
Optimal Transport for Label-Efficient
Visible-Infrared Person Re-Identification

Jiangming Wang1, Zhizhong Zhang1(�), Mingang Chen2, Yi Zhang3, Cong
Wang4, Bin Sheng5, Yanyun Qu6, and Yuan Xie1(�)

1 East China Normal University, Shanghai, China
2 Shanghai Development Center of Computer Software Technology, Shanghai, China

3 ZheJiang Lab, Hangzhou, China
4 Huawei Technologies, Hangzhou, China

5 Shanghai Jiao Tong University, Shanghai, China
6 Xiamen University, Fujian, China

{51215901073}@stu.ecnu.edu.cn, {zzzhang,yxie}@cs.ecnu.edu.cn,
{cmg}@sscenter.sh.cn, {zhangyi620}@zhejianglab.com,

{wangcong64}@huawei.com, {shengbin}@sjtu.edu.cn, {yyqu}@xmu.edu.cnn

Abstract. Visible-infrared person re-identification (VI-ReID) has been
a key enabler for night intelligent monitoring system. However, the exten-
sive laboring efforts significantly limit its applications. In this paper, we
raise a new label-efficient training pipeline for VI-ReID. Our observation
is: RGB ReID datasets have rich annotation information and annotat-
ing infrared images is expensive due to the lack of color information.
In our approach, it includes two key steps: 1) We utilize the standard
unsupervised domain adaptation technique to generate the pseudo la-
bels for visible subset with the help of well-annotated RGB datasets; 2)
We propose an optimal-transport strategy trying to assign pseudo labels
from visible to infrared modality. In our framework, each infrared sample
owns a label assignment choice, and each pseudo label requires unallo-
cated images. By introducing uniform sample-wise and label-wise prior,
we achieve a desirable assignment plan that allows us to find matched vis-
ible and infrared samples, and thereby facilitates cross-modality learning.
Besides, a prediction alignment loss is designed to eliminate the negative
effects brought by the incorrect pseudo labels. Extensive experimental
results on benchmarks demonstrate the effectiveness of our approach.
Code will be released at https://github.com/wjm-wjm/OTLA-ReID.

Keywords: VI-ReID, Optimal-Transport, Label-efficient Learning

1 Introduction

Visible-infrared person re-identification (VI-ReID) [31,3,38,29,19,27] has been a
key enabler for night intelligent monitoring system. It aims to properly find the
target visible/infrared images when given a query image from another modality.
Due to the significant difference in sensing processes, visible-infrared heteroge-
neous images have large appearance variations. Therefore, it’s very different from
conventional visible ReID problem [39,42,43].

https://github.com/wjm-wjm/OTLA-ReID
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Fig. 1. Left: the real-life ReID application scenario. Right: Our proposed label efficient
training pipeline.

Recently, impressive progress [38,39,24,35,37] in VI-ReID has been made to
reduce the cross-modality variations. A common practice is to align the visible
and infrared images on both image and feature level [37,35]. However, we have
noticed that one of the important ingredient to their success is the availability of
well-annotated training sets. These training sets need extensive labelling efforts,
especially for infrared subsets due to lack of color information. Hence, a critical
question comes up: Can we learn a cross-modality model only with one modal
supervision or even without supervision?

To this end, we raise a new training pipeline towards label-efficient learning
for VI-ReID. One key assumption of our approach is that only visible labels
are accessible, or can be produced by self-training strategy from other visible
datasets. This idea is inspired by the observation that: 1) The scale of existing
cross-modality ReID dataset is relatively small, while visible ReID dataset has
rich annotation information; 2) The cost of annotating infrared images is much
more expensive, as it is difficult for annotators to recognize the identities without
color information. In fact, this setting is also quite common in real-life scenario.
For example, in a supermarket as shown in Fig. 1 left, there exits indoor and
outdoor cameras which capture visible and infrared images, respectively. Hence,
images from two modalities probably contain the same identity. But a ReID sys-
tem is often deployed in the indoor scene (visible camera) but unprepared for the
outdoor scene (infrared camera). It requires us to train a cross-modality model
without infrared annotations, or directly avoid labour-extensive annotations by
taking advantage of other well-annotated RGB datasets.

