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Abstract. Humans can continuously learn new knowledge. However,
machine learning models suffer from drastic dropping in performance
on previous tasks after learning new tasks. Cognitive science points out
that the competition of similar knowledge is an important cause of for-
getting. In this paper, we design a paradigm for lifelong learning based
on meta-learning and associative mechanism of the brain. It tackles the
problem from two aspects: extracting knowledge and memorizing knowl-
edge. First, we disrupt the sample’s background distribution through
a background attack, which strengthens the model to extract the key
features of each task. Second, according to the similarity between in-
cremental knowledge and base knowledge, we design an adaptive fusion
of incremental knowledge, which helps the model allocate capacity to
the knowledge of different difficulties. It is theoretically analyzed that
the proposed learning paradigm can make the models of different tasks
converge to the same optimum. The proposed method is validated on
the MNIST, CIFAR100, CUB200 and ImageNet100 datasets. The code
is available at https: // github.com/bhrqu/ ARI.

Keywords: Lifelong Learning, Meta Learning, Background Attack, As-
sociative Learning

1 Introduction

A standard benchmark for success in artificial intelligence is the ability to emu-
late human learning. However, at the current stage, the machine does not really
understand what it has learned. It may just do rote memorization, which over-
looks a critical characteristic of human learning: being robust to changing tasks
and sequential experience. Future learning machines should be able to adapt to
the ever-changing world. They should continuously learn new tasks without for-
getting previously learned ones. Although many learning paradigms have been
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Fig. 1: In lifelong learning, the knowledge in the present stage competes with
the previous memory and interferes with the previous learning, especially when
the knowledge is similar. Therefore, we attack similar contents in both tasks to
change the data distribution and avoid retroactive interference.

Background
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proposed, such as lifelong learning (LLL) [2,21], these problems have not been ad-
dressed well. Many researchers are brute-force and idealized in the construction
of model training. In pedagogy and psychology, human learning and the cogni-
tive process have been widely discussed, among which there are many theories
worthy of reference. The learning process of new tasks results in catastrophic for-
getting [10] of previous knowledge due to retroactive interference [25], which
means that the content of later learning competes with the previous memory and
interferes with the previous learning. This kind of competition causes confusion
and forgetting of knowledge. This problem can be solved by capturing critical
points of knowledge and removing redundant content to avoid the competition
of knowledge, which is termed filter efficiency [27] in pedagogy. In the computer
vision task of classification, different categories of images might have the same
or similar backgrounds, such as a bicycle and a dog on a lawn. Machine learning
models may mistake lawn features for bicycle features or dog features, which
creates unnecessary memory competition in learning new knowledge.

In order to solve the problem of forgetting in the process of learning new
tasks in a deep learning model, we propose a lifelong learning paradigm based
on meta-learning and associative learning. We divide the model into two stages:
extracting intra-class features and fusing inter-class features. In the first stage,
we hope to avoid retroactive interference by reducing the competition between
old and new knowledge. We need to accurately capture the critical knowledge
of new tasks and focus on learning it, which can effectively avoid confusion
of knowledge. In this way, incremental knowledge can complement rather than
compete with existing knowledge. It is an anthropomorphic process that asso-
ciates the original images with the foreground of the images, i.e., only learning
the critical knowledge of the new task as a complement to the knowledge base.
In this way, model information redundancy can be avoided, which is consistent
with the machine learning theory in [19]. In order to realize this idea, we present
a background attack method to attack the samples adversarially. Through the
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spatial attention mechanism, the importance map of the image can be obtained.
We believe that areas of low importance level in an image do not belong to the
necessary information of its class, which may cause information redundancy and
competition between classes as shown in Fig. 1. Therefore, we carry out an ad-
versarial attack on non-critical areas, (i.e., the background) and blur the data
distribution in these areas, thus weakening the model’s learning of unimportant
information.

