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Table 1. Model configurations for our DaViT. We introduce three configurations
DaViT-Tiny, DaViT-Small, and DaViT-Base with different model capacities. The size
of the input image is set to 224× 224.

Output Size Layer Name DaViT-Tiny DaViT-Small DaViT-Base

stage 1

56× 56 Patch Embedding kernel 7, stride 4, pad 3, C1 = 96 kernel 7, stride 4,pad 3, C1 = 96 kernel 7, stride 4, pad 3, C1 = 128

56× 56
Dual

Transformer
Block


win. sz. 7× 7, Pw = 49

N1
h = N1

g = 3

C1
h = C1

g = 32

× 1


win. sz. 7× 7, Pw = 49

N1
h = N1

g = 3

C1
h = C1

g = 32

× 1


win. sz. 7× 7, Pw = 49

N1
h = N1

g = 4

C1
h = C1

g = 32

× 1

stage 2

28× 28 Patch Embedding kernel 2, stride 2, pad 0, C2 = 192 kernel 2, stride 2,pad 0, C2 = 192 kernel 2, stride 2, pad 0, C2 = 256

28× 28
Dual

Transformer
Block


win. sz. 7× 7, Pw = 49

N2
h = N2

g = 6

C2
h = C2

g = 32

× 1


win. sz. 7× 7, Pw = 49

N2
h = N2

g = 6

C2
h = C2

g = 32

× 1


win. sz. 7× 7, Pw = 49

N2
h = N2

g = 8

C2
h = C2

g = 32

× 1

stage 3

14× 14 Patch Embedding kernel 2, stride 2, pad 0, C3 = 384 kernel 2, stride 2,pad 0, C3 = 384 kernel 2, stride 2, pad 0, C3 = 512

14× 14
Dual

Transformer
Block


win. sz. 7× 7, Pw = 49

N3
h = N3

g = 12

C3
h = C3

g = 32

× 3


win. sz. 7× 7, Pw = 49

N3
h = N3

g = 12

C3
h = C3

g = 32

× 9


win. sz. 7× 7, Pw = 49

N3
h = N3

g = 16

C3
h = C3

g = 32

× 9

stage 4

7× 7 Patch Embedding kernel 2, stride 2, pad 0, C4 = 768 kernel 2, stride 2,pad 0, C4 = 768 kernel 2, stride 2, pad 0, C4 = 1024

7× 7
Dual

Transformer
Block


win. sz. 7× 7, Pw = 49

N4
h = N4

g = 24

C4
h = C4

g = 32

× 1


win. sz. 7× 7, Pw = 49

N4
h = N4

g = 24

C4
h = C4

g = 32

× 1


win. sz. 7× 7, Pw = 49

N4
h = N4

g = 32

C4
h = C4

g = 32

× 1

A Details of Model Configuration

In this work, we simply follow the design strategy suggested by previous
works [3,8]. We divide the entire architecture into four stages, where a patch
embedding layer is inserted at the beginning of each stage. Here, our patch
embedding layer is implemented by stride convolution. The convolutional ker-
nels and stride values of our four patch embedding layers are {7, 2, 2, 2} and
{4, 2, 2, 2}, respectively. Note the large kernel in the first layer introduces almost
no additional calculations as the number of input channels is only 3. For the rest
kernel values, we use 2 to perform non-overlapping patch merging. We stack our
dual attention blocks in each stage with the resolution and feature dimension
kept the same. These stages jointly produce a hierarchical representation, with
the same feature map resolutions as those of typical convolutional networks, e.g.,
VGG [4] and ResNet [1]. As a result, the proposed architecture can conveniently
replace the backbone networks in existing methods for various vision tasks.
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Table 2. Comparison on ImageNet-1K by replacing half of DeiT [5] attention blocks
with our channel attention block. Performance improvement over DeiT is highlighted
in blue font.

Model #Params (M) FLOPs (G) Top-1 (%)

DeiT-Tiny [5] 5.7 1.2 72.2

DeiT-Tiny [5] + Channel Attention 5.7 1.2 74.9 (+2.7)

DeiT-Small [5] 22.1 4.5 79.8

DeiT-Small [5] + Channel Attention 22.1 4.5 81.2 (+1.4)

DeiT-Base [5] 86.7 17.4 81.8

DeiT-Base [5] + Channel Attention 86.7 17.4 82.3 (+0.5)

Specifically, take an image with H × W , a C1-dimensional feature with a
resolution of H

4 × W
4 is obtained after the first patch embedding layer. And

its resolution is further reduced into H
8 × W

8 , H
16 × W

16 , and
H
32 × W

32 with the
feature dimension increasing to C2, C3, and C4 after the other three patch
embedding layer, respectively. For simplicity, we set the window size of 7 × 7
thus Pw = 49 for all models. We also set the number of channels per group
Cg = 32 and the number of channels per head Ch = 32 for all blocks of our three
models. For DaViT-tiny and DaViT-small, we set the number of heads/groups
Nh = Ng = {3, 6, 12, 24} for four stages, respectively; and we set the number
of heads/groups Nh = Ng = {4, 8, 16, 32} for four stages in DaViT-base. Also,
we set the number of dual attention blocks {1, 1, 3, 1} for our tiny model and
{1, 1, 9, 1} for the small and base models.

