
[Supplementary Materials]
Neural Architecture Search for

Spiking Neural Networks

Youngeun Kim , Yuhang Li , Hyoungseob Park ,
Yeshwanth Venkatesha, and Priyadarshini Panda

Department of Electrical Engineering
Yale University

New Haven, CT, USA
{youngeun.kim, yuhang.li, hyoungseob.park,

yeshwanth.venkatesha, priya.panda}@yale.edu

A. Code Implementation

Code is available at Github URL. In Algorithm 1, we provide the pseudo code
for the overall flow of our search algorithm.

Cell representation. Like NAS-Bench101 [13], we represent a cell with a N×N
matrix whereN is the number of nodes. We use such matrix representation in our
code implementation. Fig. 1 shows a 4-node example. Each element of the matrix
represents the type of operations (shown in Fig. 5 of the main manuscript). A
cell always has a forward connection between Node 1 and Node 4 (the type of op-
eration is searched by NAS algorithm) for promoting the fast spike propagation
with a small number of timesteps.

Algorithm 1 main.py

search optimal architecture with given N samples
def find_best_neuroncell(N, trainset):

dict_net_score = {}
for i in range(N):

candidateNet = RandomNetGeneration()
score = candidateNet(trainset)
dict_net_score[score] = candidateNet

searchedNet = SelectMaxScoreNet(dict_net_score)
return searchedNet

training the founded model
for (batch, labels) in enumerate(train_loader):

outputs = searchedNet(batch)
loss = CrossEntropyLoss(outputs, labels)
loss.backward()
optimizer.step()

https://orcid.org/0000-0002-3542-7720
https://orcid.org/0000-0002-6444-7253
https://orcid.org/0000-0003-0787-2082
https://orcid.org/0000-0002-4167-6782
https://github.com/Intelligent-Computing-Lab-Yale/Neural-Architecture-Search-for-Spiking-Neural-Networks

2 Y. Kim, Y. Li, H. Park, V. Yeshwanth, P. Panda.

0 3 0 2
0 0 3 0
3 0 0 3

0 0 0 0

Node1

Node2

Node3

Node4

Node1

Node2

Node3

Node4

(a) Searched Architecture (b) Corresponding Connection Matrix

N
od
e1

N
od
e2

N
od
e3

N
od
e4

Fig. 1. An example of cell representation.

A
cc
ur
ac
y
<
60
%

A
cc
ur
ac
y
>
60
%

Fig. 2. Matrix Visualization (Eq. 4) of randomly sampled architectures on a CIFAR100
dataset. We use 64 mini-batch samples. Top row: Architectures achieves under 60%
accuracy. Bottom row: Architectures achieves over 60% accuracy.

B. Dataset Details

In this section, we provide the details of datasets used in our experiments. CI-
FAR10 [6] consists of 50,000 training samples / 10,000 testing samples with 10
categories. All images are RGB color images whose size are 32 × 32. CIFAR100
has the same setting as CIFAR10, except it contains images from 100 categories.
TinyImageNet is the modified subset of the original ImageNet dataset. Here,
there are 200 different classes of ImageNet dataset [1], with 100,000 training and
10,000 validation 64×64 images.

C. Training Details with Surrogate Gradients

Based on the Cross-Entropy loss L from the prediction of the searched archi-
tecture, we calculate the gradients of each layer l based on the spikes activities.
We accumulate the gradients in both spatial and time axis, which is called a
spatio-temporal back-propagation (STBP) [12,9]. By chain rule, we formulate

Neural Architecture Search for SNNs 3

the gradients of the weight parameters Wl at the layer l as:

∂L

∂Wl
=


∑

t(
∂L
∂Ot

l

∂Ot
l

∂Ut
l
+ ∂L

∂Ut+1
l

∂Ut+1
l

∂Ut
l
)
∂Ut

l

∂Wl
, if l = hidden

∂L
∂UT

l

∂UT
l

∂Wl
. if l = output

(1)

Here, Ot
l and U t

l are output spikes and membrane potential at time-step t for
layer l, respectively. Since we accumulate the spikes at the last layer, we can get
a continuous and differentiable derivative function:

∂L

∂uT
i

=
eu

T
i∑C

k=1 e
uT
k

− yi, (2)

where yi is class label. On the other hand, LIF neurons in hidden layers bring
non-differentiability as the neuron generates a spike output whenever the mem-
brane potential ut

i exceeds the firing threshold. Following the previous work, we
use an approximate gradient for backpropagation:

∂oti
∂ut

i

=
1

π
arctan(πx) +

1

2
. (3)

D. K Matrix Visualization

In our main manuscript, we introduce a kernel matrix by computing Hamming
distance dH(ci, cj) between different samples i and j, which can be formulated
as follows:

KH =

NA−dSAH(c1, c1) · · · NA−dSAH(c1, cN)
...

