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Abstract. Event cameras are bio-inspired sensors that asynchronously
capture per-pixel brightness change and trigger a stream of events in-
stead of frame-based images. Each event stream is generally split into
multiple sliding windows for subsequent processing. However, most ex-
isting event-based methods ignore the motion continuity between adja-
cent spatiotemporal windows, which will result in the loss of dynamic
information and additional computational costs. To efficiently extract
strong features for event streams containing dynamic information, this
paper proposes a novel memory-based network with dual-branch, namely
MENet. It contains a base branch with a full-sized event point-wise pro-
cessing structure to extract the base features and an incremental branch
equipped with a light-weighted network to capture the temporal dy-
namics between two adjacent spatiotemporal windows. For enhancing
the features, especially in the incremental branch, a point-wise memory
bank is designed, which sketches the representative information of event
feature space. Compared with the base branch, the incremental branch
reduces the computational complexity up to 5 times and improves the
speed by 19 times. Experiments show that MENet significantly reduces
the computational complexity compared with previous methods while
achieving state-of-the-art performance on gesture recognition and object
recognition.
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1 Introduction

Event cameras [4, 30, 49] are novel sensors that represent visual information by
sparse and asynchronous events. Different from traditional cameras that record
synchronized frames at a fixed low-rate (typically less than 60 frames per second),
event cameras trigger an individual event asynchronously when the brightness
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Fig. 1. Top: The event stream of an arm roll gesture is shown in the time-width-
height space, in which the red dots represent that the polarity of an event is positive
and the blue dots represent negative polarity. Bottom: The way to process adjacent
windows of previous methods and that of the proposed MENet, respectively. Note that
for intuitively representing the events contained in sliding windows, we transform it
into a frame-based form by compressing the time dimension.

change on a pixel exceeds a preset threshold at a high rate. Each event encodes
the pixel location, trigger time, and polarity of the brightness change. Com-
pared with traditional cameras, event cameras exhibit four attractive properties.
Firstly, event cameras are low latency, because they trigger event immediately
when the intensity change exceeds the threshold. Secondly, event cameras only
transmit changed information, thus they are low power. Thirdly, the high tem-
poral resolution (µs) of event-based data can avoid motion blur. Fourthly, event
cameras have a high dynamic range (140 dB vs 60 dB of traditional cameras),
thus they can acquire information under challenging lighting conditions. These
characteristics bring advantages to event cameras over traditional cameras when
facing tasks that require low latency, low power, robustness to high-speed mo-
tion and variant illumination. Therefore, event cameras are widely used in many
applications, such as object recognition [7, 43, 58], gesture recognition [1, 3, 64],
pose relocalization [40, 55], 3D reconstruction [11, 23, 52], autonomous driving
[10, 33], optical flow estimation [46, 67], video reconstruction [19, 45, 54], etc.

To take the advantage of event-based data in downstream tasks, extracting
meaningful features efficiently and effectively from the event stream is one of
the key steps. Some previous methods [1, 31, 55] proposed to operate on the
event-based data through event-by-event processing. However, processing each
event serially will accumulate a large time consumption and an event alone can
not provide enough information. Therefore, following other methods [8, 12, 33,
40, 59], this paper operates on groups of events contained in sliding windows.
In this way, the accumulated events are processed in parallel, which can extract
sufficient information and improve processing efficiency.
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However, as shown in Fig. 1, the information contained in adjacent windows
is continuous and some of it is redundant. And most previous methods [8, 12, 33,
40, 59] ignored the correlation between adjacent inputs and process them inde-
pendently and equally. It will cause useless computational costs and the loss of
dynamic information. This paper proposes a novel memory-based network with
dual-branch, namely MENet, which utilizes the dynamic correlation between
adjacent windows and avoids repeated extraction of redundant information.

For extracting meaningful information from sliding windows effectively and
efficiently, a base branch and an incremental branch are designed to form a dual-
branch structure. The base branch with a full-sized event point-wise processing
structure, aims at extracting base features. The incremental branch is equipped
with a light-weighted structure, which inputs the differences between two spa-
tiotemporal windows to capture temporal dynamics. Furthermore, for obtaining
high-quality differences between adjacent windows, a double polarities calcu-
lation method is proposed, which only records the changed event information
between two windows and retains the low power characteristic of event-based
data. Thanks to the proposed dual-branch structure and the double polarities
calculation method, the inference accuracy and efficiency are both improved.

For utilizing the information extracted by the base branch to enhance fea-
tures, a point-wise memory bank is proposed, which aims at sketching the rep-
resentative information of the event feature space. For gesture recognition, the
memory bank records the motion pattern of each action, while for object recogni-
tion, it records discrimination information among categories. Therefore, through
adaptively recalling the information stored in the memory, both the base branch
and incremental branch can perform feature enhancement to improve accuracy.