In the second stage, we combine the existing model with the model just
learned. It is different from conventional incremental learning that updates the
pre-trained model directly, which is easy to cause catastrophic damage to the
model’s weight distribution. We organize the knowledge to learn into different
tasks, just like the chapters of a textbook. Each task is learned separately, and an
independent model is outputted. Specifically, when learning a new task, a small
number of samples are extracted from previous tasks for review, and then the
models corresponding to these tasks are fused, which is consistent with Ausubel’s
theory [3] that points out that the most important thing in learning is whether
the knowledge learned can form a system, i.e., to complete the deduction of
knowledge from the individual to the whole. Following this process, we chose
a meta-training based method to generate models, which will be described in
Sec. 3. To this end, we propose a novel task-specific fusion method, and show
that our training process can ensure that these different models are converged
to a common optimal one to reduce the information loss. Our contributions are
summarized as follows:

— We combine the adversarial attack with meta-learning to extract features.
The adversarial attack is performed on the image background to reinforce
the model’s attention to critical features.

— Based on human cognition, a new lifelong learning paradigm, Anti- Retroactive
Interference for lifelong learning (ARI), is established to ensure that the ma-
chine learning model can integrate incremental knowledge more effectively. It
is analyzed that the fusion method in ARI can ensure that the task-specific
models are converged to the same optimal model to reduce the information
loss caused by fusion.

— The proposed method is validated on the MNIST, CIFAR100, CUB200 and
ImageNet100 datasets, and state-of-the-art results are obtained on all the
benchmarks.

2 Related Work

2.1 Lifelong Learning

So far, lifelong learning methods can be divided into three groups. The first one
is based on regularization. LwF [10] preserves the ancient knowledge by adding
a distillation loss. In addition, the distillation loss is implemented by [22,4,36] to
reduce forgetting. [30,36] propose bias correction strategies whereby the model
can perform equally well on current and older classes by re-balancing the final
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fully-connected layer. EWC [13] computes synaptic importance offline by calcu-
lating a Fisher information matrix. E-MAS-SDC proposed by [32] estimates the
drift of previous tasks during the training of new tasks to make semantic drift
compensation. RRR in [7] tries to save the correct attentions of previous images
to avoid the attentions being affected by other tasks. The second group is about
expanding the model with progressive learning and designing binary masks that
directly map each task to the corresponding model architecture. MARK [12]
keeps a set of shared weights among tasks. These shared weights are envisioned
as a common knowledge base used to learn new tasks and enriched with new
knowledge as the model learns new tasks. In [1], each convolutional layer is
equipped with task-specific gating modules, selecting specific filters for a given
task. The shortcomings of these methods are the extra model complexity and
the need for a practical scheme to calculate the mask precisely. The third group
is replay based and it gets popular recently. Replay based approaches are ideally
suitable for lifelong learning in which tasks are added in turn. iTAML [21] intro-
duces a meta-learning approach that seeks to maintain an equilibrium between
all the encountered tasks, in the sense that it is unbiased towards class samples
of majority and simultaneously minimizes forgetting.

2.2 Adversarial Training

Though the success of deep learning models has been demonstrated on various
computer vision tasks, they are sensitive to adversarial attacks [9]. An imper-
ceptible perturbation added to inputs may cause undesirable outputs. The Fast
Gradient Sign Method (FGSM) is proposed in [8] to generate adversarial ex-
amples with a single gradient step. To defend the attacks, many methods have
been proposed to defend against them. The most common method is adversarial
training [18,15,26] with adversarial examples added to the training data. In this
paper, we introduce adversarial training to the meta-learning process to obtain
a robust model that can extract good features from very few available samples.

3 Proposed Method

We adopt a task-incremental learning setup where the model continuously learns
new tasks, each containing a fixded number of novel classes. During the training
process of task n, we have access to M,,_; and D,, where M[,,_; is an exampler
memory containing a small number of samples for old tasks, and D,, is the
training data for task n, which contains pairs (x;,¥;), with x; being an image
of class y; € R,. Using M,,_; to train task n is a form of meta-learning. We
define the set of classes on task n as Ry, = {rn,1,7n.2, .-, "'n,m , Where 7y, 1 is the
first class in task n, and m is the number of classes in task n. Different tasks do
not contain the same class: R; N Ry = @,t # s. After learning all the tasks, we
evaluate the learned model on all tasks R = U; R;.
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Algorithm 1: Associative learning with background attack

