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Abstract. Few-shot class-incremental learning (FSCIL) has been pro-
posed aiming to enable a deep learning system to incrementally learn
new classes with limited data. Recently, a pioneer claims that the com-
monly used replay-based method in class-incremental learning (CIL) is
ineffective and thus not preferred for FSCIL. This has, if truth, a signif-
icant influence on the fields of FSCIL. In this paper, we show through
empirical results that adopting the data replay is surprisingly favorable.
However, storing and replaying old data can lead to a privacy concern. To
address this issue, we alternatively propose using data-free replay that
can synthesize data by a generator without accessing real data. In ob-
serving the the effectiveness of uncertain data for knowledge distillation,
we impose entropy regularization in the generator training to encourage
more uncertain examples. Moreover, we propose to relabel the generated
data with one-hot-like labels. This modification allows the network to
learn by solely minimizing the cross-entropy loss, which mitigates the
problem of balancing different objectives in the conventional knowledge
distillation approach. Finally, we show extensive experimental results and
analysis on CIFAR-100, miniImageNet and CUB-200 to demonstrate the
effectiveness of our proposed one.

1 Introduction

Recently, there has been a tremendous success in using deep learning technologies
[18] in large-scale image recognition tasks. Despite the remarkable success, they
usually train a neural network to learn a mapping on a large amount of data.
The model is then fixed and cannot be changed according to the users’ needs. In
contrast, humans can continually learn new knowledge throughout their lifetime.
Inspired by this human capability, class-incremental learning (CIL) has been
introduced to allow the neural network to continually update after new classes
or environments are encountered. Despite the practical value of CIL, it usually
suffers severely from the well-known catastrophic forgetting issue [13], especially
when the old model is fine-tuned only with a large amount of new data. CIL
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assumes that we have enough training data for each new class. In real-world
applications, this assumption is not practical since it is expensive to collect a
large number of examples for each new class. In this paper, we consider the more
realistic setting, i.e., few-shot class incremental learning (FSCIL). FSCIL aims
to design learning systems that can incrementally learn new classes with limited
data. This problem is more challenging than CIL since a system can easily overfit
very few new examples and severely forget the old knowledge.

Fig. 1. The comparison between TOPIC [27]
and three replay-based methods, i.e. iCaRL [22],
NCM[15] and DeepInversion [30]. Our approach is
also included for reference.

A naive way to address the
FSCIL problem is to directly
apply the commonly used ap-
proaches in the CIL, such as
data replay [22]. Current litera-
ture demonstrates several ways
for addressing the FSCIL prob-
lem, but none of them at-
tempts to apply the replay-
based method. One possible
reason is that the pioneer [27]
emphasizes the defectiveness of
adopting data replay in ad-
dressing FSCIL. The authors
denote that vanilla data re-
play can cause a significant
problem of imbalance [15] and
thus is not preferred in FS-
CIL as new classes are learned
with very limited data. Ex-
tensive experiments also shows
that several replay-based CIL

approaches performs extremely bad in FSCIL. The strong conclusion might pre-
vent the researchers from exploring the line of approaches further. Intuitively,
data replay is conceptually suitable for addressing the kind of incremental learn-
ing problem. To confirm our intuition, we re-implement several replay-based
CIL methods under the setting of FSCIL and carefully tune their performance
to the best. Somewhat surprisingly, we find through experimental results that
the affirmation of the TOPIC [27] is not true. Figure 1 presents the comparison
between TOPIC and replay-based approaches, from which we can observe that
all the replay-based approaches outperform TOPIC [27] by a significant margin.
This evidence attracts our interest in exploring a specific design for FSCIL using
data replay. However, another concern might arise as the replay of previous real
data is not permitted in many computer vision applications since it can violate
legality concerns.

Recently, DeepInversion [30] has been proposed in addressing CIL without
violating the legality issues. It learns to optimize random noises to photo-realistic
images by inverting a reference network without accessing the real data. However,
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this approach leverages a constraint that generated images should strictly belong
to a particular class with high confidence. In FSCIL, since the incremental classes
only provide limited data examples, the network’s predictions of these few-shot
learned classes are usually uncertain. Therefore, it can be expected that only
a small collection of images that represent part of the class identities can be
generated for replay using [30]. As a result, DeepInversion is not suitable for
FSCIL.

