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Abstract. A good similarity metric should be consistent with the hu-
man perception of similarities: a sparrow is more similar to an owl if
compared to a dog but is more similar to a dog if compared to a car.
It depends on the semantic levels to determine if two images are from
the same class. As most existing metric learning methods push away
interclass samples and pull closer intraclass samples, it seems contra-
dictory if the labels cross semantic levels. The core problem is that a
negative pair on a finer semantic level can be a positive pair on a coarser
semantic level, so pushing away this pair damages the class structure
on the coarser semantic level. We identify the negative repulsion as the
key obstacle in existing methods since a positive pair is always posi-
tive for coarser semantic levels but not for negative pairs. Our solution,
cross-level concept distillation (CLCD), is simple in concept: we only
pull closer positive pairs. To facilitate the cross-level semantic structure
of the image representations, we propose a hierarchical concept refiner
to construct multiple levels of concept embeddings of an image and then
pull closer the distance of the corresponding concepts. Extensive exper-
iments demonstrate that the proposed CLCD method outperforms all
other competing methods on the hierarchically labeled datasets. Code is
available at: https://github.com/wzzheng/CLCD.

1 Introduction

Measuring the similarity between images is a crucial step in the field of computer
vision. Modern methods use deep neural networks such as Convolutional Neural
Networks (CNNs) [43,48,22] or Vision Transformers (ViTs) [12,33,7] to extract
an embedding vector to represent an image for similarity computing. The de-
sign of the model architecture is crucial, but how to train this model matters
equally. As a widely used learning paradigm, deep metric learning aims to learn
a discriminative embedding by reducing the distance between samples from the
same class and enlarging the distance between samples from different classes,
which has benefited various tasks including image retrieval [45,38,30,13], face
recognition [23,41], and person re-identification [42,51,66,5].
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Fig. 1. The motivation of the proposed CLCD method. Conventional deep metric
learning pulls closer samples from the same class and pushes away samples from dif-
ferent classes. This results in conflicts if we consider the class of images from different
semantic levels. A pair image may be deemed dissimilar at a fine semantic level but
similar at a coarse semantic level. To address this, we construct a hierarchy of concept
embeddings and propose a CLCD method to distill higher-level concepts using the
corresponding lower-level concepts. (Best viewed in color.)

Humans perceive concepts in a hierarchical way. We first recognize a spar-
row as an animal, then as a bird, and finally as an owl. When we consider the
similarities between images, the result varies at different semantic levels. A spar-
row is more similar to an owl when compared to a dog, but is more similar to
a dog than to a car. Therefore, the objective of deep metric learning, pulling
closer positive pairs and pushing away negative pairs, seems reasonable within
a single semantic level, but conflicts emerge when considering multiple semantic
levels, as shown in Fig. 1. The sparrow-dog pair should be pushed away in a
fine semantic level but instead should be pulled closer in a coarse semantic level.
Sun et al. [47] recently identified this issue and formulated the dynamic metric
learning (DyML) problem, where an image is assigned three labels in the coarse,
middle, and fine level, respectively. The goal is to retrieve the correct samples
with the same labels in all three semantic levels. They also proposed a recipe
for this problem by setting increasing similarity margins to separate the positive
and negative pair in the fine, middle, and coarse levels. They need to manually
set a fixed margin to separate concepts from different levels, leading to rigid
concept scopes at each semantic level.

Our solution, on the other hand, is free of hand-crafted margins. Given that
the conflicts result from the positive attraction and negative repulsion across
different semantic levels, we propose to completely discard the latter for pure
harmony. That is, we only pull closer positive pairs, which is simple in concept
but non-trivial to implement. To put this into practice, we propose a cross-level
concept distillation (CLCD) method, which simultaneously learns multiple-level
concept embeddings to guide the training of the image embedding. Specifically,
we employ a hierarchical concept refiner to extract multiple concepts correspond-
ing to different semantic levels for each image. We represent each concept using
an embedding vector with the same size as the image embedding and treat the
image embedding as a concept of instance level. We propose a cross-level concept
distillation method to pull closer the cross-level concepts of two images under
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the finest semantic level that they have the same label. The proposed CLCD
avoids the cross-level conflict by only pulling closer positive samples and achieves
discriminativeness by the hierarchical concept refining. We conduct extensive ex-
periments on the three dynamic metric learning datasets: DyML-Animal, DyML-
Vehicle, and DyML-Products [47], which show that our proposed CLCD achieves
the best performance. We also demonstrate that a simple positive attraction loss
in the proposed manner is effective to learn a discriminative embedding space
and achieves comparable performance under the conventional deep metric learn-
ing setting on the widely-used CUB-200-2011 [50] dataset for image retrieval.