Driven by this analysis, our approach includes two key steps as shown in Fig.
1 right. Firstly, we utilize the standard UDA-ReID approach [12] to generate
the pseudo labels for visible data by taking knowledge from the rich annotated
dataset e.g., Market-1501 [45], DukeMTMC-ReID [25], MSMT17 [32]. Secondly,
to establish an explicit connection between cross-modality data, we propose an
optimal-transport strategy for assigning the infrared images to the generated
visible pseudo classes. In this module, each sample owns a label assignment
choice viewed as supplier, and each label requires unallocated images viewed



Optimal Transport for Label-Efficient VI-ReID 3

as demander. By introducing the uniform sample-wise and label-wise prior, we
can achieve a desirable assignment plan that allows us to find truly matched
visible and infrared samples. To eliminate the negative effects brought by the
inaccurate supervised signals, we also propose a prediction alignment learning
module, which in practice is a batch-level prediction mix-up and further facilitate
the learning modality-invariant representations.

We conduct extensive experiments against state-of-the-arts of three cate-
gories (i.e., fully-supervised, unsupervised learning and unsupervised domain
adaption methods) on the widely adopted benchmarks for VI-ReID. We empir-
ically find that 1) Taking knowledge from the rich annotated dataset is neces-
sary for label-efficient VI-ReID; 2) Our approach achieves promising results, i.e.,
48.2% in term of Rank-1 accuracy on SYSU-MM01 with mere visible ground-
truth labels and 29.9% without ground-truth labels. Our contributions can be
summarized as follows:
• We propose a new label-efficient learning pipeline which roots from real-

world scenario. By taking advantage of rich annotated visible dataset, we produce
reliable pseudo labels for RGB images and these labels in turn allow us to train
a cross-modality model.
• Two critical modules: Optimal-Transport Label Assignment module (OTLA)

and Prediction Alignment Learning (PAL) are proposed. OTLA enables us to
assign the infrared images to the generated visible pseudo classes, and thereby
establish an explicit connection between visible and infrared data. PAL can re-
duce the negative effects brought by the inaccurate pseudo labels.
•We provide comprehensive evaluations on this challenge problem. Empirical

results show that our approach achieves highly comparable results with fully
supervised methods and outperforms recent UDA-ReID and USL-ReID methods.

2 Related Work

Visible-Infrared Person Re-Identification. Visible-infrared person ReID
(VI-ReID) aims to match the person images between two modalities. Recently,
some works [38,29,19,35,24] try to enhance the feature discrimination by using
novel network structures (e.g., graph convolution network and non-local module)
or discovering nuanced but discriminative representation. While, another lines of
novel works [3,31,15,30] attempt to excavate modality-invariant information by
image generation. Besides, [5,40,18] have optimized metric learning items (e.g.,
Triplet Loss) adapting to cross-modality learning.
Unsupervised Domain Adaptation Person Re-Identification. Unsuper-
vised domain adaptation [23] aims to learn the knowledge of unlabeled target
data with help of labeled source data. The recent application of UDA in ReID
(UDA-ReID) can be regarded as an open set task, where label spaces between
two domains are inconsistent. It can be roughly classified into three categories.
The first category [48,49,21] attempts to reduce domain gap by digging up posi-
tive or negative pairs from labeled source data or unlabeled target data or both
of them. The second category [9,11,12,44] has adopted unsupervised clustering
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methods. The last category [7,33,47] wants to learn domain invariant information
by mutually generating images from source and target domain.
Unsupervised Learning Person Re-Identification. Unsupervised learning
person ReID (USL-ReID) aims to train a model with only unlabeled data. But
previous works often restrict the problem to a single modality ReID task. In
this setting, most methods [12,28,8,36,17,46] are mainly based on pseudo labels,
which establish a bridge with supervised manner. For example, two representa-
tive works [12,36] try to obtain pseudo labels with traditional clustering method,
DBSCAN or K-means. Besides, some hierarchical clustering ways [17,46] are de-
signed to obtain high-quality pseudo labels.
Optimal Transport. Optimal transport (OT) [4] theory has obtained an in-
creasing attention in the field of machine learning, which is often used to find
correspondences with learnable features or measure the distribution distance. M.
Asano et al. [1] has extended OT to self-supervised learning. In this framework,
they alternate between the following two steps: 1) Making use of Sinkhorn-Knopp
algorithm to produce pseudo labels for unlabeled data. 2) Doing classification
with current pseudo labels. In fact, [1] is a clustering based self-supervised ap-
proach, which aims to find a good pretraining model. By contrast, we apply OT
for a global data-label assignment problem.
Summary. By reviewing recent studies, VI-ReID often requires extensive la-
belling efforts. However, collecting a well annotated dataset is time-consuming
and laborious. Besides, most UDA-ReID and USL-ReID methods restrict their
studies to single modality problem, which can’t meet the challenges posed by
VI-ReID. Towards the label-efficient learning, Liang et al. [16] firstly designed an
unsupervised framework by taking advantage of the clustering process. But it is
sub-optimal since the rich annotated visible data is not utilized and the heteroge-
neous pseudo labels is also not well aligned. Considering the above problems, we
divide label-efficient learning of VI-ReID into two parts: 1) Producing accurate
pseudo visible labels by using recent well-established UDA-ReID or USL-ReID
methods. 2) Formulating an optimal-transport task inspired by [1] so as to assign
infrared data to visible pseudo classes.