In this paper, we propose a replay-based method in FSCIL under the data-
free setting. In observing the fact that distilling knowledge using uncertain data
is more effective since they are usually close to the model’s decision boundaries
[20], we introduce an entropy-regularized method to explicitly encourage the
replayed data to be close to decision boundaries given by the reference model.
This is achieved by maximizing the information entropy during the training of
the generator for data replay. This allows us to produce more uncertain data for
effective knowledge distillation to mitigate forgetting. However, we find in our
experiments that using vanilla knowledge distillation in FSCIL is highly non-
trivial, which is consistent with the analysis in TOPIC [27]. Even though we can
carefully tune the current replay-based method to achieve satisfying performance
(as is shown in Figure 1), tuning the hyper-parameters is a cumbersome task
in general. For example, the hyper-parameter to weight for cross-entropy loss
and knowledge distillation loss should be precisely selected. Because there is
a dilemma to balance between the contribution of cross-entropy loss and KL
divergence loss when using replayed data to distill knowledge from an old model
to a new one. Specifically, the learning rate required to minimize cross-entropy
loss is usually large, while a large learning rate can potentially cause instability
when minimizing KL divergence. To address this issue, we propose re-labelling
the generated data samples by one-hot-like labels using the old model and adding
the generated data pairs together with novel real data to the current dataset.
Then, we can solely adopt the cross-entropy loss to alleviate forgetting and
simultaneously learn new classes.

In summary, we have the following contributions:

– Through experiments, we point out a misleading conclusion in the current
literature that data replay is not preferred for FSCIL. Our re-implementation
of several replay-based approaches demonstrates that data replay is actually
effective.

– We propose to introduce data-free replay in handling FSCIL problem. Thanks
to the nature of data-free replay, we can replay observed data without vio-
lating legality concerns.

– We improve the current data-free replay method by introducing an entropy
term to penalize the generator’s training and introduce re-label generated
data to avoid the problem of balancing between different loss functions in the
typical knowledge distillation. Our method demonstrates that it is possible
and even preferred to adopt a replay-based method in FSCIL.

– Extensive experiments show that we achieve state-of-the-art performance for
the FSCIL setting.
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2 Related Works

2.1 Class-Incremental Learning

Recently, extensive attention has been attracted to enabling artificial intelli-
gent systems to learn incrementally. In this paper, we focus on methods that
address the class-incremental learning problem. iCaRL [22] incrementally learn
nearest-neighbor classifier to predict novel classes and store real data of old
classes against forgetting via knowledge distillation. However, this approach vi-
olates data privacy. EEIL [3] design an end-to-end learning system for incre-
mental learning, where a cross-entropy loss and knowledge distillation loss are
respectively adopted to learn novel classes to preserve old knowledge. NCM [15]
introduces cosine normalization to balance between the classifier for previous
and novel data. Besides, inspired by the remarkable progress in self-supervised
visual representation learning [1,2,6,7,19], [12] propose to enable continual learn-
ing without labeled data. In this paper, we aim to address a more realistic and
challenging problem, i.e., few-shot class incremental learning (FSCIL). Unlike
the typical class-incremental learning with numerous data for new classes’ train-
ing, there are limited samples to be provided for training new classes under
FSCIL.

2.2 Few-shot Class-incremental Learning

The problem of few-shot class-incremental learning (FSCIL) is firstly introduced
in TOPIC [27]. It proposes a single neural gas (NG) network to stabilize fea-
ture typologies for observed classes and implement to grow NG to adapt to new
training data. Recently, many works have been proposed aiming to address this
problem. [32] propose a self-promoted prototype refinement mechanism to ex-
plicitly consider the dependencies among classes, which results in an extensible
feature representation. To further leverage the benefits from re-projected fea-
tures, a dynamic relation projection module is designed to update prototypes
using relational metrics. [8] introduce a mixture of subspace-based method with
synthetic feature generation, where the catastrophic forgetting problem is han-
dled using a mixture of subspace and synthetic feature generation can help allevi-
ate the over-fitting problem of novel classes. [31] introduce a pseudo incremental
learning paradigm incorporating meta-learning approach to enable the graph
network to update the classifier according to the global context of all classes. [9]
proposes a bi-level optimization technique to learn how to incrementally learn
in the setting of FSCIL. Despite the success of these approaches, we notice that
the replay-based method is under-studied.

