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Appendix A: ARISTO Collection

We collected the human gaze dataset Attention Reinforced Images on Species
TaxonOmy (ARISTO) on the Caltech-UCSD birds (CUB) dataset [32] by de-
signing a bird classification game consisting of two steps. As illustrated in Fig. 1,
firstly, two random images from different categories were given for the participant
with 6 seconds to learn the differences between these two categories. Secondly, a
new image of one of the two categories was shown, and the participant needed to
decide which category this image belonged to in 6 seconds. We utilized the Tobii
Pro Nano eye-tracker device to record the human gaze data during the second
step. To obtain the human gaze for image classification at different granularities,
we adopted the four-level category hierarchy (13 orders, 37 families, 122 genera,
and 200 species) of the CUB dataset organized by [5]. We repeated the game
for four rounds on these four levels, respectively. In each round, the compared
images in the first step of the game were randomly chosen from categories of
different granularities. For example, for the family level classification, the com-
pared images were randomly chosen from two different families. Ten participants
of different genders and ages contributed to the human gaze study. We divided
the entire CUB dataset into ten subsets, and each participant played the game at
four hierarchies on one subset. Fig. 1 also shows more samples of the ARISTO.

Appendix B: Fusion Operation Analysis

The addition is an effective fusion operation to enhance the region representa-
tions. We can take the region representation bl,m and its orthogonal component
borthl,m as bases and obtain more discriminative region representation through their

⋆ Equal contribution.
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Fig. 1. The gaze data collection process and samples of the collected human gaze. We
generate the heatmap of gaze points by a Gaussian blur for more obvious observation.

linear combination. A proper linear combination can can bring the region rep-
resentation closer to the optimal region representation ooptimal

l,m .

We also analyze the other possible fusion operations. Table 1 shows the com-
parisons of different fusion operations on CUB. It is clear that the addition
fusion with fixed λ achieves the best results. When λ is learnable, the blended
region representations tend to be overfitting on the training set, resulting in
poor performance. The concatenation operation denotes concatenating the re-
gion representation and its orthogonal component. Then, a fully connected layer
is utilized to produce the region orthogonal feature. However, this operation will
destroy the original structure of the region representation, resulting in perfor-
mance degradation.
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Table 1. Comparisons of different fusion operations on CUB.

Fusion Operation
Accracy(%)

Order Family Genus Species

Addition (fixed λ = 0.4) 99.0 96.3 93.5 89.4
Addition (learnable λ) 99.0 95.9 93.2 88.8

concatenation 98.7 95.8 92.9 88.1

Table 2. Options of the number of region prototypes at different hierarchies on CUB,
FGVC-Aircraft and Stanford Cars.

Group Index
CUB FGVC-Aircraft Stanford Cars

Order Family Genus Species Maker Family Model Maker Model

1 4 4 4 4 4 4 4 4 4
2 4 4 8 8 4 8 8 8 8
3 4 8 8 16 8 8 16 8 16
4 4 8 16 16 8 16 16 16 16
5 4 8 16 32 8 16 32 16 32

Appendix C: Supplementary Experiments

Implementation Details. Our CHRF is built on the widely used ResNet-50
pre-trained on ImageNet. Concretely, the ResNet-50 is divided into two CNNs
including f(·) and φ(·). The former consists of the first three convolution groups
(i.e., conv1, conv2 x, and conv3 x) of the ResNet-50, whose parameters are fixed.
And the latter consists of the rest components (i.e., conv4 x and conv5 x), whose
parameters can be learned. We set the number of region prototypes to 32 for
the L-th RFM and those of the higher layer are divided by 2 in turn. λ is set to
0.4. Following the training and testing protocol of recent FGVC works [6,28,43],
we use random cropping of 448 × 448 and horizontal flipping in training and
center crop during inference. The data augmentation proposed by [15] is used to
improve the attention. CHRF is trained for 160 epochs with a batch size of 8.
We use the SGD optimizer with the initial learning rate of 1e-3 with exponential
decay of 0.9 after every two epochs, and momentum is set as 0.9. All experiments
are conducted on a RTX 3090 GPU.

Region Prototypes in RFM. We further analyze the influence of the selected
number of region prototypes. Based on the observation that the finer hierarchy
should have more concerned regions, Table 2 shows five groups of candidate
region numbers on CUB, FGVC-Aircraft, and Stanford Cars. Butterfly-200 and
VegFru have a similar hierarchy structure to CUB and Stanford Cars, thus they
share the same selections, respectively. We search for a comparable candidate
as the hyper-parameter of all datasets. The results are shown in Fig. 2. We can
see that CUB and Stanford Cars achieve the best result when the 5-th group
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Fig. 2. The influence of the number of region prototype at different hierarchies on
CUB, FGVC-Aircraft and Stanford Cars.

Table 3. Contribution of the orthogonal region regularization (ORR) on CUB. Fusion
represents the addition operation.

Fusion ORR
Accracy(%)

Order Family Genus Species

98.7 95.7 92.8 87.2
✓ 99.0 95.9 93.2 88.3

✓ 98.9 95.9 93.0 87.8
✓ ✓ 99.0 96.3 93.5 89.4

candidate is chosen. The best result is achieved for FGVC-Aircraft when choosing
the 3-th group candidate. Therefore, we finally choose the 5-th candidate as a
trade-off hyper-parameter for all datasets in our experiments, i.e.we set the
number of region prototypes to 32 for the L-th RFM and those of the higher
layer are divided by 2 in turn.

Orthogonal Region Regularization in COF. A group of region centers
in the orthogonal region bank are used to gather the same orthogonal region
features and distinguish different orthogonal region features. For simplicity, we
name the orthogonal region regularization as ORR. As shown in Table 3, ORR
can effectively enhance the accuracy whether the fusion operation is used or
not. Furthermore, we demonstrate the cosine similarity of the centers in the
orthogonal region bank at different granularities on CUB dataset, as shown in
Fig. 3. We can see that ORR ensures the orthogonality of different region centers,
which promotes the discriminability of different orthogonal region features.

More visualization results. We enumerate more attention maps of humans,
Ours-RF and Ours-CHRF on CUB dataset in Fig. 4. Besides, comparisons of at-
tention maps from Ours-RF and Ours-CHRF on Butterfly-200, FGVC-Aircraft,
and Standford Cars are shown in Fig. 5 and Fig. 6. The visualization results
consistently validate the effectiveness of our model.
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Fig. 3. Comparison of the cosine similarity of the centers in the orthogonal region
bank. Four hierarchies of two classes (“Laysan Albatross” and “Rhinoceros Auklet”)
are demonstrated. The orthogonal region regularization (ORR) can improve the orthog-
onality of different region orthogonal features to explore more distinguishable regions.
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Fig. 4. Visualization of the attention maps from human, Ours-RF and Ours-CHRF on
four hierarchies (order, family, genus and species) on CUB dataset.
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Fig. 5. Visualization of the attention maps from Ours-RF and Ours-CHRF on four
hierarchies (family, subfamily, genus and species) on Butterfly-200 dataset.
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Fig. 6. Visualization of the attention maps from Ours-RF and Ours-CHRF on FGVC-
Aircraft (three hierarchies including maker, family and model) and Stanford Cars (two
hierarchies including maker and model).