2 Related Work

Deep Metric Learning: Deep metric learning aims at learning a discriminative
embedding space where intraclass distances are small and interclass distances are
large. Existing methods achieve this by imposing different restrictions on the
embedding space. A number of works directly constrain the distances between
sample pairs [41,45,44,53,11,54,59,2,17,15]. For example, Schroff et al. [41] em-
ployed a triplet loss acting on three samples to enforce a margin on the distance
between the positive pair and the negative pair. Sohn et al. [44] extended the
triplet loss to an N -Pair loss which simultaneously constrains the relations be-
tween N + 1 samples from different classes. The vast number of combinations
of samples causes the sampling of informative tuples to be an important com-
ponent for deep metric learning. Some methods addressed this by using a care-
fully designed sampling strategy [16,41,57,24,62,21,60] or synthesis generation
method [13,64,31,65,28], while other works reduced the sampling complexity by
representing each class using proxies and instead restrict the relations between
samples and proxies [34,39,27,11,32,52,9].

Most existing deep metric learning only consider the semantic similarity un-
der a certain semantic level and a direct extension of existing methods leads to
cross-level conflicts of pulling closer and pushing away the same pair of samples.
Some methods [36,37,26] employ hyperbolic embeddings to effectively represent
hierarchically structured data, yet they still cannot avoid the cross-level con-
flicts during training. This motivates Sun et al. [47] to formulate a dynamic
metric learning task to consider the similarity measure under different semantic
levels. They further proposed a Cross-Scale Learning (CSL) method to enforce
increasing margins between the similarities between positive pairs and negative
pairs for coarser and coarser semantic levels. They rely on manually set margins
to differentiate concepts at different semantic levels. Differently, the proposed
CLCD employs a hierarchical concept refiner to adaptively distill concepts by
summarizing the corresponding lower-level concepts. In addition, SimSiam learns
unsupervised image representations using only positive pairs. We demonstrate
that only using positive attraction is also effective for supervised learning and
further extend it to dynamic metric learning.

Hierarchical Image Classification: Another related area is the hierarchi-
cal image classification (HIC), which aims to predict the correct labels across
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different semantic levels for an image [14,10,19,55,58]. It can be seen as a special
case for multi-task learning [4] if we regard the multiple classification problems as
different tasks. Most methods perform this task during training in order to better
leverage the hierarchical annotations provided by various datasets [8,29] to im-
prove the performance on the finest-level classification. For example, Verma et
al. [49] added coarse-level metric matrices to obtain fine-grained-level metric
matrices for hierarchical classification. Dutt et al. [14] proposed a partially
merged network architecture to jointly learn classifiers at different semantic levels
and employed a probability adjustment procedure to improve the performance.
Yan et al. [58] designed a hierarchical deep convolutional neural network to com-
plete the coarse and fine classification task progressively.

The task of hierarchical image classification is essentially different from dy-
namic metric learning. While HIC only requires the model to correctly predict
the labels of different semantic levels, DyML further requires the model to obtain
a single representation for an image so that it can properly reflect the similarities
between images across semantic levels.

3 Proposed Approach

In this section, we first formulate the problem of dynamic metric learning and
identify the cross-level conflicts caused by existing methods. We then present the
proposed hierarchical concept refiner and cross-level concept distillation method
as the two main components of our CLCD method.

3.1 Dynamic Metric Learning

For a set of images X = {x1,x2, · · · ,xN}, conventional metric learning only
assumes a single label li for each image xi. Deep metric learning employs a deep
network to obtain an n-dimentsion embedding y ∈ Rd and then imposes dis-
criminative constraints on the Euclidean distances between image embeddings:{

Positive attraction (PA): min d(yi,yj), if li = lj ,
Negative repulsion (NR):max d(yi,yj), if li ̸= lj ,

(1)

where d(·, ·) denotes the Euclidean distance.
This seems reasonable for images with a single label, but what if an image is

assigned multiple hierarchical labels at different semantic levels? This is common
in reality, for example, a Ferrari can be classified as a car or a vehicle if we
consider it at different semantic levels. Considering this, Sun et al. [47] formulates
the dynamic metric learning (DyML) problem, aiming at learning an embedding
space where images can be correctly retrieved across multiple semantic labels.