2.3 Data-free Knowledge Distillation

Data-free replay has been proven effective in dealing with the incremental learn-
ing problem. There are two lines of works that synthesize data of old classes. The
first line of research [10,25,24] requires a generator to be trained on the original
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image samples. However, this setting is not preferred as the generator must be
stored and transmitted to the next training session. Our method is proposed fol-
lowing the second line of generative replay that only uses a trained network as a
reference to synthesize pseudo images. DeepInversion [30] propose to ’invert’ an
already-trained network to synthesize images of particular classes starting from
random noises. [4,20] alternatively uses a GAN architecture to synthesize images,
where they fix a trained network as a discriminator and optimize a generator to
derive images that can be adopted to distill knowledge from the fixed network
to a new network. Recently, [26,30,29] have integrated the idea of generative
reply into addressing class-incremental learning problem using Deep-Inversion.
However, due to the more challenging setting of FSCIL, these approaches cannot
be simply migrated to handle the few-shot scenario.

3 Preliminaries

In this section, we formally describe the problem setting of few-shot class-
incremental learning (FSCIL). We also introduce data-free replay, which is the
basis of our approach.

3.1 Problem Setting

FSCIL aims to enable a learning system to continually learn novel classes from
very few data examples. The problem is defined as follows. Let {D0

train,D1
train,

...,DN
train} and {D0

test,D1
test, ...,DN

test} respectively denote the collection of train-
ing datasets and testing datasets, where N is the total number of learning ses-
sions. The class labels of each session are disjoint. Following the setting in [27],
D0

train is the base training dataset. The base training set contains a large num-
ber of classes where each class has enough training samples. For each subsequent
session i (i = 1, 2, ..., N), the corresponding training set Di

train only contains a
small number of classes where each class only has very few training examples. At
the ith session, only Di

train can be accessed for training. After the i-th session,
the model is evaluated on its performance in recognizing all object classes that
have appeared so far. In other words, the test dataset Di

test contains examples
of all object classes that have appeared in {D0

train,D1
train, ...,Di

train}.

3.2 Data-free Replay

Here, we briefly show the procedures of training a generator for synthesizing
critical samples of observed classes.

Given a trained model T (·; θ), our goal is to train a generator G(·; θG) that
can synthesize critical samples for replay purpose. We follow [20] to train the
generator by including an auxiliary model A(·; θA) as a helper to assist the con-
vergence of the generator. Specifically, there are two phases in training the gener-
ator, i.e., the knowledge transferring phase and the generator evolving phase. In
the knowledge transferring phase, the generator takes a noise vector z ∼ N (0, I)
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Fig. 2. Overview of our system. We first train a generator to synthesize old samples
given an old model. Then, the replayed data together with novel data are used to train
a new model.

and outputs a generated image x. Then, each sample x is fed into the origi-
nal model T (·; θ) and the auxiliary model A(·; θA), where the input sample is
mapped to logit o and oA (i.e., inputs of softmax function), respectively. We op-
timize on the auxiliary model to let its outputs match the original model using
the following loss:

LA = ||T (G(z))−A(G(z))||22 (1)

Here, the primary purpose of this update is to enable the auxiliary model to be
close to the original model. Then we conduct the generator evolving phase. In this
phase, the goal is to optimize the generator so that it can produce more critical
samples for knowledge transfer. To achieve this, we optimize the generator using
the following loss:

LG = −||T (G(z))−A(G(z))||22 (2)

By maximizing the distance between the outputs of the old model and the
auxiliary model, we push the generator to produce samples that are hard to be
learned by the auxiliary model. We alternate between the knowledge transferring
phase and the generator evolving phase. The generator can finally produce more
critical examples for transferring knowledge. Note that we adopt mean square
error (MSE) as objective in both phases other than KL divergence adopted in
[20], because logit matching has better generalization capacity [16].

In [20], the authors also indicate that the uncertain samples (i.e. those with
less confident predictions) are usually close to the boundary decisions of the
original model. This property has important implication in FSCIL as models
learned with few-shot examples often assign low confidence to an input image. By
observing that, we propose using information entropy to quantify the confidence
and impose an entropy regularization to explicitly encourage the generator to
produce more uncertain data.