3 Methodology

3.1 Problem Formulation and Overview

Suppose we are given a collection X = {V,R} consisting of cross-modality pedes-

trian images. V = {xv
i }

Nv

i=1 and R = {xr
i }

Nr

i=1 denote the visible and infrared
images with Nv and Nr samples, respectively. To learn a cross-modality model
only with one modal supervision or even without supervision, a natural idea is to
utilize the supervision from the well annotated visible ReID dataset. Intuitively,
these labeled data allow us to take advantage of UDA-ReID [9,41,21,12,11,44],
and hence enable us to produce reliable pseudo labels Y = {yv

i } for visible subset
V. In our implementation, we adopt the SOTA clustering based method SpCL
[12] to generate Y, by taking RGB dataset e.g., Market-1501 [45], DukeMTMC-
ReID [25], MSMT17 [32] as the source domain, and V in visible-infrared dataset
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Fig. 2. The pipeline of our framework. Left Bottom: we first use an UDA model to
generate the pseudo labels for visible images. Then we take both visible and infrared
data into Discrepancy Elimination Network. Upper: The identity prediction of infrared
images are sent into Optimal-Transport Label Assignment to assign labels. Right Bot-
tom: The identity predictions are also forwarded into Prediction Alignment Learning
to align the mixed predictions, so as to reduce the effects from incorrect pseudo labels.

as the target domain. Since the data in both domains are homogeneous RGB
images, falling in the scope of standard UDA-ReID problem, we can obtain rel-
atively reliable pseudo labels.

In the second stage, infrared images are required to be assigned to the gen-
erated pseudo labels for cross-modality training. To this end, three key compo-
nents: Discrepancy Elimination Network (DEN), Optimal-Transport Label As-
signment module (OTLA), and Prediction Alignment Learning module (PAL)
are proposed. DEN is implemented with a backbone network (e.g., ResNet-50)
and a modality classifier (bottom left in Fig. 2), which is served as a feature
extractor to reduce the modality gap. OTLA (upper in Fig. 2) is proposed to
transport the infrared images to the generated visible pseudo classes. By intro-
ducing class-wised uniform distribution α and sample-wised uniform distribution
β, OTLA can effectively produce matched visible and infrared data. PAL (bot-
tom right in Fig. 2) minimizes the KL-divergence between the original predictions
and the mixed predictions using a batch-level self-attention technique. We will
elaborate each module and illustrate how they cooperate with each other.

3.2 Discrepancy Elimination Network (DEN)

Discrepancy elimination network enables us to reduce the modality gap, served
as a strong baseline for learning modality-invariant features. Specifically, given a
batch of visible and infrared images, we forward them into a ResNet-50 backbone



6 J. Wang et al.

F for feature extraction, i.e., fv
i = F (xv

i ), f
r
i = F (xr

i ). To make both fv
i and

fr
i modality-invariant, we deploy a modality classifier D to determine which

modality the feature comes from. The learning objective is thus formulated as:

LD = max
F

min
D

Efv
i
[log(1−D(fv

i )] + Efr
i
[log(D(fr

i )]. (1)

Note that Eq. (1), in fact, is an adversarial loss widely used in the field of domain
adaptation. We achieve Eq. (1) by using a gradient reversal layer (GRL) [10].
During the forward propagation, GRL acts as an identity transform. In the back
propagation, GRL filps the gradient of modality classifier (i.e. multiply gradient
by −γ) and passes it to the preceding layer. To design DEN, we experimentally
find that GRL would degrade the performance in the fully-supervised VI-ReID,
but is effective in semi-supervised/unsupervised case. DEN appears to be able
to reduce modality discrepancy, especially in the absence of accurate guidance.