. . .
...

NA−dSAH(cN , c1) · · · NA−dSAH(cN , cN)

 (4)

Here, NA stands for the number of LIF neurons in the given layer. Then, using
this matrix, we compute the final score of the architecture candidate:

s = log(det |
∑
l

Kl
H |), (5)

where, Kl
H is the kernel matrix at layer l. Finally, the highest-scored architecture

among the candidates is selected for training. We clarify that a high score implies
low off-diagonal elements of kernel matrix KH , which means that the activation
patterns from different samples are not similar. To show this, we visualize the
examples of kernel matrix in Fig. 2. We divide the matrices into two groups based
on its post-training performance. The results show that architectures with low
off-diagonal elements are likely to achieve higher post-training performance.

4 Y. Kim, Y. Li, H. Park, V. Yeshwanth, P. Panda.

50 100 500 1000 5000 10000 20000
#Search samples

64

66

68

70

72

74

Ac
cu

ra
cy

 (%
)

FW
BW

Fig. 3. Accuracy and with respect to number of search samples. For accuracy experi-
ments, we run the same settings 5 times. We use CIFAR100 dataset.

Table 1. Memory / number of spikes on CIFAR100.

Method Acc.(%) Timestep #Params(M) #Spikes(106)

Han et al. [4] (VGG16) 70.90 2048 40.28 164.45
Rathi et al. [10] (VGG16) 69.67 5 40.28 0.555
Li et al. [7] (ResNet20) 72.33 32 11.29 0.225

SNASNet-Fw (ours) 70.20 5 20.54 0.077
SNASNet-Fw-AP4 (ours) 70.15 5 7.30 0.078
SNASNet-Fw-AP8 (ours) 69.24 5 4.15 0.077
SNASNet-Bw (ours) 73.31 5 20.62 0.092
SNASNet-Bw-AP4 (ours) 72.80 5 8.77 0.096
SNASNet-Bw-AP8 (ours) 70.18 5 5.55 0.092

E. Ablation on Number of Samples

In our experiments, we search 5000 architecture candidates from search space.
Here, we provide more accuracy-#search samples configurations. In Fig. 3, the
accuracy of both forward (marked as blue) and backward connections (marked as
red) saturates after 5000 samples. The backward connection configuration shows
higher variation as well as higher performance increase compared to that of the
forward connection setting. This is because searching backward connections has
larger search space than searching forward connections only.

F. Memory and Computational Efficiency

Finally, we compare the memory and computational efficiency between SNASNet
and previous works [10,5,7] in Table 1. In the table, we also compare SNASNet-
Fw-APx and SNASNet-Bw-APx where x is the kernel size of AvgPooling layer
for the vectorize block (we use x=2 in our default setting). A large kernel size
reduces the number of parameters in the classifier. We find the trade-off be-
tween the number of parameters in the classifier and performance. Our original

Neural Architecture Search for SNNs 5

Table 2. Combining Fang et al. [2] with SNASNet-Bw on CIFAR10.

Method Timestep Accuracy

Fang et al. [2] 8 93.50
SNASNet-Bw 5 93.73 ± 0.32
SNASNet-Bw + Fang et al.[2] 5 93.92 ± 0.41

model (i.e., SNASNet-Fw and SNASNet-Bw) requires more parameters than the
ResNet architecture, while achieving higher accuracy with a smaller number of
timesteps. However, if we use a larger kernel size such as 4 or 8, SNASNet re-
quires fewer number of parameters. Surprisingly, compared to previous works,
all SNASNet configurations show a significantly smaller number of spikes (less
than ∼ 50%). The results demonstrate that the SNASNet founded by our search
algorithm can improve not only accuracy but also efficiency.

G. Complementary Objective with respect to Prior Works

Existing state-of-the-art SNN works have proposed advanced techniques such as,
normalization [14] and learning neuronal dynamics [2] among others, to achieve
high-performing SNNs. The motivation of our work is to find high-performing
SNNs through architecture search, which is a new line of research compared to
previous works focusing on advanced training techniques. Thus, our work is com-
plementary to previous methods. To demonstrate this, we combine our searched
architecture with Fang et al. [2] where a trainable membrane time constant has
been proposed and yields the best accuracy from previous works. In Table 2,
our searched architecture is seamlessly combined with such training technique,
resulting in further accuracy improvement with even lower timestep require-
ment. This corroborates our assertion that both careful architectural design and
advanced training techniques are important for improving SNNs.