4 Methodology

In this section, we present our data-free replay approach in addressing the FSCIL
problem. Figure 2 shows an overview of our approach at a particular session i.
Given the old model from the previous session, we first “invert” the old model to
obtain a generator. The generator is used to synthesize examples of classes that
have appeared in the previous sessions {0, 1, ..., i− 1}. These synthetic examples
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Fig. 3. The average entropy of network outputs in different classes. Classes 0-59 are
the base classes, where all data samples are available for training. Classes 60-99 are
the incrementally learned classes, where each class has 5 training images. The few-shot
learned classes (60-99) have higher entropy than the regularly trained classes (0-59).
The experiment is conducted on CIFAR-100.

will be used for replay in order to alleviate the catastrophic forgetting issue. The
training at the i-th session is performed using both those synthetic examples and
the training examples for new classes in this session. However, we have found that
a naive application of data-free replay does not work well since the synthesized
examples are often far away from any decision boundaries. As a result, they do
not have much influence on the learned model. Instead, we introduce entropy-
regularized data-free replay to explicitly encourage the generator to synthesize
examples that are close to decision boundaries. Then, we show our incremental
learning algorithm that uses the replayed data samples.

4.1 Entropy-regularized Data-free Replay

Information entropy is a well-defined measurement for uncertainty. High entropy
denotes low confidence and vise versa. In a few-shot incrementally trained model,
the high entropy response of input usually can be identified as the case that the
input is on its decision boundary [20] or is learned in a few-shot incremental
session (i.e. not in base classes). To demonstrate this phenomenon, we show the
output entropy of a continually learned model [31] in Figure 3. We can observe
that the classes trained using a large amount of data (0-59) maintain a low
entropy, while all few-shot learned classes (60-99) have a high entropy on test
images. This indicates that the network cannot assign confident predictions to
images of few-shot learned classes. Motivated by this observation, we propose
an entropy regularization to guide the generator to synthesize uncertain images.
Specifically, we optimize the generator to maximize the entropy of predictions
from the original model. we measure the Shannon entropy of each prediction
using:

H(ŷ) = −
∑
c

p(oc) log p(oc) (3)

where c denote the class index and p(oc) represents the probability. Since our
objective is to maximize the entropy of the teacher’s prediction to the generated
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(a) (b)

Fig. 4. Toy example to illustrate the generated data (yellow crosses). (a) shows the
data generated using a normal generator. (b) shows the case when the generator is
trained with entropy constraint. Red, green, and blue points are the real data. The
background shows the decision boundaries of the model trained on real data.

image, during the generator evolving phase, Eq. 2 becomes:

L∗
G = −||T (G(z))−A(G(z))||1 −H(T (G(z))) (4)

We use the toy experiment proposed by [20] to illustrate the effects of our
entropy regularization in Figure 5. Thanks to the proposed entropy regulariza-
tion, we can observe that the generated samples (yellow crosses) are more likely
to lie on the high-entropy regions (decision boundaries).

4.2 Learning Incrementally with Uncertain Data

Given an old model learned on previous session i − 1 with parameters θi−1,
our goal is to add linear classifier nodes parameterized by θl

∗

i for new session
and update the evolved model Ti(·; θi) using both generated data and novel
data. Note that a new model on current session i is initialized by the following
parameters:

θi = {θbi−1, θ
l
i−1, θ

l∗

i } (5)

where θbi−1 and θli−1 are respectively the parameters of old backbone and old

linear classifier, i.e., θi−1 = {θbi−1, θ
l
i−1}. θl

∗

i is randomly initialized.
Intuitively, with the old data samples replayed by our generator, we can

go against forgetting in incremental learning by distilling the knowledge from
the old model to a new one. A simple way to achieve this is that we can let
a new model imitate the output of the old one given generated data following
the vanilla knowledge distillation pipeline. However, it is non-trivial to adopt
the knowledge distillation method in addressing the FSCIL problem directly.
Although we show in Figure 1 that using vanilla knowledge distillation with
replayed data can achieves good performance, we also find in the process of
re-implementation that the performance of current replay-based approaches is
very sensitive to the selection of hyper-parameters. A careless tuning of these