3.3 Optimal-Transport Label Assignment (OTLA)

To train a discriminative model for VI-ReID, only using generated pseudo labels
yv
i for visible data is insufficient. For example, Triplet Loss [26] is widely used in

VI-ReID community, and its common step is to choose the positive and negative
samples to construct the triplet. However, without the matched infrared and
visible data, triplet loss can hardly promote the cross-modality matching perfor-
mance. A intuitive solution is to use the self-training technique to assign labels
for infrared images. However, if we send the features fv

i and fr
i into an identity

classifier, and use the pseudo visible label yv
i with standard cross-entropy and

triplet loss to optimize it:

LV-ReID = Lv
Tri + Lv

CE, (2)

it will lead a so-called degeneration of classifier problem. In this case, most in-
frared samples are assembled in a few classes. This phenomenon may not happen
in single modality training, because Eq.(2) encourages the classifier pay more at-
tention on the visible data while neglecting the discrimination in infrared images.
So, if we follow the self-training methods [9], using the maximum value of clas-
sifier output pr

i or clustering result as the infrared labels, the cross-modality
learning would be significantly biased to visible data.

To solve such issue, we propose an Optimal-Transport Label Assignment
(OTLA) module to find infrared samples associated with visible data. Inspired
by [1], we formulate the label assignment task as an optimal transport problem.
In our framework, the infrared samples are viewed as suppliers, while the pseudo
labels are considered as demands. The goal is to transport samples in suppliers to
demands at the lowest cost via an optimal plan Qr. To prevent the degeneration
of classifier, we start from two intuitions: first, each infrared image owns an
assignment choice that corresponds to a generated pseudo label; second, each
generated pseudo label owns approximately the same number of infrared images.

To this end, we define a supplier vector α ∈ RNr indicating that each sample
owns a label assignment choice, and a demander vector β ∈ RNp indicating the
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desired assigned results. Besides, let P r ∈ RNr×Np denote the softmax output
of classifier for the infrared images, where Np stands for the total number of
identities. We use P r to act as as a kind of cost measuring the difficulty of each
image assigned to the identity. Thus we can define a label assignment objective:

min
Qr
⟨Qr,− log(P r)⟩+ 1

δ
KL(Qr||αβT ).

s.t.


Qr

1 = α, α = 1 · 1

Nr
,

QrT
1 = β, β = 1 · 1

Np
,

(3)

where Qr ∈ RNr×Np represents the plan used for pseudo label assignment, ⟨·⟩
denotes the Frobenius dot-product, δ is a hyper-parameter, and KL denotes the
KL-divergence. In essence, Eq. (3) is a transport problem, and also a trade-off
between prediction and smooth assignment. α and β represent the class-wise
prior uniform distribution vector and the sample-wise prior uniform distribution
vector, respectively. Through them, the infrared samples can be forced to be
assigned to equally-sized subsets, avoiding samples are grouped together.

However, traditional approaches are not applicable to solve this transport
objective due to the large amount of data points and identities. Instead, such
constraint leads us to adopt the Sinkhorn-Knopp algorithm [4]. As a result, the

optimal solution Q̂r can be achieved through the iteratively conducted Sinkhorn-
Knopp algorithm with a simple matrix scaling operation:

∀i : αi ← [(P r)δβ]−1
i ∀j : βj ← [αT (P r)δ]−1

j , (4)

where initialize α with 1
Nr
· 1 and β with 1

Np
· 1. When the iteration meets the

termination conditions or exceeds the maximum number, the auxiliary vectors
α and β are fixed. One primary advantage of this approach is it can equivalently
convert Eq. (3) as:

Qr = diag(α)(P r)δdiag(β), (5)

where diag(·) denotes the square diagonal matrix with the elements of vector on
the main diagonal.

On this basis, we reassign each sample with the class-wise and sample-wise
smooth prior, and hold a pseudo label bank Br according to the maximum value
of optimal plan Q̂r to store the assigned results. This bank is updated epoch
by epoch, and then assigns a reliable label for each infrared image. Finally, we
use the pseudo labels of both visible and infrared data for training a standard
VI-ReID model with cross-entropy and triplet loss. Our experimental results
show that the identities of {xr

i }
m
i=1 and {xv

i }
m
i=1 can gradually coincide with

each other, and the computational cost of assignment is extremely low.