Input: Training data x;

Hyper-parameters: Epoch number S, ¢ = %;
Initialize model parameters 0 ;

Output: The network model;

# Train an architecture for S epochs:

t=0;

while (¢t < S5) do

# First inference:

Input x;

According to [29], calculate the spatial attention A;
Return A;

#Back propagation:

According to Eq. 2, calculate x’;

# Second inference:

Input x’;

#Back propagation:

Update parameters 6;

t<—t+1.

end

3.1 Extracting Intra-Class Features

Lifelong learning requires the model to retain previous knowledge and learn
new knowledge. However, if the previous and new knowledge have similar char-
acteristics, it is easy to cause forgetting. Data are labeled for different classes
according to different object features, but the background information is ignored,
which may mislead the model’s incremental learning. In order to eliminate simi-
lar characteristics between different classes and prevent retroactive interference,
we design associative learning with background attack. This approach involves
two processes. In the first process, the model learns from the original image to
obtain the background region and conduct adversarial attack on it. This attack
can disturb the distribution of the background and strengthen the feature ex-
traction on the critical region of the image. In the second process, the model is
trained with the attacked images. This approach associates the objects with dif-
ferent backgrounds, which avoids the negative effect of background on few-shot
learning. Therefore, the model can effectively avoid over-fitting by associative
learning.

In adversarial training, we need to add perturbation to the images, which
can increase the robustness of the model. However, now we use a background
mask B to guide the model to attack the background regions of the images. The
mask B has three forms:

1
B=1-A B=1-AcA B= . (1)
where A € R**® denotes the spatial attention obtained by [29], o denotes the

Hadamard product, B € R*** is the mask for focusing on the background, and
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Fig.2: We design a serial learning structure for lifelong learning. A small-scale
rehearsal memory of the previous tasks is also used to fine-tune the new model
to adapt to the new task.

s X s is the size of the image. In order to widen the distance between important
and unimportant information in the attention and guide the background attack,
we use the three forms of B in Eq. 1, making the unimportant regions (corre-
sponding more to the background) prominent. Therefore, the attack guided by
B tends to be more selective on the background.

We formulate the background attack model as:

</ :X+BOC:X+BO(ESgn(va(0)Xay)))v (2)

where x € R*%% is the clean input and x’ is the adversarial counterpart. ¢ denotes
the global perturbation of the clean input x which is designed based on [3]. y
denotes the label of the input x. € is the perturbation bound, 8 denotes the
parameters of the deep model, and G is the cross-entropy function.

The algorithm of the associative learning with adversarial background attack
is listed in Algorithm 1, which associates clean input x with various adversarial
inputs x’. After the adversarial training with x’, the model learns to be robust
to the distribution shift [34] of background and thus can focus more on the fore-
ground (object) features, reducing forgetting as shown in Fig. 1. Experimental
verification is shown in Sec. 4.4.

3.2 Generating and Fusing Task-Specific Models

The adversarial images after the background attack are used as input to partici-
pate in training. Lifelong learning is a scenario in which tasks are entered serially.
The base model should contain information about all learned tasks after learning
a new task, as shown in Fig. 2, in which ¢,, denotes the base model after learning
task n. The process of learning a new task is embedded in the task-specific up-
dating. When updating in a new task, our meta-learning approach involves three
phases: (1) generating task-specific models for all the seen tasks, (2) fusing the
task-specific models into the base model, and (3) meta-training the base model,
as shown in Fig. 3.
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Algorithm 2: Training in task n
Input: Dy, My,_1, ¢n_1;
Hyper-parameters: task number n, epoch number S, image number J; of

task i, i € [1,n];
Output: The base model ¢,;
# Train an architecture for S epochs;
¢b ¢n 1, t= 1
while (t < S) d
fori=1 to n do
e, <ot ((1);
loss + Eq. 7;

end

o Optimizer(qﬁb* loss)

¢f «— FuSiOIl[gﬁh 7¢na ]1

¢b<_7¢f+(1_ ) b 17

t—t+1;

end

én + Meta train (¢3).