FSCIL via Entropy-Regularized Data-Free Replay 9

replay-based methods can easily result in the opposite conclusion (TOPIC [27]
denotes that data replay is not preferred.). For example, since the cross-entropy
loss and knowledge distillation loss are less balanced and require careful hyper-
parameter tuning, it makes the training process less stable, especially under the
few-shot scenario. To alleviate the burden, we introduce to re-label the generated
data with one-hot-like labels. Then, we can use the generated data together with
the novel data to train an evolved network by minimizing cross-entropy solely.
Specifically, unlike the vanilla knowledge distillation, we alternatively assign hard
labels to the generated images and eliminate the KL divergence loss. Given a
synthetic image x∗ and its pseudo label Ti−1(x

∗) produced by the old model, we
assign a one-hot label y∗ ∈ {0, 1, 2, ..., C− 1} to x∗ using the following equation,
where C is the total number of classes.

y∗ ← argmax(Ti−1(x
∗)) (6)

The generated image pairs {X∗, Y ∗} as the representative of old classes can
be added to the dataset of the current session. We thus form a new training set
on the current session by:

Di
train∗ = Di

train ∪ {X∗, Y ∗} (7)

Then, we can sample data pair {x, y} from Di
train∗ to train current model

Ti(·; θi) using cross-entropy LCE(s, y), where s denotes the final probability vec-
tor given by cosine classifier [15]. Note that re-labeling uncertain data with
one-hot-like labels does not change the fact that the uncertain data is hard to
be classified and important for transferring knowledge from an old model to a
new one. It is shown in [5,11] that using uncertain data (hard data) can improve
training efficiency.

It is also worth mentioning that most of the current methods [32,8] conduct
incremental learning on a fixed backbone θb0 that is trained on the initial ses-
sion. The trivial solution is sometimes beneficial because updating the backbone
parameters in FSCIL can let the network easily over-fit on a few examples and
forget the old mapping. However, keeping the backbone fixed can usually lead
to defective model generalization on novel classes, as the backbone cannot pro-
vide discriminative features to novel classes. Thanks to our data replay, with the
availability of both replayed data and novel data, we can fine-tune all the old
parameters {θbi−1, θ

l
i−1} and update new task-specific parameters {θl∗i } using:

{θbi−1, θ
l
i−1} = {θbi−1, θ

l
i−1} − λ1

∂LCE(s, y)

∂{θbi−1, θ
l
i−1}

θl
∗

i = θl
∗

i − λ2
∂LCE(s, y)

∂θl
∗
i

(8)

where λ1 and λ2 denotes the learning rates for fine-tuning old parameters and
updating new parameters. After training, the new model of current session is
parameterized by θi = {θbi , θli}, where θbi = θbi−1 and θli = {θli−1 θ

l∗

i }. Due to the
page limit, the overall algorithm is shown in the Appendix.
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5 Experiments

In this section, we show the performance and several properties of our method
through extensive experiments.

5.1 Datasets

We follow TOPIC [27] to conduct experiments on three widely used datasets
including CIFAR-100 [17], miniImageNet [23] and CUB-200 [28].
CIFAR-100 consists of 60,000 32 × 32 color images in 100 classes, where the
base training set contains 60 classes and incremental datasets are the collection
of images from the remaining 40 classes. Each incremental dataset includes a
total of 5 classes where each class has 5 training images.
MiniImageNet contains 100 classes that are sampled from the ILSVRC-12
dataset [23]. All images are 84 × 84 color images. The first 60 classes form the
base dataset, and the remaining 40 classes are divided into 8 incremental sessions.
Each incremental session is a 5-way 5-shot task.
CUB-200 is a classification dataset containing 200 bird species. There are a
total of 11,788 images for 200 classes, where the first 100 classes form our base
dataset and the remaining 100 classes form 10 incremental sessions. In each
incremental session, each class has 10 images with a resolution of 224× 224.

5.2 Implementation Details

Backbone network. We implement our classification network by selecting
from the off-the-shelf structures following TOPIC [27]. Specifically, we adopt
ResNet20 [14] as the backbone for the experiments on CIFAR-100 and use
ResNet18 [14] for the experiments on miniImageNet and CUB-200. We use the
same network structure for the main network T and the auxiliary network A.
The generator of DCGAN [21] is adopted for replaying observed data in all the
experiments.