Formally, each image xi is assigned a label set of K labels {l1i , · · · , lKi },
where K is the number of the concerned semantic levels. We further assume a
hierarchical structure in each label set, i.e., the coarser-level labels of two images
are always the same if they share a label at a certain level:

lki = lkj , ∀k > t, if ∃ lti = ltj . (2)
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This is reasonable since a coarse concept (e.g., animal) should include the fine
concepts (e.g., bird, dog). We can then define the finest semantic level α(xi,xj)
where two images share the same label:

α(xi,xj) =

{
argmink(l

k
i = lkj ), if ∃ lki = lkj ,

K + 1, if li ̸= lj ∀ k,
(3)

The objective of DyML can be then formulated as:

d(ya,yp) < d(ya,yn), if α(xa,xp) < α(xa,xn). (4)

Despite the hierarchical structure of each label set, it is still possible for two
images to have different fine-level labels but share a coarse-level label, i.e., lsi ̸= lsj
but lti = ltj if s < t. Therefore, directly extending the objective of conventional
deep metric learning (1) to multiple semantic levels would cause the NR under
a fine level to be contradictory to the PA under a coarse level, rendering the
learning process less effective.

To address this, Sun et al. [47] present a recipe by enforcing different margins
between for negative pairs at different semantic levels:

d(ya,yp) +m(α(xa,xn)) ≤ d(ya,yn), (5)

where α(xa,xp) = 1, and m(·) is a positive monotonically increasing function.
Intuitively, it requires the dissimilar pairs at coarser levels to be separated

with a larger margin. However, it requires a manual setting of the margins and
enforces a handcrafted prior on the distances between concepts. Our solution is,
on the other hand, free of margins: we only pull closer positive pairs.

3.2 Hierarchical Concept Refiner

To address the cross-level positive attraction and negative repulsion conflict
dilemma, we propose an alternative solution to completely discard the negative
repulsion at all layers. However, directly pulling closer positive pairs without the
regularization of the reverse effect of negative repulsion, the trained model will
quickly collapse to a trivial model that represents all images in a single point in
the embedding space.

To avoid this, we propose to instead restrict the distances between concepts,
where each concept corresponds to a label as well as a semantic level. We repre-
sent each concept using a vector c called the concept embedding. As each image
is assigned a set of labels with a hierarchy structure, we propose a hierarchical
concept refiner R to distill concepts directly from images, as shown in Fig. 2. The
refiner R takes as input the image embedding y and outputs a set of concepts
corresponding to each semantic level:

R(y) = {c0, c1, c2, · · · , cK}, (6)

where c ∈ Rn has the same dimension with the image embedding y. For conve-
nience, we also regard the image (and possibly its variants with different data
augmentations) as a concept at the finest semantic level, i.e., c0 = y.
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Fig. 2. Illustration of the proposed hierarchical concept refiner. For each image, we first
use a deep neural network to obtain an image embedding and then employ a series of
encoders to refine a hierarchy of meta-concept embeddings with decreasing dimensions.
Finally, we use a set of decoders to map the meta-embeddings to the image embedding
space for the sake of direct comparison. (Best viewed in color.)

Considering the hierarchical structure of labels, we design the refiner R ac-
cordingly in a hierarchical manner. Since a coarse concept may correspond to
multiple concepts at a finer level, we refine the concepts progressively from fine
level to coarse level. That is, we first discard certain information to purify an
image to a fine concept, and then discard more information to purify the fine
concept to a more coarse concept. We continue this process until we obtain a
pure coarsest concept. For example, for an image of a sparrow, we first discard
the sparrow-specific information to obtain the concept “bird”, and then further
discard the bird-specific information to obtain the concept “animal”. On the
other hand, we can add certain information to specify an “animal” concept to a
“bird”, and further specify it to a “sparrow”.

Formally, we employ a series of fully connected layers with decreasing output
dimensions to obtain a meta-concept embedding c̃i at each semantic level.{

c̃0 = c0 = y ∈ Rn,
Ei(c̃

k) = c̃k+1 ∈ Rβ(k+1), k = 0, 1, · · · ,K − 1,
(7)

where β(·) is a monotonically decreasingly function. We use β(k) = n
2k

in this
work, but other choices are also possible.

