, BNN [3] directly unitize the Straight-Through-Estimator in
training stage to calculate the gradient of weights and activations as

∂bwi,j

∂wi,j
= 1|wi,j |<1,

∂bai,j

∂ai,j
= 1|ai,j |<1 (19)
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Algorithm 1 RBONN training.

Input: a minibatch of inputs and their labels, real-valued weights w, recurrent model
weights U , scale factor matrix A, learning rates η1, η2 and η3.
Output: updated real-valued weights wt+1, updated scale factor matrix At+1, and
updated recurrent model weights U t+1.

1: while Forward propagation do

2: bwt

← sign(wt).

3: bat
in ← sign(at

in).
4: Features calculation using Eq. 3
5: Loss calculation using Eq. 4
6: end while
7: while Backward propagation do
8: Computing ∂L

∂At ,
∂L
∂wt , and

∂L
∂Ut using Eq. 6 , 7 and 18.

9: Update At+1, wt+1, and U t+1 according to Eqs. 5, 13, and 17, respectively.
10: end while

which suffers from an obvious gradient mismatch between the gradient of the
binarization function. Intuitively, Bi-Real Net [29] designs an approximate bi-
narization function can help to relieve the gradient mismatch in the backward
propagation as

∂bai,j

∂ai,j
=

1.2 + 2ai,j , −1 ≤ ai,j < 0,
2− 2ai,j , 0 ≤ ai,j < 1,
10, otherwise,

(20)

which is termed as ApproxSign function and used for back-propagation gradient
calculation of the activation. Compared to the traditional STE, ApproxSign has
a close shape to that of the original binarization function sign, and thus the
activation gradient error can be controlled to some extent. Likewise, CBCN [25]
applies an approximate function to address the gradient mismatch from the
sign function. MetaQuant [1] introduces Metalearning to learning the gradient
error of weights by a neural network. The IR-Net [33] includes a self-adaptive
Error Decay Estimator (EDE) to reduce the gradient error in training, which
considers different requirements on different stages of the training process and
balances the update ability of parameters and reduction of gradient error. RBNN
[19] proposes a training-aware approximation of the sign function for gradient
backpropagation.

In summary, prior arts focus on approximating the gradient derived from
∂ba

∂ai,j
or ∂bw

∂wi,j
. Differently, our approach focuses on a different perspective of

gradient approximation, i.e., gradient from ∂G
∂wi,j

. Our goal is to decouple A and

w to improve the gradient calculation of w. RBONN manipulates w’s gradient

from its bilinear coupling variable A (∂G(A)
∂wi,j

). More specifically, our RBONN

can be combined with prior arts, by comprehensively considering ∂LS

∂ai,j
, ∂LS

∂wi,j

and ∂G
∂wi,j

in the back propagation process.
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4 Experiments

Our RBONNs are evaluated first on image classification and then on object
detection tasks. First, we introduce the implementation details of RBONNs.
Then we validate the effectiveness of components in the ablation study. Finally,
we illustrate the superiority of RBONNs by comparing our method with state-
of-the-art BNNs on various tasks.

4.1 Datasets and Implementation Details

Datasets. For its huge scope and diversity, the ImageNet object classification
dataset [37] is more demanding, which has 1000 classes, 1.2 million training
photos, and 50k validation images.

Natural images from 20 different classes are included in the VOC datasets.
We use the VOC trainval2007 and VOC trainval2012 sets to train our model,
which contains around 16k images, and the VOC test2007 set to evaluate our
IDa-Det, which contains 4952 images. We utilize the mean average precision
(mAP) as the evaluation matrices, as suggested by [6].

The COCO dataset includes images from 80 different categories. All of our
COCO dataset experiments are performed on the object detection track of the
COCO trainval35k training dataset, which consists of 80k images from the
COCO train2014 dataset and 35k images sampled from the COCO val2014

dataset. We report the average precision (AP) for IoUs∈ [0.5 : 0.05 : 0.95], desig-
nated as mAP@[.5, .95], using COCO’s standard evaluation metric. For further
analyzing our method, we also report AP50, AP75, APs, APm, and APl.

Implementation Details. PyTorch [31] is used to implement RBONN. We
run the experiments on 4 NVIDIA GTX 2080Ti GPUs with 11 GB memory.
Following [29], we retain the first layer, shortcut, and last layer in the networks
as real-valued. We modify the architecture of the BNNs with extra shortcuts,
and PReLU [11] following [29] and [10], respectively.