Training details. For all the experiments, we follow [27] to conduct training
on base classes for 100 epochs using SGD with momentum and a batch size
of 128. The learning rate is initialized to 0.1 with decay by a factor of 0.1 at
epoch 60 and 70. We train the generator for 300 epochs at the beginning of each
incremental session using Adam optimizer. The initial learning rate for updating
the auxiliary network and the generator is set to 0.001 and 0.1, respectively.
Learning rate decay is used on epochs 100, 150, and 200 by a factor of 0.1 for
the auxiliary network and the generator. We then conduct incremental learning
on a new model initialized by the old one using both the generated data and
novel data. The quantity of generated data is the same as the number of training
samples for all experiments. The learning rate λ1 of backbone and old classifier
is set to 0.0001, λ2 = 0.1 for new nodes. Each incremental learning stage lasts
for 40 epochs, with the learning rate decayed at 10-th and 30-th epochs. Data
augmentations, such as random crop, random scale, and random flip, are adopted
at training time.
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Table 1. Comparison with the state-of-the-art methods on CIFAR-100, miniImageNet
and CUB-200 datasets. Top rows are the CIL methods, and bottom rows are the
FSCIL methods. * indicates our implementation of the methods under the FSCIL
setting. + indicates the results reported in TOPIC [27]. Other results are copied from
the corresponding papers.

C
IF
A
R
-1
0
0

Methods
Sessions Average Final

0 1 2 3 4 5 6 7 8 Acc Impro.
iCaRL+ [22] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 32.87 +36.41
iCaRL* [22] 74.4 67.67 63.26 59.68 56.29 53.48 50.93 48.76 46.37 57.87 +2.9
NCM+ [15] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 34.22 +36.60
NCM* [15] 74.4 66.9 64.13 60.25 58.37 54.87 51.74 49.53 47.21 58.60 +2.17
DeepInv* [30] 74.4 68.22 64.37 59.09 56.87 52.26 50.77 48.21 47.08 57.92 +2.85
TOPIC+ [27] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 42.62 +20.77
Zhu et al.[32] 64.10 65.86 61.36 57.34 53.69 50.75 48.58 45.66 43.25 54.51 +6.89
Cheraghian et al.[8] 62.00 57.00 56.7 52.00 50.60 48.8 45.00 44.00 41.64 50.86 +8.5
CEC [31] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 59.53 +1.00
Ours 74.4 70.2 66.54 62.51 59.71 56.58 54.52 52.39 50.14 60.77 -

m
in
iI
m
a
g
eN

et

Methods
Sessions Average Final

0 1 2 3 4 5 6 7 8 Acc Impro.
iCaRL+ [22] 61.31 46.32 42.49 37.63 30.49 24.00 20.89 18.80 17.21 33.24 +31.0
iCaRL* [22] 71.84 63.82 59.43 56.88 53.14 50.06 48.37 45.89 44.13 54.84 +3.18
NCM+ [15] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 30.83 +34.04
NCM* [15] 71.84 66.52 62.18 57.93 54.02 50.89 47.26 45.83 42.36 55.43 +2.59
DeepInv* [30] 71.84 64.87 61.43 58.46 56.62 52.21 49.42 47.26 45.06 56.35 +1.67
TOPIC+ [27] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64 +23.79
Zhu et al.[32] 61.45 63.80 59.53 55.53 52.50 49.60 46.69 43.79 41.92 52.75 +6.29
Cheraghian et al.[8] 61.40 59.80 54.20 51.69 49.45 48.00 45.20 43.80 42.1 50.63 +6.11
CEC [31] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75 +0.58
Ours 71.84 67.12 63.21 59.77 57.01 53.95 51.55 49.52 48.21 58.02 -