The contributions of this paper are summarized as follows:

1. We propose a MENet with dual-branch to utilize the correlation between ad-
jacent spatiotemporal windows to improve feature extraction efficiency and
prediction accuracy. The base branch with a full-sized event point-wise pro-
cessing structure extracts base features, while the light-weighted incremental
branch captures temporal dynamics between adjacent windows.

2. We propose a double polarities calculation method that calculates the high-
quality differences between adjacent windows with little time consumption.

3. We introduce a point-wise memory bank to MENet for recording representa-
tive information of the event feature space, which can be recalled adaptively
to further enhance features for improving estimation accuracy.

4. Experiments show that the MENet achieves state-of-the-art results on ges-
ture recognition and object recognition while significantly reducing the com-
putational complexity with respect to previous methods.

2 Related Work

2.1 Event-Based Representations

According to the number of events processed simultaneously, event-based meth-
ods can be divided into two categories. The first type operates on an event-by-
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event basis, which can update the estimation upon the arrival of a single event.
For event-by-event processing, event-based data can be compressed into a 2D
map, namely time surface (TS) [27], in which each pixel records the timestamp
of the most recent event. Although the representation of TS is applied in many
tasks[32, 39, 58, 66], their ability will degrade on dealing with textured scenes [38],
in which pixels spike frequently. In addition to the TS-based methods, Spiking
Neural Networks (SNNs) [31, 41, 43] are adopted to process a single event, which
is also bio-inspired designed. However, the training phase of SNNs is difficult
because the output spikes are non-differentiable. Besides, Li et al. [62] proposed
a graph-based method to process single event asynchronously. Sekikawa et al.
[55] designed a recursive and event-wise manner to process event streams. Al-
though these methods can respond immediately when a new event arrives, the
serial processing of event data will accumulate a large time consumption due to
the high time dimension characteristic of events.

The other type of method operates on sliding windows containing groups of
events, which are obtained by splitting event streams with a fixed time interval
or event number. For utilizing existing methods based on deep neural networks
(DNNs), some methods [8, 40, 53] compressed sliding windows into 2D frames.
Such intuitive expression retains the spatial information about scene edges, thus
it can be applied in low-level and mid-level problems [2, 13, 44]. However, these
methods discard the sparsity nature of events and quantify the timestamps.
For improving the temporal resolution, events are converted into 3D voxel grids
[6, 35, 67]. However, the computation of 3D convolution is expensive. Different
from these methods that use alternative representations, some methods treated
groups of events as event clouds [3, 9, 37, 54] to retain the high temporal reso-
lution characteristic of them. Benosman et al. [21] computed the dense visual
flow by introducing plane fitting. Wang et al. [59] utilized PointNet++ [50] for
gesture recognition, which aggregated local and global features. However, these
methods ignore the correlation between adjacent windows and just process them
independently and equally, which will cause useless computational costs and the
loss of dynamic information. Therefore, the proposed MENet introduces a dual-
branch structure to utilize the relationship between adjacent windows.

2.2 Memory-Based Networks

Recently, memory networks have been introduced in many computer vision tasks,
such as anomaly detection [14, 47], few-shot learning [5, 20, 68], video captioning
[48], video prediction [29], etc. For a memory module, how to update important
information to memory and how to recall effective content from memory are
critical issues. Weston et al. [60] firstly proposed an additional memory compo-
nent to deal with the task of question answer, which overcomes the drawback of
limited memory of recurrent networks (RNNs). Huang et al. [17] introduced a
self-supervised memory module to record the prototypical patterns of rain degra-
dations for image deraining. To utilize long-term context for short-term image
prediction, Lee et al. [29] introduced a long-term motion context memory (LMC-
Memory) with an additional matrix, which is updated through back-propagation.
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For understanding the unstructured documents, the Key-Value Memory Network
[36] utilized key memory to infer the weight of the corresponding value memory
to obtain the fused features. For sketching the representative information of the
event feature space, we introduce a memory bank to event-based data, which
only utilizes information extracted by the base branch to update memory and
can be adaptively recalled to improve the prediction accuracy.

3 Event Camera Model

Event cameras capture the change in logarithmic brightness signal L(ui, ti) =
logI(ui, ti) of each pixel ui = (xi, yi). Let∆L denotes the change at pixel location
(xi, yi) between timestamp ti and ti−1:

∆L = L(ui, ti)− L(ui, ti−1) (1)

When∆L exceeds a preset threshold C, an event will be triggered asynchronously.
Each event ei = (xi, yi, ti, pi) encodes the pixel location (xi, yi), trigger time ti,
and polarity of the brightness change pi ∈ {−1, 1}.

p =

{
1, ∆L ⩾ C

−1, ∆L ⩽ −C
(2)

An asynchronous event stream can be split into multiple sliding windows
with a fixed time interval T or event number Nnum:{

ST
k = {ei|i = j, ..., j + n(j)}

SN
k = {ei|i = j, ..., j +Nnum}

(3)

where ST
k and SN

k represent kth sliding window based on T orNnum, respectively.
n(j) represents the number of events between the time of the first event in the
kth sliding window tj and the time (tj + T ). In this paper, sliding windows are
obtained based on a fixed time interval, and the step size is set as T/2.