For the image classification task, ResNets [12] and ReActNets [28] are em-
ployed as the backbone networks to build our RBONNs. We offer two implemen-
tation setups for fair comparison. First, we use one-stage training on ResNets,
using Adam as the optimization algorithm, and a weight decay of 1e−5. η1 and
η2 are both set to 1e−3. η3 is set as 1e−4. The learning rates are optimized
by the annealing cosine learning rate schedule. The number of epochs is set as
200. Then, we employ two-stage training on ReActNets following [28]. Each
stage counts 256 epochs. Thus the number of epochs is set as 512. In this im-
plementation, Adam is selected as the optimizer. And the network is supervised
by real-valued ResNet-34 teacher. The weight decay is set following [28]. The
learning rates {η1, η2, η3} are set as {1e−3, 1e−4, 1e−4} respectively and annealed
to 0 by linear descent.

We use the Faster-RCNN [35] and SSD [27] detection frameworks, which are
based on ResNet-18 [12] and VGG-16 [38] backbone, respectively, to train our
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Fig. 2. Effect of hyper-parameters λ and τ
on one-stage and two-stage training using
1-bit ResNet-18.

RBONN for the object detection
task. We pre-train the backbone for
image classification using ImageNet
ILSVRC12 [37] and fine-tune the de-
tector on the dataset for object detec-
tion. For SSD and Faster-RCNN, the
batch size is set to 16 and 8, respec-
tively, with applying SGD optimizer.
Both η1 and η2 are equal to 0.008. The
value of η3 is set to 0.001. We use the
same structure and training settings
as BiDet [41] on the SSD framework.

4.2 Ablation Study

Hyper-parameter λ and τ . The most important hyper-parameter of RBONN
are λ and τ , which control the proportion of LR and the threshold of backtracking
in recurrent bilinear optimization. On ImageNet for 1-bit ResNet-18, the effect
of hyper-parameters λ and τ is evaluated under both one-stage and two-stage
training. RBONN’s performance is demonstrated in Fig. 2, where λ is varied
from 1e−3 to 1e−5 and τ is varied from 1 to 0.1. As can be observed, with λ
reducing, performance improves at first before plummeting. When we increase
τ in both implementations, the same trend emerges. As demonstrated in Fig.
2, when λ is set to 1e−4 and τ is set to 0.6, 1-bit ResNet-18 generated by our
RBONN gets the best performance. As a result, we apply this set of hyper-
parameters to the remaining experiments in this paper. Note that the recurrent
model does not effect when τ is set as 1.
Weight and Scale factor Distribution. We first analyze the weight distri-
bution of training ReActNet [28] and RBONN for comparison to analyze the
sparsity of w. For a 1-bit ResNet-18, we analyze the 1-st and 6-th 1-bit convo-
lution layer of ResNet-18. The distribution of weights (before binarization) for
ReActNet and our RBONN is shown in the left section of Fig. 3. The weight
values for ReActNet can be seen to be closely mixed up around the zero centers,
and the value magnitude remains sparse. Thus the binarization results are far
less robust to any possible disturbance. In contrast, our RBONN gains weight
forming a bi-modal distribution, which achieves its robustness against distur-
bances. Moreover, we plot the distribution of non-zero elements in scale matrix
A in the right part of Fig. 3. The scale values of our RBONN is less dense com-
pared with ReActNet. Thus, the result demonstrates that our RBONN prevents
A from going denser and w from going sparser, which validates our motivation.

4.3 Image Classification

We first show the experimental results on ImageNet with ResNet-18 [12] back-
bone in Tab. 1. We compare RBONN with BNN [2], XNOR-Net [34], Bi-Real Net
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(a) Weight distribution (b) Scale matrix distribution

Fig. 3. Weight (red) and scale matrix (blue) distribution of the RBONN and ReActNet
in 1-bit ResNet-18 with two-stage training.

[29], IR-Net [33], BONN[47], RBCN [24], and RBNN [19]. We also report mult-
bit DoReFa-Net [48], and TBN [40] for further reference. RBONN outperforms
all of the evaluated binary models in both Top-1 and Top-5 accuracy, as shown
in Tab. 1. RBONN achieves 61.4% and 83.4% in Top-1 and Top-5 accuracy us-
ing ResNet-18, respectively, with 1.8% and 1.9% increases over state-of-the-art
RBNN. In this paper, we use memory usage and OPs following [29] in compari-
son to other tasks for further reference. We also analyze the inference speed on
hardware in Sec. 4.5.