3.4 Prediction Alignment Learning (PAL)

With the help of pseudo labels, we can sample the cross-modality images be-
long to the same identity to construct triplet, enabling us to complete the cross
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Algorithm 1 Label-efficient VI-ReID

Require: Unlabeled visible-infrared data {V,R}, other labeled visible data {V
′
}.

1: Using V
′
and V to generate reliable pseudo labels {yv

i } by SpCL [12].
2: Initialize pseudo label bank Br for all infrared data.
3: for epoch = 1 : M do
4: for batch = 1 : N do
5: According to {yv

i } and Br sample a batch of visible and infrared data.
6: Calculate LReID, LD, La with {yv

i } and Br and update the parameters.

7: end for
8: Extracting prediction P r for all infrared data.
9: Initialize α0 with 1

Nr
· 1 and β0 with 1

Np
· 1.

10: while ||αk −αk||1 < ϵ do

11: ∀i : αk
i ← [(P r)δβk−1]−1

i ∀j : βk
j ← [αk−1T (P r)δ]−1

j .

12: end while
13: Qr = diag(α)(P r)δdiag(β).
14: Using Qr to update Br.

15: end for

modality training. However, there are still incorrect labels harming the training
process. To eliminate the negative effects brought by incorrect labels, we pro-
pose a batch-level prediction mix-up, which aligns the prediction distributions
between modalities from a batch perspective.

Specifically, for a batch of samples, we first normalize the prediction of clas-
sifier to obtain Sv ∈ RB×Np and Sr ∈ RB×Np , where the superscript v/r repre-
sents visible/infrared modality and B is the number of visible/infrared images.
Note that in order to adopt the triplet loss, we typically sample equal-sized
cross-modality images according to the pseudo labels and hence the size of Sr

and Sv are the same. To encourage the classifier to make consistent predictions
on these sampled images, we conduct self-attention by taking Sv as query, and
Sr as key and value. Formally, we have:

Svr = softmax
(
Sv(Sr)T

)
Sr. (6)

After that, we compute the KL divergence between the source prediction Svr

and the target prediction Sv to get the alignment loss:

Lvr
a = KL(Sv||Svr). (7)

Intuitively, Eq. (7) forces the visible prediction fused with infrared images to be
consistent with Sv. Even though there unfortunately exists an incorrect label,
self-attention would eliminate its negative effect by emphasising the truly-related
samples while neglecting the incorrect ones, by promoting the instance-level
alignment to batch-level alignment. This strategy is like the mix-up technique
by fusing samples from two modalities in a batch. The mixed prediction is hence
encouraged to filter the outliers and reduce the prediction gap between two
modalities.
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Due to the more noise in Sr, it is not wise to design a symmetric loss Lrv
a ,

which may bring permutation to the training process. Instead, we define two
mixed prediction Srr and Srv:

Srr = softmax
(
Sr(Sr)T

)
Sr,

Srv = softmax
(
Sr(Sv)T

)
Sv.

(8)

With them, we can finally obtain another alignment loss:

Lrv
a = KL(Srv||Srr). (9)

The reason for this design is that two mixed predictions are less effected by the
incorrect labels. Based on the above analysis, the proposed prediction alignment
loss La is formulated as:

La = λvr
a Lvr

a + λrv
a Lrv

a . (10)

where λvr
a and λrv

a are the coefficients (set to 0.1 and 0.5 in our experiments).

3.5 Optimization

The training process is summarized in Algorithm 1. The total training loss L
can be formulated as follows:

L = LReID + λ1LD + λ2La. (11)

where LReID denotes the standard cross-entropy and triplet loss of both modal-
ities, λ1 and λ2 are trade-off hyperparameters (empirically set them to 1.0).

4 Experiments

In this section, we conduct extensive experiments to provide a basic yet compre-
hensive evaluation on this new challenge problem. We report the results under
two experimental settings i.e., unsupervised VI-ReID (USVI-ReID, visible la-
bels are generated by SpCL [12]), semi-supervised VI-ReID (SSVI-ReID, with
ground-truth visible labels). For USVI-ReID and SSVI-ReID, any ground-truth
label of infrared images is inaccessible during the training process.

