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A More Ablation Study

We provide additional ablation study on the dataset scale, the CNN architecture
and the fitting degree of the CNN in this section. All models with our method
are trained for 100 epochs and the baseline models are trained for 300 epochs.
The detailed settings are same as the ablation study in Section 4.3 of the paper.

Dataset Scale In order to investigate the performance of the proposed local-
ity guidance on datasets of different sizes, we train DeiT-Tiny [9] on subsets of
CIFAR-100 [6] training set with different proportions. The experimental results
are shown in Table I and Fig. I. We find that the performance of the VT is ex-
tremely sensitive to the dataset scale, i.e., the performance degenerates rapidly
when the dataset getting smaller. Compared with the VT baseline, the improve-
ment of our locality guidance can always be observed regardless of the dataset
scale, and is more significant with less training samples. This means that our
method mitigates the sensitivity to the dataset scale to some extent.

Table I. Ablation study on dataset scale. The performance of the VT is sensitive
to dataset scale and our method mitigates the sensitivity to some extent.

Training Size CNN Acc.
VT Acc.

Baseline +Lguidance ∆

5,000 10% 47.26 23.24 45.01 +21.77
12,500 25% 58.88 34.75 61.11 +26.36
25,000 50% 66.80 50.37 70.64 +20.27
37,500 75% 69.75 58.90 73.70 +14.80
50,000 100% 70.43 65.08 77.29 +12.21

⋆ Equal contribution.
⋆⋆ Corresponding author: Li Yuan, Jie Chen
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Fig. I. Accuracy as a function of data ratio for different model. The perfor-
mance of the VT is more sensitive to dataset scale than the CNN. Our method can
always improve the VT regardless of the dataset scale, and can mitigates the sensitiv-
ity.

CNN Architecture We adopt different commonly used CNNs as guidance
models to further verify the generalizability of our method. Specifically, we em-
ploy four state-of-the-art CNN architectures, i.e., VGG [8], ResNet [2], Xcep-
tion [1] and DenseNet [3]. Each of them has distinct characteristics, for example,
straightforward structure in VGG, residual connection in ResNet, separable con-
volution in Xception and dense connection in DenseNet. As for the model size,
we adopt lightweight ResNet-56 [2] and DenseNet-40 [3] as the official design. For
VGG and Xception, we modify the down-sampling operation and the number of
channels in their original implementation to adapt 32× 32 resolution of the in-
put images. The experimental results given in Table II prove that our method is
applicable to different types of CNNs, and the VT with our method can surpass
the corresponding guidance models in this framework.

Table II. Ablation study on different CNNs. * indicates that we modify the
original structure. Our method is applicable to different types of CNNs.

CNN Arc. CNN Acc. VT Acc.

None - 65.08
VGG*[8] 75.65 76.44

ResNet-56[2] 70.43 77.29
Xception*[1] 74.05 75.35

DenseNet-40[3] 72.80 77.16

Fitting Degree of the CNN. We explore the influence of the fitting degree
of the CNN by training the CNN with different training schedule. From the ex-
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perimental results in Table III, it is obvious that the proposed method improves
the VT a lot even if the CNN only gets a little knowledge about dataset, re-
flecting that the CNN can provide guidance for the VT robustly. However, it is
reasonable that this guidance will produce ambiguity to a certain extent when
the CNN can not fully understand the input.

Table III. Ablation study on fitting degree of the CNN. Our method can
improve the VT even if the CNN can not understand images well.

CNN Epochs CNN Acc. VT Acc.

None - 65.08
20 48.17 69.85
50 61.20 72.46
100 66.91 74.71
300 72.80 77.29

The Type of Guidance Model We conduct experiments for utilizing pre-
trained VT (PVT [10]) and lightweight VT trained from scratch (Mobile ViT [5])
as guidance model and show the accuracy as well as the speed for training the
target VT (DeiT [9]) in Table IV. Among them, we find that locality guidance
through tiny CNN (ResNet-56) is the most efficient solution.

Table IV. Ablation study on the type of guidance model. The guidance through
lightweight CNN is more efficient.

Guidance Model Time/iter. VT Acc.

None 0.17s 65.08
Pre-train(PVT) 0.37s 74.74
Lite VT(Mobile ViT) 0.29s 75.88
Lite CNN(ResNet-56) 0.19s 77.29

Loss function Following recent attempts on feature-based knowledge distil-
lation, as well as the stability and easy implementation, we simply choose L2

loss in our work. Here we also conduct experiments on different loss variants,
as given in Table V, which reflects the robust of the proposed locality guidance
framework.
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Table V. Ablation study on loss function. Results reflect the robust of the pro-
posed method.