Generating task-speciﬁc models. We randomly sample a mini-batch
B, = {(xk,yk) , from the current task n training data D, and the mem-
ory bank M, _1, Wthh contains a few samples for old tasks. x; and y are the
training images and their labels, respectively, and K, is the image number of
the batch. Therefore, the mini-batch of data for task-specific updates, as shown
in Fig. 3, is represented as:

B, ~D, UM, _;. (3)

We sample the training data according to the tasks to construct IB%L =

{(x j,yj) , for training the task-specific models ¢;, ¢ € [1,n], where J; is
the image number of task 4. The loss function in the task-specific updating is
the binary cross-entropy loss with a regularizer from dif, which is defined next
in Eq. 6. The binary cross-entropy is:

J?

L(¢:({x3}), {v;}) IL > (i -log (¢: (x5)) + (1 = y) - log(1 — log(¢s(x%)))).
(4)

This helps to obtain task-specific models ¢; , thus providing a better estimate for
gradient updates in the current task-specific training (described next) to obtain
a base model. The training process of the specific tasks, i.e., phase 1 in Fig. 3, is
shown in the for-loop of Algorithm 2, which generates n independent models. In
Algorithm 2, the Optimizer denotes some optimizer such as SGD. The function
Fusion is described next (Eq. 9). ¢! is the task-specific model i at epoch ¢, and
¢4 is the base model at epoch t. All these models ¢1, ..., ¢, ¢p have the same
structure.

j=1
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Fig. 3: Taking task 3 for example, the task-specific updating is divided into three
phases. In phase 1, task-specific model training is carried out. It is notewor-
thy that only a small amount of previous task samples are used in the current
training. In phase 2, task-specific models are fused. In phase 3, meta-training is
performed on the fused model to obtain the incremental base model of task 3.

Fusing task-specific models. We combine the task-specific models ¢! gen-
erated during phase 1 to the base model ¢,, in phase 2 of Fig. 3. We denote the
set of the models at epoch t as:

D' = {¢f, ..., &y '} ()

Due to the task-specific models being generated by different tasks, there may
be large differences between their parameter values, which causes information
loss in model fusion. We adopt a new strategy to use the Manhattan distance
between a task-specific model and the base model as the fusion weight. When
the gap between the two models is larger, the fusion weight is larger. The weight
coefficients are calculated as follows. First, we define

0 dio - dint1

d271 0 d2,n+1

dif = , (6)

dpt1,1 dpgr2 -+ 0

where d; 5 denotes the Manhattan distance between ¢! and ¢%, and dy 41 de-
notes the Manhattan distance between ¢! and ¢Zﬁl. Considering the goal of
model fusion is to minimize the differences among task-specific models and pro-
duce a fused model that performs well across tasks, we formulate the loss as
two parts, the regularizer based on dif and the binary cross-entropy as shown
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in Eq. 4.
i1 i1
loss =L (55,5) + > ldasl*. (7)
a=1b=1
To ensure that the sum of weights equals 1, each row of dif is transformed
by the softmax function as:

* * *
d1,1 d1,2 T d1,n+1
* * *
dif* d2,1 d2,2 d2,n+1
if* = .

d;+1,1 d;+1,2 d:L+1,TL+1
Finally, the fused model is formulated as:

n+1

éf’]} = Z(d:;-s-l,z‘ ’ QSD’ ()

i=1

where ¢l | = #E~!. The reason we take the elements of the last row of dif* as
the weights is that the base model could adopt the knowledge from the task-
specific models as much as possible. Thus more weights should be given to the
task-specific model with a larger difference from the base model.

The fusion model is combined with gbf;l to form a new base model ¢}

¢ =705+ (1 =), (10)
where 7y is a hyper-parameter that controls the speed of learning new information,
i.e., for higher v the model prefers to learn new information and forget the old,
and with smaller « it learns little new knowledge.

Due to the regularization from dif, after a sufficient number of iterations,
in the sense that ¢ is large enough, the differences among the task-specific and
base models {¢}, ..., ¢%, #: 7'} is decreasing gradually and all the models tend to
have the same weights. In the supplementary material, we provide evidence to
analyze that all the models converge to the same optimal weights. Moreover, an
experiment is conducted in the ablation study to verify the convergence. When
all the models, ¢1, ..., ¢n, ¢p are ideally optimized to the same model, they share
the same knowledge, thus eliminating information loss in the task-specific model
fusion.