4.1 Experimental Settings

Datasets. The proposed methods are evaluated on two widely adopted bench-
marks SYSU-MM01 [34] and RegDB [22]. Specifically, SYSU-MM01 is a
large-scale dataset which is collected by four RGB and two infrared cameras
from both indoor and outdoor environments. It composed of 287,628 visible im-
ages and 15,792 infrared images for 491 different identities. RegDB is collected by
two aligned cameras (one visible and one infrared), and it includes 412 identities,
where each identity has 10 infrared images and 10 visible images.
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Evaluation Metrics. On both datasets, we follow the popular protocols [38]
for evaluation, in which cumulative match characteristic (CMC) and mean av-
erage precision (mAP) are adopted. SYSU-MM01 contains two different testing
settings, i.e., all-search and indoor-search mode. For all-search mode, the gallery
consists of all visible images (captured by CAM1, CAM2, CAM3, CAM4) and
the query is composed of all infrared samples (captured by CAM5, CAM6).
For indoor-search mode, images captured only from indoor scene are adopted,
excluding CAM4 and CAM5. On both search mode, the proposed method is eval-
uated under single-shot setting. For RegDB [22], we report the average result by
randomly splitting of training and testing set 10 times.

4.2 Implementation Details

Training. We implement our model using MindSpore and PyTorch on one
NVIDIA TITAN RTX. The batch size is fixed to 64 for all experiments. With
the pseudo labels, in a batch we sample 4 different identities, and each iden-
tity includes 8 visible images and 8 infrared images. The model is optimized by
Adam optimizer with an initial learning rate of 3.5×10−3. The learning rate is
incorporated with a warm-up strategy [20] and decays 10 times at the 20-th and
the 50-th epoch. The total of training epochs is set to 80. All the pedestrian
images are resized to 288×144. The margin ρ of triplet loss is set to 0.3. The
δ of OTLA is fixed to 25. In the training stage, the input images are randomly
flipped and erased with 50% probability, while visible images are extra randomly
grayscale with 50% probability.
Critical Architectures. We adopt ResNet-50 [13] pretrained on ImageNet [6]
as backbone, where last stride size of is set to 1. The modality classifier in DEN is
implemented with three FC layers and a BN layer [14] is added before the output.
The GRL [10] is a non-parametric module and γ = 2/(1 + exp(−τ iter

maxiter ))− 1
controls the scale of the reversed gradient. τ is fixed to 10 and maxiter is set to
10000. The iter linearly increases as the training goes on.

4.3 Main Results

We compare our approach with four related ReID settings to demonstrate its
effectiveness, i.e., fully-supervised VI-ReID (SVI-ReID), unsupervised VI-ReID
(USVI-ReID), unsupervised domain adaptation ReID (UDA-ReID) and unsuper-
vised learning ReID (USL-ReID). For UDA-ReID methods, we use ground-truth
labeled visible data as source domain and unlabeled infrared data as target do-
main. For USL-ReID methods, we use both unlabeled visible and infrared data
to train the model. The main results are shown in Tab. 1.
Comparison with Unsupervised Methods. H2H [16] is a representative
unsupervised VI-ReID method most relevant with our approach. However, it
ignores the rich annotated visible data and the heterogeneous pseudo labels are
not well aligned, leading to a inferior performance. Other unsupervised methods
are designed for single-modality ReID task, so it is somewhat unfair to directly
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Table 1. Comparisons with SOTA methods on SYSU-MM01 (single-shot) and RegDB,
including unsupervised domain adaptation ReID (UDA-ReID), unsupervised ReID
(USL-ReID), fully-supervised VI-ReID (SVI-ReID) and unsupervised VI-ReID (USVI-
ReID). All methods are measured by CMC(%) and mAP(%). † indicates we re-
implement the result with official code. ‡ indicates the results are copied from [16].