To enable direct comparison between concepts, we use a set of decoders to
map the meta-concept embedding back to the n-dimension embedding space:

Di(c̃
k) = ck ∈ Rn, k = 1, 2, · · · ,K. (8)

Since we do not provide additional specific information to the decoders, the
decoders only interpret a concept in a larger space but do not specify a concept
to a finer one.
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Fig. 3. The framework of the proposed CLCD method. We learn each concept by
distilling information from its affiliated lower-level concepts. Having obtained the set
of hierarchical concept embeddings for each image, we constrain the distance between
the lower-level concept of one image and the higher-level concept of another image if
they are from the same class at the higher semantic level. (Best viewed in color.)

Using the proposed hierarchical concept refiner, we can predict the concepts
of an image at different semantic levels and represent them in the same space
for further relational constraints.

3.3 Cross-Level Concept Distillation

The hierarchical design of the proposed concept refiner naturally constrain finer-
level coarser-level concepts to contain less information and thereby to be more
general, but how to learn each concept embedding remains challenging.

A straightforward way is to pull closer the distance between the correspond-
ing positive concept embeddings at the same semantic level:

Lnaive = d(cki , c
k
j ), if lki = lkj . (9)

However, the learning process in this way is only aware of same-level concepts and
unaware of the lower-level concepts. The concept refiner is then able to bypass
the distillation of lower-level concepts and only enforces relations between same-
level concepts, ignoring the cross-level concept hierarchically structural relations.

Instead, we think that the formation of a concept requires examining a set of
lower-level concepts and then summarizing their common grounds. For example,
the “bird” concept should be able to access all the affiliated finer concepts such
as “sparrow”, “owl”, and “pigeon”, and then be distilled as a “bird” concept.

Motivated by this, we propose cross-level concept distillation to constrain the
relations between cross-level concepts to learn the hierarchical concept refiner,
as shown in Fig. 3. We further propose two strategies to refine the concept:
adjacent concept refining (ACR) and instance-based concept refining (ICR). For
ACR, we distill a higher-level concept by considering the corresponding adjacent
level concepts. For ICR, we distill a high-level concept from all the corresponding
instances that share this concept. Both strategies exploit the cross-level concept
relations to distill new concepts, which only differ in extracting concepts from
already constructed concepts or directly from instances.
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For both strategies, we impose two constraints to learn the concept refiner.
The first self-aware loss requires the multi-level concept embeddings of an image
to reconstruct its lower-level concept embedding:

Lself =

K∑
k=1

d(cγ(k), ck), (10)

where d(·, ·) denotes the Euclidean distance,, and γ(k) = k − 1 for ACR and
γ(k) = 0 for ICR. The self-aware loss requires the concept of each level to
reconstruct concepts of lower levels of the same image as much as possible so
that only minimum irrelevant information is discarded during concept refining.

The self-aware loss alone is not enough to distill a concept, since we need
to discard more information to construct a higher-level concept. Therefore, we
further employ an inter-distillation loss to force a concept to only preserve the
common knowledge that defines itself. We reduce the distance between the cross-
level concepts of two images if they share the same label at a certain level:

Linter =
∑

j:α(xi,xj)=k

d(c
γ(k)
i , ckj ) + d(cki , c

γ(k)
j ). (11)

The inter-distillation loss encourage each concept to discard more information to
purify irrelevant knowledge, while the self-aware loss constrains each concept to
preserve the instance information as much as possible. The two losses enforce the
concept refiner to extract the most relevant information that defines a concept.

The abandonment of negative repulsion avoids the cross-level conflicts, but
the absence of a counter-force could easily cause the model to collapse, bringing
challenges to the optimization process. Motivated by the stop-gradient technique
employed in a number of self-supervised methods [3,18,6], we detach the lower-
level concept embeddings in the loss and only use them as targets: The overall
objective of the CLCD can be formulated as:

L = Lself + Linter,

=

K∑
k=1

d(detach(cγ(k)), ck) +
∑

j:α(xi,xj)=k

(d(detach(c
γ(k)
i ), ckj ) + d(detach(cki ), c

γ(k)
j )), (12)

where detach(x) denotes the detach operation where the gradients do not pass
through x during back-propagation.