For the models without FFN, we simply change the number of dual attention
blocks to keep the total computation costs similar, though we believe there
should be a better configuration specifically for them. We set the number of dual
attention blocks {2, 2, 11, 2} for our tiny model (without FFN) and {2, 2, 28, 2}
for the small and base models (without FFN).

When more training data is involved, we further scale up DaViT to large,
huge, and giant sizes to validate the scaling ability of the proposed architecture
for image classification. We set C1 = {192, 256, 384}, N1

h = N1
g = {6, 8, 12}, and

the number of dual attention blocks of the third stage as {9, 9, 12} respectively
for large, huge, and giant models. All model training is accelerated by NVIDIA
Apex Automatic Mixed Precision (AMP).

B Channel Attention on Vanilla ViT

We apply our channel group attention on the vanilla DeiT [5] to show the general-
izability and effectiveness of our dual attention mechanism. We alternatively ar-
range the vanilla patch-level self-attention and our channel group self-attention.
We set the number of groups and channels of our channel-wise group atten-
tion the same as the number of heads and channels of self-attention in DeiT, to
make the number of parameters and FLOPs comparable with the vanilla DeiT.
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Table 3. Comparison of Transformers without FFNs on ImageNet-1K. FFN is removed
and more attention layers are added to match the computational cost.

Model (w/o FFN) #Params FLOPs Top-1 (%)

Window Attention-Tiny (w/o FFN) 25.8 4.6 79.1

Channel Attention-Tiny (w/o FFN) 25.8 4.5 79.3

Dual Attention-Tiny (w/o FFN) 25.8 4.5 80.8

Dual Attention-Small (w/o FFN) 46.3 8.7 81.9

Dual Attention-Base (w/o FFN) 81.6 15.2 82.5

Table 4. Impact of the change of model depth. We gradually reduce the number of
transformer layers at the third stage from the original 3 (6 in Swin [3] and Focal [8])
to 2 (4) and further 1 (2).

Depths Model #Params. (M) FLOPs (G) Top-1 (%)

2-2-2-2
Swin [3] 21.2 3.1 78.7

Focal [8] 21.7 3.4 79.9

1-1-1-1 DaViT (ours) 21.2 3.1 80.2

2-2-4-2
Swin [3] 24.7 3.8 80.2

Focal [8] 25.4 4.1 81.4

1-1-2-1 DaViT (ours) 24.7 3.8 81.8

2-2-6-2
Swin [3] 28.3 4.5 81.2

Focal [8] 29.1 4.9 82.2

1-1-3-1 DaViT (ours) 28.3 4.5 82.8

From Table 2 we observe substantial gains of our dual attention across all model
sizes, e.g., 2.7% over the tiny model and 0.5% even compared to the base model.
The result shows that our channel-wise attention can be combined with window
attention and patch-level global attention, improving the performance of both
spatial-wise self-attentions.

C Transformer without FFNs

FFN has been a default component of Transformers with little research on it.
However, it dominates the number of FLOPs and model parameters of our
DaViT. Considering our dual attention has both channel-wise and spatial-wise
interactions, we conduct an initial exploration to show the potential of the pure-
attention structure without FFNs. We remove FFNs and add more dual attention
blocks to match the computational costs.

From Table 3 we see that: pure dual attention without FFNs achieves 1.5%
and 1.7% better Top-1 accuracy than pure window attention and channel at-
tention, respectively, showing the effectiveness of dual attention that has both
channel-wise and spatial-wise interactions. The model without FFN shows com-
parable and even better performance with models like PVT [7] and DeiT [5],
but still inferior to recent SoTAs like Swin [3], Focal [8], and our full DaViT.
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Table 5. Throughputs of Swin and DaViT.

Model Throughput (samples/s)

Swin-T 1024

DaViT-T 1059

Swin-S 655

DaViT-S 685

Swin-B 496

DaViT-B 523

Table 6. Comparisons to the channel-wise
attention used in CNNs, by replacing our
channel group attention with SENet [2]
and ECANet [6], respectively.