C
U
B
-2
0
0

Methods
Sessions Average Final

0 1 2 3 4 5 6 7 8 9 10 Acc Impro.
iCaRL+ [22] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 36.67 +31.23
iCaRL* [22] 75.9 63.32 60.08 57.89 53.89 51.76 48.88 47.76 44.92 43.18 41.37 53.54 +7.98
NCM+ [15] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 32.49 +32.52
NCM* [15] 75.9 65.89 57.73 52.08 48.36 43.38 39.59 36.02 33.68 32.01 30.87 46.86 +14.66
DeepInv* [30] 75.90 70.21 65.36 60.14 58.79 55.88 53.21 51.27 49.38 47.11 45.67 57.54 +3.98
TOPIC+ [27] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 43.92 +17.58
Zhu et al.[32] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 49.32 +15.06
Cheraghian et al.[8] 68.78 59.37 59.32 54.96 52.58 49.81 48.09 46.32 44.33 43.43 43.23 51.84 +9.16
CEC [31] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 +0.11
Ours 75.90 72.14 68.64 63.76 62.58 59.11 57.82 55.89 54.92 53.58 52.39 61.52 -

5.3 Re-implementation of Replay-based Methods.

To confirm our intuition that data replay can be used in FSCIL, we re-implement
two replay-based approaches (i.e., iCaRL[22] and NCM [15]) under our setting.
Table 1 presents the comparison between our obtained results (marked with
*) and that reported in TOPIC [27] (marked with +). The comparison shows
that the performance of replay-based CIL methods is actually competitive under
the FSCIL setting. The two methods outperform several state-of-the-arts by a
significant margin. For example, the NCM [15] outperform TOPIC [27], zhu et
al. [32], and Cheraghian et al. [8] by 17.71%, 3.83% and 5.44% on CIFAR-100.
This fact indicates that data replay is indeed preferred and can potentially be
adopted to address the FSCIL problem.
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Table 2. Ablation studies on CIFAR-100. We research the effects of adopting entropy
regularization (ER), re-labeling (RL) and backbone fine-tuning (BF).

ER RL BF
Sessions Average

0 1 2 3 4 5 6 7 8 Acc
✓ ✓ 74.4 70.02 66.24 62.27 59.38 56.01 53.76 51.78 49.50 60.39

✓ ✓ 74.4 69.32 65.78 61.65 58.32 55.27 53.19 50.88 48.92 59.74
✓ ✓ 74.4 69.45 65.92 61.59 58.66 55.53 53.24 51.14 49.13 59.90
✓ ✓ ✓ 74.4 70.2 66.54 62.51 59.71 56.58 54.52 52.39 50.14 60.77

5.4 Main Results and Comparison

We conduct comparison with several methods, including three replay-based meth-
ods (i.e., iCaRL[22], NCM [15] and DeepInversion (DeepInv) [30]) and four FS-
CIL methods (i.e., TOPIC [27], Zhu et.al[32], Cheraghian et.al[8] and CEC [31])
. Table 1 summarizes the top-1 accuracy and average accuracy on all three
benchmarks. Our main observations are as follows.

– Our method outperforms all the state-of-the-art on all three benchmarks
across all sessions. The comparisons with the most recent method [8] illus-
trate the superiority of our proposed one. Specifically, our method achieves
a final accuracy improvement over Cheraghian et al. [8] by 8.5%, 6.11% and
9.16% on CIFAR-100, miniImageNet and CUB-200, respectively. We out-
perform the existing state-of-the-art method (CEC [31]) by 1.00%, 0.58%,
and 0.11%. The superior performance of our approach further proves the
effectiveness of adopting data replay in handling FSCIL problem.

– Despite replay-based methods performing well, we still outperform them by
a large margin. Since all the replayed-based methods are proposed to handle
class-incremental learning and not specifically designed to address FSCIL,
the performance of them is somewhat limited. In contrast, our method can
successfully incorporate data replay in FSCIL.