Meta-training the base model. In phase 3 of Fig. 3, take a small number
of samples from all learned tasks to form M,,. M, is used for meta-training of qu
to further optimize the distribution of model parameters. After meta-training,
¢ is the model ¢,, that learned task n.

4 Experiments and Results

We conduct experiments on several common datasets, including MNIST [33],
CIFAR100 [14], CUB200 [28] and ImageNet100 which is a subset of ISLVRC
2012 [23]. We also perform ablation study to analyze different components of
our approach.
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4.1 Datasets

MNIST. MNIST contains 60k images of handwritten numbers in the training
set and 10k samples in the test set. All the images are 28x28 pixels. In our
experiment, MNIST is divided into 5 tasks with 2 classes per task.

CIFAR100. CIFAR100 consists of 60k pictures of 32x32 color images from
100 classes. Each class has 500 training and 100 testing samples. 100 classes are
split into 10 tasks with 10 classes in each task.

CUB200. CUB200 contains 200 classes of birds with 11,788 images in total.
The training set and the test set consist of 5994 and 5794 images, respectively.
The 200 bird classes are split into 6 tasks in our experiment.

ImageNet100. ImageNet100, as a subset of ILSVRC2012, contains 100
classes and 130 thousand samples of 224 x 224 color images. Each class has about
1,300 training and 50 test samples. We split ImageNet100 into 10 tasks.

4.2 Implementation Details

Network architecture. For MNIST, a two-layer MLP is selected as the model.
For CIFAR100 and CUB200, the network is (ResNet — 18(1/3)) which is a
reduced version of ResNet-18. For ImageNet100, the original ResNet-18 is used
in the experiment. All the architectures used are added the spatial attention
mechanism after the first layer.

Training details. For MNIST, each incremental training has 20 epochs. The
initial learning rate is set to 0.1 and reduced to 1/2 of the previous learning rate
after 5, 10, and 15 epochs. The weight decay is set to 0, the batch size is 256,
and vy = 0.1. The optimizer is SGD.

For CIFAR100, each incremental training has 70 epochs. The initial learning
rate starts from 0.01 and is reduced to 1/5 of the previous learning rate after 30
and 60 epochs. The weight decay is set to 0, the batch size is 512, and v = 0.1.
The optimizer is set to RAdam[21].

For CUB200 and ImageNet100, each incremental task is trained for 100
epochs. The learning rate starts from 0.1 initially and is reduced to 1/10 of
the previous learning rate after 40, 70, and 90 epochs. The weight decay is set
to 0, the batch size is 512, and v = 0.1. The optimizer is RAdam[21].

For a fair comparison, we set the rehearsal memory size as 2,000 for MNIST
and CIFAR100. For CUB200 and Imagenet100, the memory size is set as 3000.
The perturbation bound € = % and step size of % is set for all the benchmarks.

4.3 Results and Comparison

In this section, we report the results on MNIST, CIFAR100, CUB200 and Ima-
geNet100, and compare our ARI method with the state-of-the-art methods.
Small Scale. The compared typical lifelong learning approaches include
Memory Aware Synapses (MAS) [2], LwF [16], Synaptic Intelligence (SI) [33],
Elastic Weight Consolidation (EWC) [13], Gradient Episodic Memory (GEM) [17],
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Deep Generative Replay (DGR) [241] and Incremental Task-Agnostic Meta learn-
ing ITAML) [21]. As shown in Fig. 4, ARI outperforms all the others. Its average
classification accuracy of 5 tasks is around 98.91%.

80.009 4.64°
97.95% 98.91% % ’ *
100.00% 92.20% 91.24% 70.00% 60.50%
50%
90.00% 60.00%
80.00%
50.00%
70.00% ) 38.34%
60.00% 4000%
50.00% 30.00% 23.60% 22.30%
40.00% 20.00%
30.00% 24.17% 10.00%

19.52% 19.67% 19.80%

20.00%
10.00%

0.00%

EEN & & ,VF& &

) ) Fig. 5: The average classification ac-
Fig.4: Comparison results on the curacy on CUB200, with 6 tasks
MNIST datéset' +7 indicates that learned incrementally. “+” indicates
the method is memory-based. that the method is memory-based.