Settings
SYSU-MM01 RegDB

All Search Indoor Search Visible2Thermal Thermal2Visible

Type Method Venue Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

UDA-ReID

SSG‡[9] ICCV’19 2.3 12.7 - - 2.2 2.9 - -

ECN‡[48] CVPR’19 8.1 5.0 - - 1.9 3.2 - -

D-MMD†[21] ECCV’20 12.5 10.4 19.0 15.4 2.2 3.7 2.0 3.6

MMT†[11] ICLR’20 13.9 8.4 21.0 15.3 5.3 7.1 11.0 12.1

SpCL(UDA)†[12] NIPS’20 15.1 6.5 19.5 12.1 3.3 4.3 8.4 9.5

GLT†[44] CVPR’21 7.7 9.5 12.1 18.0 2.9 4.5 6.3 7.6

USL-ReID

BUC†[17] AAAI’19 8.2 3.2 12.5 6.0 4.7 4.5 8.8 6.0

SpCL(USL)†[12] NIPS’20 18.7 11.4 27.1 20.9 20.6 17.3 19.0 16.6

MetaCam†[36] CVPR’21 14.7 9.3 23.9 17.1 23.1 17.5 20.9 16.5

HCD†[46] ICCV’21 18.0 17.9 24.4 28.8 10.8 12.3 12.4 13.7

SVI-ReID

JSIA-ReID[29] AAAI’20 38.1 36.9 43.8 52.9 48.5 49.3 48.1 48.9
Hi-CMD[3] CVPR’20 34.9 35.9 - - 70.9 66.0 - -
AGW[39] TPAMI’21 47.5 47.7 54.17 63.0 70.1 66.4 70.5 65.9
NFS[2] CVPR’21 56.9 55.5 62.8 69.8 80.5 72.1 78.0 69.8
LbA[24] ICCV’21 55.4 54.1 58.5 66.3 74.2 67.6 72.4 65.5
CAJL[37] ICCV’21 69.9 66.9 76.3 80.4 85.0 79.1 84.8 77.8

MPANet[35] CVPR’21 70.6 68.2 76.7 81.0 83.7 80.9 82.8 80.7

USVI-ReID
H2H[16] TIP’21 25.5 25.2 - - 14.1 12.3 13.9 12.7
Ours - 29.9 27.1 29.8 38.8 32.9 29.7 32.1 28.6

SSVI-ReID Ours - 48.2 43.9 47.4 56.8 49.9 41.8 49.6 42.8

compare them, since most of them don’t consider the cross-modality discrepancy.
We report here because very few methods have studied this problem before.

Comparison with Unsupervised Domain Adaptation Methods. It ap-
pears that recent state-of-the-art UDA-ReID methods cannot effectively deal
with the huge modality discrepancy. Notice that the supervised signal used in
UDA-ReID is even stronger than ours, but the highest accuracy is much lower
than our method. That indicates our approach is able to learn robust multi-
modality representation, significantly outperforming all UDA-ReID methods.
On the other hand, USL-ReID methods appear to achieve better results than
UDA-ReID approaches. We conjecture this is because most UDA-ReID methods
[9,21,11,44] rely heavily on the labeled source domain which drives the model
to overfit on visible data. However, USL-ReID methods tend to fuse two modal
data so as to achieve better results than UDA-ReID methods.

Comparison with Fully-supervised Methods. Surprisingly, our approach
only with ground-truth visible data outperforms several fully-supervised VI-
ReID methods on SYSU-MM01 dataset, and achieves closed results on RegDB.
Such phenomenon indicates label information of infrared images could be learned
from optimal transport assignment. Besides, we should admit there is still a large
gap between our method and SOTA fully-supervised results.
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Table 2. Ablation study in terms of CMC(%) and mAP(%) on SYSU-MM01.

Order
Approach

All Search
USVI-ReID SSVI-ReID

LV-ReID LD La OTLA Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP

1 ✓ - - - 12.62 41.91 57.27 12.73 12.25 46.49 62.24 14.66
2 ✓ ✓ - - 16.62 49.91 64.53 15.94 23.69 59.56 73.10 24.71
3 ✓ - ✓ - 12.65 42.39 57.03 12.81 13.86 46.67 61.87 14.72
4 ✓ ✓ - ✓ 20.90 59.53 73.86 19.83 33.89 73.89 85.49 32.44
5 ✓ - ✓ ✓ 19.64 61.16 77.31 19.74 36.31 77.31 86.93 34.66
6 ✓ ✓ ✓ ✓ 29.98 71.79 83.85 27.13 48.15 85.30 92.64 43.86

4.4 Ablation Study

In this subsection, we conduct ablation study to show the effectiveness of each
component in our approach. We firstly clarify various settings. OTLA indicate
whether the OTLA mechanism is used. LV-ReID is visible basic ReID loss func-
tions defined in Sec. 3. As shown in Tab. 2, the main observations are:
(1) The modality classifier in semi-supervised setting works well, which brings
improvement of 11.44%@Rank-1 and 10.05%@mAP (see 1st row and 2nd row).
When combined with OTLA and La, it also boosts huge performance of unsu-
pervised setting (see 5th and 6th row).
(2) Though noisy in the first few epochs, the pseudo labels for infrared images
can be gradually rectified through the proposed OTLA (see Fig. 4 Left Upper).
It also lays a crucial and solid foundation, where removing this technique leads
to a dramatic performance drop (see 2nd row and 4th row, 3rd row and 5th row).
(3) Prediction alignment learning loss significantly boosts the performance when
combined with OTLA and LD (see Fig. 5, 4th row and 6th row). That indicates
a further promotion would be expected when aligning the predictions between
two modalities. It seems that the batch-level mix-up can eliminate the negative
effects brought by incorrect pseudo labels.