Furthermore, we compare with ReActNet [28] using the same architecture. It
uses full-precision parameters, data augmentation, knowledge distillation, and a
computationally intensive two-step training setting with 512 epochs in total. We
use the same implementation as [28] to evaluate our RBONN to ReActNet. As
shown in Tab. 2, our method still achieves an impressive 0.8% Top-1 accuracy
improvement on the same ResNet-18 backbone, which verifies the effectiveness
of our method. Also, our method outperforms state-of-the-are ReCU [44] by
0.3% Top-1 accuracy. Moreover, we evaluate the performance of our RBONN
on another strong backbone, i.e,, ReActNet-A. Our strategy improves Top-1
accuracy by 1.2% on ReActNet-A, which is substantial on the ImageNet dataset
classification challenge.

In a word, when compared to several BNNmethods, our RBONN achieves the
best performance on the large-scale ImageNet dataset, proving that our method
achieves a new state-of-the-art on image classification tasks.

4.4 Object Detection

PASCAL VOC. On the PASCAL VOC datasets, we compare the proposed
RBONN against existing state-of-the-art BNNs, such as XNOR-Net [34], Bi-
Real-Net [29], and BiDet [41], on the same framework for object detection.
The detection result of multi-bit quantized networks DoReFa-Net [48] is also
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Network Method W/A
OPs

(×108) Top-1 Top-5

ResNet-18

Real-valued 32/32 18.19 69.6 89.2
DoReFa-Net 1/4 2.44 59.2 81.5

TBN 1/2 1.81 55.6 79.0
BNN

1/1 1.63

42.2 67.1
XNOR-Net 51.2 73.2
Bi-Real Net 56.4 79.5

IR-Net 58.1 80.0
BONN 59.3 81.6
RBCN 59.5 81.6
RBNN 59.6 81.6

RBONN 61.4 83.5
Table 1. A performance comparison with SOTAs on ImageNet with one-stage training.
W/A denotes the bit length of weights and activations. We report the Top-1 (%) and
Top-5 (%) accuracy performances.

Network Method W/A OPs(×108) Top-1 Top-5

ResNet-18
Real-valued 32/32 18.19 69.6 89.2
ReActNet

1/1 1.63
65.9 -

ReCU 66.4 86.5
RBONN 66.7 87.0

ReActNet-A
Real-valued 32/32 48.32 72.4 -
ReActNet

1/1 0.87
69.4 -

RBONN 70.6 89.0
Table 2. A performance comparison with ReActNet [28] on ImageNet using two-stage
training. W/A denotes the bit length of weights and activations. We report the Top-1
(%) and Top-5 (%) accuracy performances.

reported. In Tab. 3, we show the results for 1-bit Faster-RCNN [35] on VOC
test2007 from lines 2 to 7. With 50.63× and 19.87× rate, our RBONN greatly
accelerates and compresses the Faster-RCNN with ResNet-18 backbone. We see
significant improvements with our RBONN over other methods as compared to
1-bit approaches. With the same memory utilization and FLOPs, our RBONN
outperforms XNOR-Net, Bi-Real-Net, and BiDet by 17.0%, 7.2%, and 5.9%
mAP, which is substantial on the object detection task.

For the SSD [27] with VGG-16 backbone, The bottom section in Tab. 3
shows that our RBONN can save the computation and storage by 14.76× and
4.81×, as compared to real-valued alternatives. The difference in performance is
rather slight (69.4% vs. 74.3%). Moreover, compared with other 1-bit SOTAs, our
RBONN’s performance stands out by a sizeable margin. For example, RBONN
surpasses BiDet by 3.4% with the same structure and compression.

COCO. Because of its size and diversity, the COCO dataset presents a greater
challenge than PASCAL VOC. On COCO, our RBONN is compared against
state-of-the-art BNNs such as XNOR-Net [34], Bi-Real Net [29], and BiDet [41].
We present the performance of the 4-bit DoReFa-Net [48] for comparison. Tab.
4 does not indicate memory use or FLOPs due to page width constraints. With
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Framework
Input

Resolution Backbone Method W/A
Memory Usage

(MB)
OPs

(×109) mAP

Faster-RCNN 1000×600 ResNet-18

Real-valued 32/32 47.48 434.39 74.6
DoReFa-Net 4/4 6.73 55.90 71.0
XNOR-Net

1/1 2.39 8.58

48.4
Bi-Real Net 58.2

BiDet 59.5
RBONN 65.4

SSD 300×300 VGG-16

Real-valued 32/32 105.16 31.44 74.3
DoReFa-Net 4/4 29.58 6.67 69.2
XNOR-Net

1/1 21.88 2.13

50.2
Bi-Real Net 58.2

BiDet 66.0
RBONN 69.4

Table 3. Comparison of memory usage, OPs, and mAP (%) with state-of-the-art BNNs
in SOTA binarized detection frameworks on VOC test2007.