Medium Scale. ARI attains significant advantages on CIFAR100 compared
with other state-of-the-art approaches. For the 10-task lifelong learning, as shown
in Table 1 ARI achieves the classification accuracy of 80.88% which surpasses
all the previous methods.

Table 1: Comparison among different lifelong learning methods on CIFAR100.

The accuracy of task ¢ is the average accuracy of all 1,2, ..,t tasks.
Dataset ~ Methods Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
DMC[35] 88.11% 76.30% 67.53% 62.19% 57.85% 52.87% 48.59% 43.88% 40.32% 36.28%

LwF [16] 89.30% 70.13% 54.25% 45.78% 39.83% 36.08% 31.67% 28.86% 24.37% 23.86%

ST [33] 88.85% 51.76% 40.35% 33.66% 32.01% 29.87% 27.71% 25.97% 24.31 23.51%

EWC [13] 88.98% 52.37% 48.37% 38.26% 31.64% 26.14% 21.88% 19.94% 18.76% 16.03%
CIFAR100 MAS [2] 88.16% 42.31% 36.16% 35.89% 33.29% 25.97% 21.77% 18.84% 18.11% 15.86%

RWalk [5] 89.57% 55.12% 40.19% 32.54% 29.13% 25.89% 23.61% 21.84% 19.32% 17.91%
iCARL [22] 88.74% 78.13% 72.39% 67.23% 63.69% 60.18% 56.35% 54.38% 51.87% 49.46%
Bic [30] - 84.70% - 71.60% - 63.68% - 58.12% - 53.74%
iTAML [21] 89.15% 89.03% 87.32% 86.18% 84.31% 82.12% 80.65% 79.06% 78.42% 77.79%
ARI 88.60% 86.90% 85.77% 84.55% 83.10% 81.75% 81.57% 80.98% 80.20% 80.88%

We calculate the metrics BWT [17] and FWT [17] to measure forgetting and
learning. As shown in Table 2, although the BWT value of GEM is the highest,
its accuracy (65.4%) is much lower than ours (80.88%). As mentioned in [17],
the BWT and FWT of two methods can indicate their performances only when
they have similar accuracies.

We also evaluate ARI’s efficiency on CIFAR100. The memory complexity
is similar to other memory-based methods. Its extra memory addition is the
dictionary to hold the parameters of the specific models. This extra memory is
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Table 2: Comparison of forgetting metrics on CIFAR100.
UCIR GEM PODNet[6] iTAML iTAML+RRR ARI

BWT -85% 1.2% -16.3% -11.5% -8.5% -7.5%
FWT -5.56% 0.47% -5.58%  0.14% 0.77% 1.18%

only about 100MB, which is negligible compared with the memory requirement
during training (7200MB). Its time complexity increases by 20% due to the
background adversary. The CIFAR100 experiment takes 3.3 hours by one TITAN
XP when total epochs=70 and batch size=512.

In Fig. 5, We compare different methods on CUB200 with 6 incremental tasks
where BiC [30] and ColIL [37] are memory-based methods. ARI surpasses CoIL
by 14.14%, which illustrates that ARI is less prone to catastrophic forgetting.

Large Scale. We compare ARI with the state-of-the-art algorithms on the
large scale dataset ImageNet100. The comparison results are listed in Table 3,
where Mem% denotes the proportion of the memory size M in the Imagenet100
training set. ARI outperforms Fixed representations (FixedRep) and other meth-
ods of lifelong learning. ARI increases the accuracy on ImageNet100 by 5.22%
(from 74.10% to 79.32%).

Table 3: Comparison of different approaches on ImageNet100.