Our CLCD refines the multi-level concepts progressively in a hierarchical way
and employs a cross-level distillation method to learn the concepts. The concepts
at all semantic levels are learned jointly to preserve the hierarchical structure
of the labels, which implicitly constrain the image embedding to share similar
hierarchical distances with other semantically varied images.

3.4 Discussions

The preventing of collapsing: Why using a stop-gradient operation can pre-
vent collapsing remains a mystery in the literature [3,18,6]. One hypothesis is
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that the stop-gradient operation transforms the optimization into an implicit al-
ternating optimization between two sets of variables. Applying the stop-gradient
to the lower-level concept in our case converts it into a fixed target during each
iteration, where the targets are probably different for different concepts thanks
to the curse of dimensionality [1]. See Chen et al. [6] for more details.

Adaptive learning of the concept scope: Though our method does not
explicitly push away negative pairs of concepts, the distances between negative
pairs are naturally increased due to the clustering of intraclass concepts. Exist-
ing methods manually set a margin to control the scope of each concept. We
argue that different concepts may occupy regions with different areas in the
embedding space. For example, even at the same semantic level, the concept
“animal” contains more diverse lower-level concepts than the concept “vehicle”,
and thus should spread out more. The proposed CLCD method adaptively learns
the scope for each concept by using the cross-level concept distillation to train
the concept encoders and decoders. The more diverse concepts are more difficult
to compress, thereby being encoded to a larger area in order for the decoder to
(attempt to) reconstruct the lower-level concepts.

Sampling of mini-batches: The proposed inter-distillation loss (11) acts
on pairs of positive concepts at multiple semantic levels, yet the number of
negative pairs is far larger than that of the positive pairs, bringing challenges to
the sampling process. To achieve balanced learning of all concepts, we employ a
hierarchical sampling strategy to guarantee the existence of positive pairs across
all the semantic levels. To sample a mini-batch of B images with a label set
of K levels, we first sample B

2K
K-level labels, and then for each k-level label,

we randomly select two (k−1)-level labels until reaching the first (finest) level,
where we sample two images.

4 Experiments

In this section, we conduct extensive experiments to evaluate the performance
of the proposed CLCD method on the dynamic metric learning task, which
aims to learn a versatile similarity metric that is able to perform well across
different semantic sales. We demonstrate that using a simple positive attraction
loss under our framework achieves comparable performance on the conventional
deep metric learning setting. We additional provide an in-depth experimental
analysis to demonstrate the effectiveness of our framework.

4.1 Datasets

We follow existing work to conduct experiments on the three dynamic metric
learning datasets: DyML-Vehicle, DyML-Animal, and DyML-Product [47]. The
images in each dataset are labeled with three hierarchical labels corresponding
to three semantic scales (i.e., coarse, middle, and fine). We follow existing work
to perform the dataset split for fair comparisons. Specifically, the class labels for
the coarse scale on the training and test split have a low intersection, while the
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training and test labels are disjoint for the middle and fine scale. We detail the
dataset setting in the supplementary material.

4.2 Evaluation Protocol

To evaluate the performance of the learned metric across all the semantic levels,
we first test the performance under each semantic level and then compute the
average of all levels. Specifically, we adopt the widely used Recall@Ks and mean
Average Precision (mAP) for the image retrieval tasks under each level. The
recall@Ks compute the percentage of images in the query set that has at least
one correct retrieved sample with the sample label from the K nearest neighbors
in the gallery set. The mAP first computes the average precision score for each
correct retrieved sample for a ranked list in the query set and then takes the mean
across all the samples in the query set. Note we omit the average set intersection
(ASI) metric used in the original paper [47] as the computing requires the ground
truth ranking list of each image which is not provided in the datasets.

4.3 Implementation Details

We conducted all the experiments using the PyTorch package. We followed Sun et
al. [47] to adopt the ResNet-34 as the backbone CNN model, where uses the
ImageNet-1K [40] pretrained weights on the DyML-Vehicle and DyML-Product
datasets and randomly initialized weights on the DyML-Animal dataset. Fol-
lowing the backbone CNN, we added an adaptive max pooling layer a randomly
initialized fully connected layer to obtain a 512-dimension image embedding, and
set the concept embedding sizes to 256, 128, and 64 for the fine, middle, and
coarse semantic levels, respectively. We then added an L2-normalization layer
after each image embedding and concept embedding before distance computa-
tion. We normalized all the images to 256 × 256 as inputs to the CNN model.
For training, we performed data augmentation to images with random cropping
to 227× 227 and random horizontal mirror with a possibility of 0.5. We set the
learning rate to 10−5 for the backbone CNN, 10−4 for the following fully con-
nected layer, and 10−2 for the encoders and decoders. We only use the refiner
and the multi-level concepts during training and simply use the image represen-
tation y from the backbone during evaluation. The multi-level concepts serve as
targets to train the image representation and are discarded after training.