H. Applying VanRossum Distance for Metric

VanRossum distance [11] has been widely used for measuring a difference be-
tween spike trains by convolving an exponential kernel. To show the effect of
such spike-crafted distance, we compare HD, SAHD, and VanRossum in Table
3. We notice that HD exhibits a lower accuracy than SAHD and VanRossum, in-
dicating HD fails to characterize the spike activity. The VanRossum gets slightly
lower results than SAHD (0.3%). We think the results of VanRossum can be fur-
ther improved if we carefully tune the hyperparameter of τ , which is fixed to
1 in our experiments. However, we should also point out VanRossum is much
slower compared to SAHD, mainly due to the exponential kernel function and
the ℓ2-distance between any two neurons, while the SAHD can be easily imple-
mented by a matrix-vector multiplication. In sum, VanRossum shows a good
performance but it needs careful hyperparameter tuning and suffers from higher
computation cost.

6 Y. Kim, Y. Li, H. Park, V. Yeshwanth, P. Panda.

Table 3. Combining Fang et al. [2] with SNASNet-Bw on CIFAR10.

Method (CIFAR10) HD SAHD (ours) VanRossum

Time cost per model (sec) 5.98 ± 0.12 6.12 ± 0.09 44.52 ± 0.15
Accuracy (%) 90.12 ± 0.24 93.73 ± 0.32 93.44 ± 0.43

I. Comparison with NAS + ANN-SNN conversion

We compare the performance of our SNASNet with ANN-NAS followed by ANN-
SNN conversion. We first train ANN architecture founded by two representative
ANN-NAS algorithms (DARTS [8] and SPOS [3]) on CIFAR10. After that, we
convert the ANNs using the recent ANN-SNN conversion algorithm [7] with
various timesteps (T=16, 32, 64, 128, 256). Although the converted SNN achieves
similar performance in large timesteps (T>128) compared to SNASNet, they
show a huge performance drop with T=16. Our NAS approach shows better
results even with less timesteps (T=5), showing the advantage of SNASNet.

0 50 100 150 200 250
Timesteps

80

85

90

95

Co
nv

er
sio

n
 A

cc
ur

ac
y(

%
)

DARTS (ANN acc: 96.2%)
SPOS (ANN acc: 93.3%)
SNASNet-BW (ours)

Fig. 4. Accuracy change with respect to number timesteps. We show our SNASNet-Bw
and ANN-NAS+ANN-SNN conversion.

References

1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

2. Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., Tian, Y.: Incorporating
learnable membrane time constant to enhance learning of spiking neural networks.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 2661–2671 (2021)

3. Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single path one-
shot neural architecture search with uniform sampling. In: European Conference
on Computer Vision. pp. 544–560. Springer (2020)

Neural Architecture Search for SNNs 7

4. Han, B., Roy, K.: Deep spiking neural network: Energy efficiency through time
based coding. In: Computer Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part X 16. pp. 388–404. Springer
(2020)

5. Han, B., Srinivasan, G., Roy, K.: Rmp-snn: Residual membrane potential neu-
ron for enabling deeper high-accuracy and low-latency spiking neural network.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 13558–13567 (2020)

6. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

7. Li, Y., Deng, S., Dong, X., Gong, R., Gu, S.: A free lunch from ann: To-
wards efficient, accurate spiking neural networks calibration. arXiv preprint
arXiv:2106.06984 (2021)

8. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

9. Neftci, E.O., Mostafa, H., Zenke, F.: Surrogate gradient learning in spiking neural
networks. IEEE Signal Processing Magazine 36, 61–63 (2019)

10. Rathi, N., Roy, K.: Diet-snn: A low-latency spiking neural network with direct
input encoding and leakage and threshold optimization. IEEE Transactions on
Neural Networks and Learning Systems (2021)

11. van Rossum, M.C.: A novel spike distance. Neural computation 13(4), 751–763
(2001)

12. Wu, Y., Deng, L., Li, G., Zhu, J., Shi, L.: Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience 12,
331 (2018)

13. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: Nas-bench-
101: Towards reproducible neural architecture search. In: International Conference
on Machine Learning. pp. 7105–7114. PMLR (2019)

14. Zheng, H., Wu, Y., Deng, L., Hu, Y., Li, G.: Going deeper with directly-trained
larger spiking neural networks. arXiv preprint arXiv:2011.05280 (2020)

	[Supplementary Materials] Neural Architecture Search for Spiking Neural Networks