Datasets Methods Accuracy Mem%
iCaRL [22] 63.50% 2%
UCIR [11] 69.09% 2%
ImageNet100 MARK [12] 69.43%  10%
DER [31] 66.70% 2%
RPSnet [20] 74.10% 2%

ARI 79.32% 3%

The above results illustrate ARI’s consistent effectiveness and superiority on
small, medium, and large scale datasets over other methods.

4.4 Ablation Study

In this section, we conduct extensive experiments to verify the effects of the
proposed background attack and task-specific model fusion.

Similar characteristics lead to forgetting. First we provide a toy exper-
iment to demonstrate that retroactive interference leads to forgetting, as shown
in Fig. 6. We construct a dataset with 10 categories, each containing 100 train-
ing and 50 test images. We replace the training image backgrounds with similar
backgrounds but do not change the test images. We form 5 tasks, each with 2
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Average acc: 86.2

BWT: -9.25 BWT: -1.75

Fig. 6: Similar characteristics lead to the forgetting of lifelong learning.

categories. Average accuracy and BWT are evaluated after all tasks are trained,
and the result is compared with its counterpart from the original training images
with different backgrounds. The results show that similar characteristics cause
forgetting.
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Fig.7: The impacts of various types Fig. 8: The classification accuracy in life-
of background mask on the lifelong long learning process on CIFAR100. The

learning process on CIFAR100. The baseline is the same model but without
baseline is the model without the at- the attack and with average model fu-
tack. sion.

The effects of different B. During the adversarial training process, we
apply different ways to make background attacks. We set the mask B as (4),
(1 —A) and (1 — Ao A), and perform experiments respectively. As shown in
Fig. 7, the performance varies according to the background mask B. The results
performed by (1 — A o A) are better than other methods. In order to analyze
the cause of the various impact, we randomly sample 5 attention masks and list
their distributions in Table 4. Since the masks have values close to 0, the attack
with B = (%) would be so huge that it decreases the robustness of the model.
Moreover, because the values are closer to 1 than to 0, B = (1 — Ao A) can
widen the distance between foreground and background more effectively than
B =1 — A. In our experiments, the attack using B = (1 — A o A) performs
the best, meaning that it can guide background attack more effectively. The
visualization results of A and B are presented in the supplementary material.
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The effects of model fusion. To verify the effect of our proposed model
fusion method, we compare the lifelong learning results with and without our
model fusion on CIFAR100 while keeping the other settings unchanged. The
results are shown in Fig. 8. It could be observed that our fusion operation makes
the learning better incrementally. To verify whether the task-specific models
tend to be similar, we test the values of dif. In Fig. 9, we intercept the 90 —
100 epochs on the CUB200 benchmark. The task number n equals 6 as shown in
Eq. 6. The vertical axis represents the distances between task-specific models and
the base model. As the training progresses, the distance gradually converges to 0.
Through our model fusion method, different task-specific models can converge to
the optimal one, thus eliminating information loss and retroactive interference in
the task-specific model fusion, which illustrates the effectiveness of our method.

300

Table 4: We conduct 5 tests and analyze 20
the data distribution of A. std denotes 200
the standard deviation. The majority of |
the values are closer to 1 than to 0. 100 ‘,,’

50

testl test2 test3 testd  testh . as:
[0,0.3) 2.03% 1.19% 4.22% 2.62% 1.72% 9 91 92 93 94 95 9% 97 98 99 100
[0.3,0.5) 7.62% 5.86% 17.43% 12.62% 4.65% —diy dz7 dy; dy7 — ds7 — dg;7
[0.5,0.7) 75.03% 29.42% 59.59% 55.43% 81.93%
[0.7,1] 15.32% 63.54% 18.76% 29.33% 11.70% Fig.9: The distance between task-

CUB200.

5 Conclusion

Lifelong learning aims to learn a single model that can continuously adapt to
the new knowledge without overriding existing knowledge. We develop a meta-
learning approach to train a base model which can be efficiently optimized for
lifelong learning. First, a background attack method is introduced to extract
critical features and avoid retroactive interference. Then, an adaptive weight fu-
sion mechanism is presented according to the distances between the base and
the task-specific models. Our experiments demonstrate consistent improvements
across a range of classification datasets, including ImageNet100, CUB200, CI-
FAR100, and MNIST.
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