Method Top-1 (%)

SE Block [2] 81.2

ECA Block [6] 81.2

Channel Self-Attention 82.8

D Model Capacity against Model Depth

Our DaViT contains both spatial-wise and channel-wise attention, and both local
and global interactions in each dual attention block. We conduct experiments to
show whether it needs less number of layers to obtain similar modeling capacity
as previous works [3,8]. We gradually reduce the number of transformer layers
at the third stage from original 3 (6 in Swin [3] and Focal [8]) to 2 (4 in Swin [3]
and Focal [8]) and further 1 (2 in Swin [3] and Focal [8]). From Table 4, we
find our model outperforms existing SoTA models consistently with the same
depth. Moreover, using two fewer layers, our model achieves comparable and
even better performance to Swin Transformer. Also, with fewer computational
costs, our model outperforms Focal Transformer by a large margin.

E Throughput Analysis

In addition to the main criteria of computational cost in the main paper, i.e.,
FLOPs and #parameters, we report the real-time inference speed/throughput
against Swin Transformer [3] to show the efficiency of our work. Compared to the
strong baseline Swin, our model does have advantages in real-time throughput as
the cleaner structure and high efficiency of the group channel attention. For ex-
ample, we remove the shifted window partition, which depends on torch.roll()

to perform cyclic shift and its reverse on features. This operation is not fully op-
timized by popular inference frameworks. Table 5 demonstrates the comparison
between Swin and DaViT. Nvidia V100 GPU is utilized for the benchmark, and
the image resolution is 224×224. It shows that DaViT consistently outperforms
Swin across different model sizes in efficiency.

F Comparisons with SE and ECA Blocks

To make quantitative comparisons with traditional channel-wise attentions blocks,
we did experiments by replacing the channel self-attention in our tiny model
with SE block [2] and ECA block [6]. The results in Table 6 show that our chan-
nel group self-attention is more powerful by performing dynamic feature fusion
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Table 7. Top-1 on ImageNet. ‘Window-only’ and ‘Window + Global’ denotes local
attention and straightforward global baseline, respectively. ‘Window + Channel’ is our
DaViT. For fair comparison, the three models have the same layout, patch/window size.
Our DaViT has similar efficiency to local transformers (Window-only), while maintain-
ing the same high performance as global methods (Window+Global).

Attention Type (Tiny) Params FLOPs Top-1 Acc.

Window-only 28.3M 4.5G 81.2%
Window+Global 28.3M 6.7G 82.8%
Window+Channel (Ours) 28.3M 4.5G 82.8%
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224 360 512 640 800
Image Resolution

125

250
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500
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112.6

231.8

504.8

8.8 25.3
47.7 72.9

116.4
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224 360 512 640 800
Image Resolution

100

300

500

700

18.6 65.9
170.7

340.4

723.1

15.5
44.7 84.1 128.6

205.1

Base
Window + Global  Window + Channel (DaViT)

Fig. 1. FLOPs comparison between Window+Global (conventional global attention)
and Window+Channel (our channel group attention) as input resolution increases
across three model sizes.

across global tokens (different global views of the entire image) in transformers.
It shows superior performance (1.6%) than both of the two variants using SE [2]
and ECA [6] blocks, respectively.

G Baselines and Relationships with DaViT

Attention in DaViT does capture both global and local fine-grained interactions
in a computationally efficient manner, i.e., linear complexity O(2PC(Pw +Cg))
with respect to spatial dimension P and channel dimension C. Below, we detail
the relationship between DaViT and its baselines.

1) Conventional global attention is of quadratic complexity with respect to
the number of tokens, while local attention has linear complexity by sacrific-
ing global interaction, such as window attention in Swin Transformer [40]. We
call this attention type Window-only, which has inferior performance but high
efficiency. 2) We propose DaViT, which captures global interactions while pre-
serving fine-grained local details. We introduce global interactions by channel
group attention with linear complexity (same as local window attention). Dual
attention in DaViT is represented by Window+Channel with both high per-
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formance and high efficiency. 3) To show the efficiency of DaViT, we replace
all channel group attention with conventional global attention, named Win-
dow+Global. Global interactions are obtained at a quadratic computational
cost, resulting in high performance but low efficiency.

Tab. 7 shows the accuracy and FLOPs of the three models. Our Window
+ Channel enjoys high performance of global interactions without quadratic
complexity, e.g., 1.6% improvement (82.8 vs 81.2) over Window-only with 33%
lower FLOPs (4.5 vs 6.7) than Window+Global. The gap on FLOPs widens
further as the input resolution increases in Fig. 1. We can see that the complexity
of our model increases linearly, while the trend for the baseline is quadratic.
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