4 Method

For effectively and efficiently extracting meaningful information contained in
event streams, this paper proposes a novel memory-based network with dual-
branch, namely MENet, as illustrated in Fig. 2. In order to utilize the correla-
tion between adjacent spatiotemporal windows, a dual-branch structure (Section
4.1) is introduced. In addition, we propose a double polarities calculation method
to obtain high-quality differences between two adjacent windows (Section 4.2).
Furthermore, a point-wise memory bank is introduced to sketch the represen-
tative information of the event feature space, which can be adaptively recalled
to perform feature enhancement (Section 4.3). In Section 4.4, the details of the
training and testing strategies will be described.
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Fig. 2. Overview of the proposed MENet. The upper path is the base branch utilized to
extract base features. The lower branch is the incremental branch used for capturing the
temporal dynamics between adjacent spatiotemporal windows. The point-wise memory
bank is introduced to sketch representative information of the event feature space.

4.1 Dual-Branch Structure

The proposed MENet adopts a dual-branch structure, including a base branch
and an incremental branch, as illustrated in Fig. 2. Taking PointNet++ [50]
as the backbone, the base branch introduces an elicitation component and an
adjustment component for memory feature extraction and feature alignment, as
illustrated in the upper path of Fig. 2. Considering that each sliding window
contains rich dynamic information and the information contained in adjacent
spatiotemporal windows is correlated, a light-weighted incremental branch is
proposed to capture the temporal dynamics between two adjacent windows while
avoiding repeated extraction of redundant information. As illustrated in the
lower path of Fig. 2, the incremental branch adopts a multi-layer-perceptron
(MLP) block consisting of four layers to extract dynamic features. And the
elicitation component and adjustment component are also introduced.

The base branch takes a sliding window as input. The base features Fbase are
extracted by the backbone, which is then input into the elicitation component for
memory feature extraction. Through memory bank, the representative features
Frepre1 are recalled and will be aligned with Fbase by the adjustment component
to obtain the aligned features Falign1. Features Fbranch1 used for predicting is
obtained by concatenating the base features and the aligned features:

Fbranch1 = Fbase c○Falign1 (4)

where c○ is the feature concatenation operation. The incremental branch takes
the differences windiff between the previous window and the current input win-
dow as input. The temporal dynamics Fdynamic is captured by MLP block. Then
through the elicitation component and memory bank, the representative features
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Frepre2 are adaptively recalled. The adjustment component is also introduced
to obtain aligned features Falign2. Finally, features Fbranch2 of the incremental
branch utilized to predict results can be obtained:

Fbranch2 = Falign2 c○(Fpre ⊕ Fdynamic) (5)

where Fpre represents the features of the previous window used for predicting
and ⊕ is the element-wise addition operation.

In addition, in inference, Nwin sliding windows are regarded as a process-
ing package. Only 1/Nwin of sliding windows will go through the base branch,
and the rest will be processed by the light-weighted incremental branch, which
reduces the computational complexity.

4.2 Double Polarities Calculation Method

A direct way to obtain the differences between two adjacent windows is to di-
rectly subtract the unordered event clouds of the previous window winpre from
the clouds of the current one wincurr. However, this approach ignores the lo-
cation and timestamp of each event, which will obtain low-quality differences.
Besides, due to the high time resolution of events, obtaining the differences
strictly according to the timestamp and space location will bring huge time con-
sumption and memory usage. Therefore, in order to efficiently and effectively
calculate the differences windiff between two adjacent windows, a double polar-
ities calculation method is proposed, which can be divided into four steps.

1. The previous sliding window winpre is compressed into an edge frame (W ×
H × 2). The two channels of each pixel record the number of corresponding
events with positive polarity or negative polarity, respectively. Therefore, the
edge frame records the histograms of positive events and negative events:

h+(x, y) =
∑

ek∈winpre,pk=+1

δ(x− xk, y − yk) (6)

where h+(x, y) represents the histogram of positive events. ek means a single
event belongs to winpre. δ is the Kronecker delta. The histogram h− of neg-
ative events can be obtained through a similar way with pk = −1. Stacking
the h+ and h− will obtain the edge frame.

2. Based on the first step, an edge frame (W × H × 2) are produced for the
current input window wincurr. And a time frame (W ×H × 2) is produced,
in which each pixel records the timestamp of the most recent event.