5.5 Analysis

Importance of different components. We firstly conduct ablation studies
to reveal the effectiveness of different components in our proposed method. To
be specific, we analyze the effects of entropy regularization (ER) in Section 4.1,
re-labeling (RL) in Section 4.2 and backbone fine-tuning (BF) in Section 4.2.
The results are illustrated in Table 2. It can be observed that the method with
all the proposed components outperforms the others. By further comparing the
full solution to the methods that are removed by one component, we can have
several observations. 1) By removing the entropy regularization (shown in the
first row in Table 2), we notice that the final accuracy decreases. This shows
that it is desirable to generate uncertain data for replay. 2) By removing the
re-labeling of generated data and alternately following the vanilla knowledge
distillation using KL divergence as distillation loss, we can observe from the
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(a) (b)

Fig. 5. (a) shows the label distribution of training data and generated data. (b) shows
the average accuracy of the proposed method given different number of replayed data
per batch.

second row of Table 2 that the performance drops significantly. This indicates the
original knowledge distillation method is not appropriate for solving the specific
problem. 3) We can see the benefit from updating our backbone parameters.
Usually, simply updating the parameters of the backbone network is harmful,
as the backbone can quickly over-fit on the few samples during incremental
learning. Our data-free replay naturally inherits the advantage of fine-tuning,
which allows a model to learn new classes as well as avoid forgetting. Thus, we
can observe the improvements of adopting backbone fine-tuning by comparing
the last two rows in Table 2.

Label distribution of generated data. As is denoted in Sec 4.1, our pro-
posed entropy regularizer can encourage the generator to synthesize much data
of few-shot learned classes. However, since the incremental classes are trained
using very limited data samples, it is somewhat doubtful that the generator can
synthesize sufficient data for the new classes. To address this concern and further
disclose the property of our approach, we show in Figure 5(a) to illustrate the
label distribution of the real data and our generated data. Besides, we also in-
clude the results produced by the generator without using our proposed entropy
regularizer. It can be observed that using entropy regularizer can encourage the
generator to synthesize more samples belonging to the few-shot learned classes.
In contrast, the generator trained without entropy regularizer tends to synthesize
more images belonging to base classes.

Analysis of number of generated data. Figure 5(b) shows the impact of
adopting different numbers of generated samples in our proposed method. It il-
lustrates that the performance of our method is maximized when the quantity of
replayed data is the same as the training data (in CIFAR-100, each incremental
session provides 25 training images.). Using smaller or larger quantities of the
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replayed data can jeopardize the overall performance mainly because of the ad-
verse effects of the imbalance [15]. A small number of replayed data might not
be sufficient against forgetting, while too much replayed old data can potentially
hinder the network from adapting to new classes. Note that we do not fix the
input noise vectors across batches. This allows the generator to synthesize more
diverse data samples of the observed classes.

Analysis of data-free replay. In addition to the adopted method [20],
DeepInversion [30] provides an alternative solution to data-free replay. Here,
we study the effect of replacing our adopted replay method with DeepInversion.

Method Session 0 Session 8 Average Acc Final Impro.
DeepInv 74.4 47.08 57.92 +2.85

DeepInv+Ours 74.4 48.48 59.11 +1.66
Ours 74.4 50.14 60.77 -

Table 3. The impact of adopting DeepInversion
(DI) as data-free replay method.

Table 3 summarizes the results.
First, by comparing the first row
with the second row, we can
observe that using DeepInver-
sion with our re-labeling and
backbone fine-tuning can signif-
icantly boost its performance.
Second, the comparison of the
last two rows illustrates that our
data replay approach is more

suitable for FSCIL. Specifically, our method outperforms the case using DeepIn-
version by 1.66% in terms of final accuracy. The potential issue of DeepInversion
is that it encourages the generated data to have confident predictions by the
old model. Due to the fact that certain predictions are relatively rare under
the few-shot setting, the generated data might be ineffective. Another issue we
have observed for DeepInversion is that the data generation process is time-
consuming.This is also confirmed in [30]. In contrast, our generator can replay
data very efficiently once it is trained to be ready.

6 Conclusion

In this paper, we first disclose that data replay can be adopted in addressing
FSCIL problem. Then we propose a novel approach to denote the effectiveness
of using data replay in FSCIL. To address the privacy concern of vanilla data
replay, we introduce the data-free replay scheme for synthesizing old samples.
By observing that the prediction of the classification model becomes uncertain
under the few-shot incremental setting, we propose an entropy regularization
on the training of the generator. We then design a new method to learn from
the uncertain data via re-labeling against forgetting issues. Extensive compar-
ison with the state-of-the-arts illustrates that our approach achieves the best
performance for avoiding forgetting and quickly adapting to new classes.
Limitation. Difficulties might occur when training the generator on large-scaled
datasets, potentially jeopardizing replayed data quality.
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