4.5 Discussion

Effects of RGB Source Domain. We analysis the effects of various source
RGB domains in SpCL (e.g., Market-1501 [45], DukeMTMC-ReID [25] and
MSMT17 [32]). The results are shown in Fig. 3 Right. X-axis ’SYSU’ indicates
we use the USL mode of SpCL to generate the pseudo labels and hence only the
SYSU-MM01 data is involved for training. It seems that using annotated visible
data achieves better results and Market-1501 is the most effective domain. The
reason and more discussion can be seen in supplementary materials.
Performance on SVI-ReID Setting. Since modality classifier and prediction
alignment loss can also be deployed under fully-supervised setting, we conduct
additional experiments to study their effects. As shown in Fig. 3 Left, we observe
that modality classifier seems to be helpless under fully-supervised setting, while
PAL loss consistently gains obvious promotion. It appears that some tricks in
semi-supervised or unsupervised setting may fail in supervised setting, which
motivates us to highlight their differences.
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Fig. 3. Left: The supervised ablation results of discriminative loss LD and prediction
alignment loss La (Bmeans baseline model). Right: The effects of source RGB datasets.

Fig. 4. Left upper: infrared pseudo label assignment accuracy of semi-supervised set-
ting produced by OTLA epoch by epoch. Right upper: the elapsed time of OTLA
and total training process in each epoch on SYSU-MM01 and RegDB. Bottom: the
assigned infrared label distribution as the training goes on (green area means pseudo
label distribution w/ OTLA, red area means pseudo label distribution w/o OTLA).

OTLA Time Analysis. As illustrated in the Fig. 4 (b), we summarize the
total training time and OTLA running time for each epoch. For SYSU-MM01
and RegDB, the average elapsed time of OTLA is 6.832s and 0.353s, which
has merely occupied 2.293% and 0.639% of the total training time per epoch.
Therefore, the computational cost of OTLA seems to be negligible.

Label Distribution of Infrared Images. As shown in Fig. 4(a), the pseudo
label accuracy of semi-supervised setting is iteratively improved as the training
continues. It can achieve about 50% accuracy on SYSU-MM01 and 30% accuracy
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Fig. 5. Visualization of self-attention matrix in prediction alignment learning with
random batches. (a) Visible to Infrared. (b) Infrared to Infrared. The upper figures are
ground-truth binary matrices and the bottom are our learned attention map in PAL.

on RegDB. From Fig. 4(c), it seems that OTLA can alleviate the degeneration
of the classifier as training goes on. Without OTLA the degradation of classifier
is significant, i.e., the pseudo label distribution is sharp during the training,
indicating that the classifier can not distinguish the identities of infrared images.
Visualization of Prediction Alignment Learning. We visualize the atten-
tion map to help understand the influence of prediction alignment learning. As
shown in Fig. 5, we draw the attention coefficients AV 2I = softmax(Sv(Sr)T )
and AI2I = softmax(Sr(Sr)T ) in PAL. To show its effectiveness, we also visu-
alize the binary matrices CV 2I and CI2I using ground-truth labels in the upper
of Fig. 5, where 1 (fill color) indicates two samples share same identity, and 0
(not fill color) otherwise. From this figure, we can find that the learned attention
matrices are consistent with the binary ground-truth label accuracy matrices,
which indicates our prediction alignment mechanism can more or less filter the
incorrect labels and align the cross-modality predictions.

5 Conclusion

In this paper, we raise a novel label-efficient learning pipeline for VI-ReID, where
the visible labels can be produced by UDA-ReID approach with the help of rich
annotated RGB datasets. In this setting, we propose a Discrepancy Elimina-
tion Network to reduce modality gap. An Optimal-Transport Label Assignment
mechanism is designed to uniformly assign labels for infrared images and thereby
connect two kinds of modal data. We also propose a Prediction Alignment Learn-
ing to eliminate the negative effect brought by incorrect assignment. Extensive
experimental results highlight the state-of-the-art performance of our approach.
Finally, we hope our study can help researchers to understand the VI-ReID
problem from a new perspective.
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