Framework
Input

Resolution
Backbone Method

mAP
@[.5, .95]

AP50 AP75 APs APm AP1

Faster R-CNN 1000×600 ResNet-18

Real-valued 26.0 44.8 27.2 10.0 28.9 39.7
DeRoFa-Net 22.9 38.6 23.7 8.0 24.9 36.3
Xnor-Net 10.4 21.6 8.8 2.7 11.8 15.9

Bi-Real Net 14.4 29.0 13.4 3.7 15.4 24.1
BiDet 15.7 31.0 14.4 4.9 16.7 25.4

RBONN 20.6 37.3 19.9 7.4 21.3 32.8

SSD 300×300 VGG-16

Real-valued 23.2 41.2 23.4 5.3 23.2 39.6
DoReFa-Net 19.5 35.0 19.6 5.1 20.5 32.8
XNOR-Net 8.1 19.5 5.6 2.6 8.3 13.3
Bi-Real Net 11.2 26.0 8.3 3.1 12.0 18.3

BiDet 13.2 28.3 10.5 5.1 14.3 20.5
RBONN 17.4 33.2 16.4 5.3 17.1 26.7

Table 4. Comparison of mAP@[.5, .95](%), AP (%) with different IoU threshold and
AP for objects in various sizes with SOTA 1-bit detectors on COCO minival.

just different fully-connected layers, the COCO dataset’s practical memory uti-
lization and FLOPs are similar to those on VOC.

Compared to state-of-the-art XNOR-Net, Bi-Real Net, and BiDet, our method
enhances the mAP@[.5,.95] by 10.2%, 6.2%, and 4.9% using the Faster-RCNN
framework with the ResNet-18 backbone. Moreover, our RBONN clearly out-
performs competitors on other APs with various IoU thresholds. Our RBONN
achieves only 2.3% lower mAP than DeRoFa-Net, a quantized neural network
with 4-bit weights and activations. Our method yields a 1-bit detector with a per-
formance of only 5.4% mAP lower than the best-performing real-valued counter-
part (20.6% vs. 26.0%). Similarly, using the SSD300 framework with the VGG-16
backbone, our method achieves 17.4% mAP@[.5,.95], outperforming XNOR-Net,
Bi-Real Net, and BiDet by 9.3%, 6.2%, and 4.2% mAP, respectively.
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Network Method W/A Size (MB) Memory Saving Latency (ms) Acceleration

ResNet-18
Real-valued 32/32 46.8 - 1060.2 -
RBONN 1/1 4.2 11.1× 67.1 15.8×

SSD-VGG16
Real-valued 32/32 105.16 - 2788.7 -
RBONN 1/1 21.88 4.8× 200.5 13.9×

Table 5. Comparing RBONN with real-valued models on hardware (single thread).

In conclusion, our method outperforms previous BNN algorithms in the AP
with various IoU thresholds and AP for objects of various sizes on COCO,
demonstrating the method’s superiority and applicability in a wide range of
applications settings.

4.5 Deployment Efficiency

We implement the 1-bit models achieved by our RBONN on ODROID C4, which
has a 2.016 GHz 64-bit quad-core ARM Cortex-A55. With evaluating its real
speed in practice, the efficiency of our RBONN is proved when deployed into
real-world mobile devices. We leverage the SIMD instruction SSHL on ARM
NEON to make the inference framework BOLT [7] compatible with RBONN.
We compare RBONN to the real-valued backbones in Tab. 5. We can see that
RBONN’s inference speed is substantially faster with the highly efficient BOLT
framework. For example, the acceleration rate achieves about 15.8× on ResNet-
18, which is slightly lower than the theoretical acceleration rate discussed in Sec.
4.3. Furthermore, RBONN achieves 13.9× acceleration with SSD. All deployment
results are significant for the computer vision on real-world edge devices.

5 Conclusion

This paper proposed a new learning algorithm, termed recurrent bilinear opti-
mization, to efficiently calculate BNNs, which is the first attempt to optimize
BNNs from the bilinear perspective. Our method specifically introduces recur-
rent optimization to sequentially backtrack the sparse real-valued weight filters,
which can be sufficiently trained and reach their performance limit based on
a controllable learning process. RBONNs show strong generalization to gain
impressive performance on both image classification and object detection tasks,
demonstrating the superiority of the proposed method over state-of-the-art BNNs.
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