Loss Function VT Acc.

None 65.08
KL 77.41
L1 77.27
L2 77.29

B Implementation Details

The factor β described in Equation (6) plays a role on balancing imitation and
self-learning, which can be affected by model structure and dataset. However,
through extensive experimentation, we find that it is stable in most cases. There-
fore, we set β to 2.5 in most cases, except that we set it to 0.5 for PVTv2 on
Flowers and Chaoyang dataset, and for ConViT on Chaoyang dataset. In addi-
tion, for better comparing the complexity of models used in experiments, we list
the number of parameters as well as the FLOPs of each model in Tabel VI.

Table VI. Summary of model complexity. We list the lightweight guidance CNNs,
VTs and the CNN baseline in sequence.

Model #Params FLOPs Model #Params FLOPs

CNN Guidance Models Transformers
DenseNet-40 1.06M 0.28G DeiT-Tiny 5.7M 1.3G
VGG* 2.82M 0.37G T2T-ViT-7 4.2M 1.1G
Xception* 0.97M 0.06G PiT-Tiny 4.9M 0.7G
ResNet-20 0.28M 0.04G PVT-Tiny 13.2M 1.9G
ResNet-56 0.86M 0.13G PVTv2-B0 3.4M 0.6G
ResNet-110 1.74M 0.26G ConViT-Tiny 6.0M 1.0G

CNN Baseline ResNet-18 11.7M 1.8G
ResNet-50 25.6M 4.1G ResNet-101 44.7M 7.9G

C Comparing with Dual Network Structure

In this section, we show a comparison with the dual network structure (i.e.,
Conformer [7]) on tiny dataset, which also combines the VT with a full CNN.
The differences of the two methods are shown in Fig. II. The main differences
lies in two aspects. a) During training, the bidirectional data flow between the
two branches is constructed in Conformer, while no data flow between the two
branches exists in our method. b) During inference, the transformer branch and
the CNN branch produce the result together in Conformer, while the VT outputs
the prediction individually in our method.
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Fig. II. Main differences between the dual network structure [7] and our
framework. a) The dual network structure. The CNN branch is needed during both
training and inference. A bidirectional data flow between the two branches is con-
structed. b) Our framework. The CNN branch is only needed for calculating guidance
loss and the transformer decides by itself during both training and inference.

We compare Conformer with two VTs with our method, all of them have
comparable model size. Trough experimental results in Table VII, we show that
although it performs well on medium-size datasets, the dual network structure
is not very applicable for tiny datasets. It may be caused by the interaction
between the two branches, through which the transformer branch may takes
harmful information for the CNN branch.

Table VII. Comparison with dual network structure. The dual network struc-
ture can not perform well on tiny datasets.

Model Epoch
Top-1 Acc.

CIFAR-100 Flowers

CvT-13 [4] 100 73.50 54.29
T2T-ViT-14 [11] 100 65.16 31.73

Conformer-Tiny [7] 100 64.62 55.64
Conformer-Tiny [7] 300 71.39 66.45

CvT-13 + Lguidance 100 76.55 65.13
T2T-ViT-14 + Lguidance 100 77.84 67.71
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D Offline Processing

Offline processing can further reduce the computational cost in our method.
Specifically, the feature maps produced by the CNN are stored so that the for-
ward process of the CNN can be executed only once. To keep the alignment of
spatial sizes, we do the same data augmentation (e.g., resize and crop) as the
training images on their corresponding feature maps when training. However,
there are still misalignments caused by color transformation in data augmen-
tation, making it impossible to obtain same feature maps as online processing.
The experimental results are shown in Table VIII. We keep all settings the same
with the main results, except that the features of the CNN are stored instead
of forwarding the CNN once in each training iteration. It can be concluded that
the misalignment caused by color transformation from data augmentation leads
to a decrease on performance. However, the improvement is still apparent with
the offline processing. The offline processing provides a trade-off between speed-
ing up the training process and higher accuracy, which can be used when the
computational resources are extremely limited.

Table VIII. Results on offline processing. The improvement is still apparent with
the offline processing.

Model Lguidance Offline Top-1 Acc. Model Lguidance Offline Top-1 Acc.

DeiT-Tiny
65.08

PiT-Tiny
73.58

✓ 78.15 ✓ 78.48
✓ ✓ 76.09 ✓ ✓ 77.48
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