4.4 Main Results

We compare our CLCD with all the methods provided by the dynamic metric
learning benchmark [47] as shown in Table 1, including the cross-level deep
metric learning method CSL [47], conventional deep metric learning methods
(the triplet loss [41], the Multi-Sim loss [54], and the N-Pair loss [44]), and
classification methods (the softmax loss, CosFace [52], and the circle loss [46]).
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Table 1. Experimental results (%) of the proposed CLCD method compared with
existing methods on the DyML task.

DyML-Vehicle DyML-Animal DyML-Product
mAP R@1 R@10 R@20 mAP R@1 R@10 R@20 mAP R@1 R@10 R@20

Triplet 10.0 13.8 52.6 65.1 11.0 18.2 55.5 66.3 9.3 11.2 43.6 53.3
Multi-Sim 10.4 17.4 56.0 67.9 11.6 16.7 53.5 64.8 10.0 12.7 45.7 56.4
N-Pair 10.5 16.4 55.7 68.1 30.3 39.6 69.6 78.8 15.3 20.3 55.5 65.6

Softmax 12.0 22.9 61.6 72.9 25.8 49.6 81.7 88.8 26.1 50.2 81.6 87.7
Cosface 12.0 22.9 62.1 73.4 28.4 45.1 75.7 83.3 25.0 49.3 81.3 87.7
Circle 12.1 23.5 62.0 73.3 30.6 41.5 72.2 80.3 15.0 26.7 61.5 70.3

CSL 12.1 25.2 64.2 75.0 31.0 52.3 81.7 88.3 28.7 54.3 83.1 89.4

CLCD-ACR 16.0 42.9 74.0 84.1 36.0 57.1 85.2 90.1 29.4 58.8 86.2 90.7
CLCD-ICR 16.6 43.7 75.4 86.3 35.7 56.0 84.8 89.7 30.2 59.5 87.1 92.1

Table 2. Experimental results using pretrained weights on the DyML-Animal dataset.

Methods mAP R@1 R@10 R@20

CLCD-ACR pretrained 55.1 83.0 96.8 98.6
CLCD-ICR pretrained 55.4 83.3 97.0 98.7

We see that the proposed method achieves the best performance on all three
DyML datasets without negative repulsion. This is because our CLCD only im-
poses positive attraction on the concepts from different semantic levels, which
avoids the cross-level conflicts and is able to adaptively learn the concept scope
at each semantic level. Also, we observe that the ICR strategy for concept dis-
tillation attains better performance on the DyML-Vehicle and DyML-Product
datasets but lower performance on the DyML-Animal dataset.

4.5 Experimental Analysis

Analysis of ACR & ICR: We first studied why ICR performs worse than
ACR on DyML-Animal but better on DyML-Vehicle and DyML-Product. The
hypothesized factor is whether to use pre-trained weights, as we followed the
benchmark setting to use randomly initialized weights on DyML-Animal. We
thus conducted an experiment to also use pre-trained weights on DyML-Animal,
as shown in Table 2. We see that ICR outperforms ACR in this case, which is
the same to the results on the other datasets.

Performance Analysis at Different Semantic Levels: To further an-
alyze the effectiveness of our method, we present the results of the proposed
CLCD-ICR on each semantic level compared with CosFace [52] and CSL [47], as
shown in Table 3. We see that despite achieving better overall performance, our
method does not perform the best on all the semantic levels. Specifically, the
CSL method outperforms our method at the fine level on the DyML-Product
dataset, while our method achieves higher results on the middle and coarse lev-
els. We think this is because the absence of the negative repulsion in our method
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Table 3. Experimental results (%) at all the semantic levels of the proposed CLCD
method compared with existing methods.

Method Level
DyML-Vehicle DyML-Animal DyML-Product
mAP R@1 mAP R@1 mAP R@1

Cosface

Fine - - 8.7 18.3 11.1 20.3
Middle - - 28.4 46.6 16.9 47.6
Coarse - - 48.2 70.5 47.1 80.0
Overall - - 28.4 45.1 25.0 49.3

CSL

Fine - - 10.3 25.3 15.6 26.2
Middle - - 30.1 53.9 20.1 53.2
Coarse - - 52.7 77.7 50.4 83.7
Overall - - 31.0 52.3 28.7 54.3

CLCD

Fine 3.8 12.6 13.8 28.9 13.9 29.4
Middle 10.5 30.7 35.6 59.0 22.4 59.2
Coarse 35.6 75.3 57.7 80.1 54.2 89.8
Overall 16.6 43.7 35.7 56.0 30.2 59.5

Table 4. Comparisons of whether to use negative repulsion on DyML-Product.

Method
Fine level Middle level Coarse level Overall

mAP R@1 mAP R@1 mAP R@1 mAP R@1

CLCD w/ NP 16.2 27.5 19.7 51.8 52.1 86.9 29.3 55.4
CLCD 13.9 29.4 22.4 59.2 54.2 89.8 30.2 59.5

compromises the discriminativeness of the image embedding space for a more
flexible scope of each concept. To validate this hypothesis, we add the negative
repulsion only on the fine level, as shown in Table 4. We see that negative re-
pulsion helps on the fine level but reduces the performance on the other levels.
Therefore, the adaptively learned concept scopes are more important on higher
semantic levels which are more probable to contain different numbers of sub-
concepts. The use of fixed hand-crated margins in CSL enforces each concept to
occupy the same area of region in the embedding space regardless of the concept
scope, which may damage the generalization ability of the learned metric.

Conventional Metric Learning without Negative Repulsion: To demon-
strate the effectiveness of only using a positive attraction loss to learn the embed-
ding space, we applied our method to the conventional metric learning setting on
the CUB-200-2011 [50] dataset, where only one level of concept is present in the
data. We simplified the proposed CLCD method to a vanilla version (CLCD-V),
where only one encoder and decoder are used to refine a single concept embed-
ding. We then simply use the distance between an image embedding with its
positive concept embedding as the loss function to train the model.

For fair comparisons with existing deep metric learning losses, we adopted
the recent proposed experimental settings [35] including using the ImageNet-
1K [40] pretrained BN-Inception [25], smaller batch size, and strict dataset split.
See Musgrave et al. [35] for more details. We strictly followed these protocols
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Table 5. Experimental results (%) of for conventional deep metric learning.

Concatenated (512-dim) Separated (128-dim)

P@1 RP MAP@R P@1 RP MAP@R

Pretrained 51.05 24.85 14.21 50.54 25.12 14.53

Contrastive[20] 68.13 ± 0.31 37.24 ± 0.28 26.53 ± 0.29 59.73 ± 0.40 31.98 ± 0.29 21.18 ± 0.28

Triplet [56] 64.24 ± 0.26 34.55 ± 0.24 23.69 ± 0.23 55.76 ± 0.27 29.55 ± 0.16 18.75 ± 0.15

ProxyNCA [34] 65.69 ± 0.43 35.14 ± 0.26 24.21 ± 0.27 57.88 ± 0.30 30.16 ± 0.22 19.32 ± 0.21

Margin [57] 64.37 ± 0.18 34.59 ± 0.16 23.71 ± 0.16 55.56 ± 0.16 29.32 ± 0.15 18.51 ± 0.13

N. Softmax [63] 65.65 ± 0.30 35.99 ± 0.15 25.25 ± 0.13 58.75 ± 0.19 31.75 ± 0.12 20.96 ± 0.11

CosFace [52] 67.32 ± 0.32 37.49 ± 0.21 26.70 ± 0.23 59.63 ± 0.36 31.99 ± 0.22 21.21 ± 0.22

ArcFace [9] 67.50 ± 0.25 37.31 ± 0.21 26.45 ± 0.20 60.17 ± 0.32 32.37 ± 0.17 21.49 ± 0.16

FastAP [2] 63.17 ± 0.34 34.20 ± 0.20 23.53 ± 0.20 55.58 ± 0.31 29.72 ± 0.16 19.09 ± 0.16

SNR [61] 66.44 ± 0.56 36.56 ± 0.34 25.75 ± 0.36 58.06 ± 0.39 31.21 ± 0.28 20.43 ± 0.28

MS [54] 65.04 ± 0.28 35.40 ± 0.12 24.70 ± 0.13 57.60 ± 0.24 30.84 ± 0.13 20.15 ± 0.14

MS+Miner [54] 67.73 ± 0.18 37.37 ± 0.19 26.52 ± 0.18 59.41 ± 0.30 31.93 ± 0.15 21.01 ± 0.14

SoftTriple [39] 67.27 ± 0.39 37.34 ± 0.19 26.51 ± 0.20 59.94 ± 0.33 32.12 ± 0.14 21.31 ± 0.14

CLCD-V 67.13 ± 0.24 37.17 ± 0.17 26.49 ± 0.25 59.97 ± 0.24 31.33 ± 0.11 21.26 ± 0.13

by implementing our method using the provided code 3. Table 5 shows the
performance of various loss functions. We observe that using a simple positive
attraction loss achieves comparable performance with the other losses, which all
impose both positive attraction and negative repulsion on the image embeddings.
The results demonstrate that the proposed CLCD method is able to learn a
discriminative embedding space despite the absence of negative repulsion. Our
method implicitly pushes away negative pairs in an adaptive manner free from
hand-crafted margins, which we found affect the performance of the contrastive
loss, the triplet loss, the margin loss largely.

Ablation Study: We conduct an ablation study to analyze the effective-
ness of each component in the proposed CLCD method on the DyML-Vehicle
dataset, as shown in Table 6. Asymmetry denotes we only pull closer the concept
embedding of one image to the image embedding of another positive sample but
not always the other way around. Random sampling means that we randomly
select images from the dataset to construct a mini-batch. Intra-level represents
using (9) as the loss function to pull closer positive concept embeddings at the
same semantic level. W/o stop-gradient means we do not use the stop-gradient
operation in our method.

We see that Asymmetry attains slightly lower performance resulting from the
possible inaccurate estimates of the backward gradient due to the lack of com-
parisons. Random sampling also leads to compromised performance and much
lower convergence speed, since we can only find very few positive pairs in each
mini-batch especially for the finest level, due to the vast number of classes. Us-
ing the intra-level positive pulling loss also achieves poor performance as each
concept cannot see the relevant concepts from the lower levels and thus is not
able to reflect their common grounds. The absence of the stop-gradient operation
leads to model collapse. To further understand how the stop-gradient operation

3 https://github.com/KevinMusgrave/pytorch-metric-learning
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Table 6. Ablation study of different set-
tings on DyML-Vehicle.

Setting mAP R@1 R@10 R@20

Asymmetry 14.9 40.1 72.3 83.2
Random sampling 10.2 30.6 62.6 78.8
Intra-level 12.4 34.3 67.9 80.0
W/o stop-gradient 1.3 10.2 23.6 73.3
CLCD 16.6 43.7 75.4 86.3
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Fig. 4. Effect of different embedding sizes.

works, we conducted an experiment where we initialized all the embeddings to
a fixed point so that the targets are the same for different concepts. We observe
that the training collapses even with the stop-gradient operation. This verifies
the significance of using different targets and further backs up the hypothesis [6].

Effect of Embedding Dimension: We conduct an experiment on the
DyML-Vehicle dataset with different dimensions of the image embedding size,
as shown in Fig. 4. The dimension of each meta-concept embedding is propor-
tionally resized according to that of the image embedding. We see that using a
larger embedding dimension generally improves the performance across all the
semantic levels due to the better representation ability. Note that the output
feature after the pooling layer of the ResNet-34 model used in the experiments
had a dimension of 512, but uplifting it into a 1024-dimension embedding as the
image representation still improves the performance.

5 Conclusion

In this paper, we have presented a cross-level concept distillation method for
dynamic metric learning. We employ a hierarchical concept refiner to obtain a
series of concept embeddings for an image and distill higher-level concepts us-
ing lower-level concepts. We only impose constraints on the cross-level positive
concept pairs to avoid the possible conflicts across semantic levels. We have eval-
uated our method under the dynamic metric learning setting which shows that
the proposed CLCD outperforms all other existing methods. We also conducted
experiments under the conventional deep metric learning setting to further verify
the effectiveness of only pulling closer positive pairs. In the future, it is interest-
ing to apply our method to semi-supervised learning, where we can regard the
instance-level and class-level labels as concepts from different semantic levels.
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