3. The edge frame of winpre is subtracted from that of wincurr. The position of
the results whose values larger than 0 are recorded. According to the position
and results, the location (x, y) and cumulative polarity p are obtained. And
the corresponding timestamp t can be obtained from the time frame.

4. Finally, based on the location, cumulative polarity, and timestamp of events,
the differences windiff between two adjacent windows in the form of event
clouds will be obtained, which contains the additional events that occur in
wincurr, compared with winpre.
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Through the double polarities calculation method, high-quality differences
between adjacent windows only recording changed event information is obtained
efficiently and effectively, which retains the low power characteristic of event-
based data. Taking such differences as input, the incremental branch can capture
temporal dynamics of two windows, which provides guidance for prediction.

4.3 Point-Wise Memory Bank

Features extracted by the base branch represent the complete high-level seman-
tics of the input window. Based on these features, the representative information
of event feature space can be sketched by introducing a memory bank, which can
be adaptively recalled to enhance features. Considering the form of memory fea-
tures extracted by the elicitation component, we propose a point-wise memory
bank with a matrix form, M ∈ RN×Cm

with N points and Cm channels, which
can be updated through back-propagation. For only recording the representative
information of the base features, the memory bank is stored and recalled by the
base branch, while the incremental branch only involves the recall operation.

Let mi ∈ RCm

represent an item of the memory bank M and fmem1
j ∈ RCm

is a row vector of features Fmem1 ∈ RN1×Cm

extracted from the elicitation com-
ponent. For the base branch, the addressing vector addr ∈ RNwill be firstly
calculated, in which each scalar addri represents an attention weight for the cor-
responding memory item mi:

addri =
exp((fmem1

j )T ,mi)∑N
k=1 exp((f

mem1
j )T ,mk)

(7)

where exp(·) represents softmax function. For each query fmem1
j , the relevant

representative information can be recalled from memory by weighting the item
mi with the corresponding weight addri :

frepre1
j =

N∑
i=1

addri mi (8)

The representative features Frepre1 = {frepre1
j }N1

j=1 ∈ RN1×Cm

can be obtained

by positioning each feature frepre1
j .

For the incremental branch, the same operations as the base branch will be
performed, including using the elicitation component to extract memory fea-
tures, calculating the addressing vector for recalling the memory, and utiliz-
ing the adjustment component to align features, except performing the back-
propagate to the memory. By only using the results of the base branch to per-
form back-propagation on the memory, the representative information of the
event feature space can be adaptively recorded into the memory bank.

4.4 Training And Testing Strategies

In the training process, two adjacent windows winpre and wincurr will be input
into MENet. winpre is input into the base branch to perform prediction, and the
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estimation error is used to update the parameters of the base branch and mem-
ory bank. The incremental branch takes the differences windiff between winpre

and wincurr as input to capture temporal dynamics between two windows. For
gesture recognition and object recognition, the cross-entropy loss function with
label smoothing is adopted. To improve training efficiency, the result prediction
and parameters updating of the two branches are performed in parallel.

In the testing stage, Nwin consecutive windows belonging to the same event
stream are regarded as a processing package. For taking advantage of the dual-
branch structure, only the first window of the package will go through the base
branch, while the rest windows will calculate the differences with the previous
one and use the incremental branch for prediction. In this way, the incremental
branch further exerts its advantages, and the captured temporal dynamics can
provide guidance for subsequent prediction.

5 Experiments

5.1 Experimental Setup

Datasets. We evaluate our methods on four commonly used datasets, DVS128
Gesture Dataset [1], N-Cars [58], CIFAR10-DVS [15], and MNIST-DVS [42].
The DVS128 Gesture Dataset is collected from 29 subjects under 3 kinds of
light conditions and records 1342 instances of 11 gestures. The N-Cars dataset is
a benchmark for car recognition, which contains 12,336 car samples and 11693
background samples. Different from the first two datasets, CIFAR10-DVS and
MNIST-DVS are converted from the frame-based datasets. The CIFAR10-DVS
dataset collects 10000 samples for 10 categories, which is converted from CI-
FAR10 [25]. In MNIST-DVS, 10000 samples chosen from MNIST [28] are dis-
played at three different scales, thus it contains 30000 samples in total.

Implementation Details. The base branch adopts the first three set ab-
straction levels of PointNet++ [50] as the backbone, with three fully connected
(FC) layers [512, 256,K] for prediction (K means the number of categories). For
efficiency, the elicitation component adopts a simplified set abstraction level [50]
(SA(32, 0.2, [512, 256, 64])), which selects 32 points from input, forms 32 local
regions with ball radius 0.2 and encodes local regions into features by three FC
layers. The adjustment component utilizes a lightweight MLP only containing
two layers ([128, 256]). For the incremental branch, a MLP consisting of four lay-
ers ([64, 256, 512, 1024]) is adopted for feature extraction, and a MLP containing
2 layers ([256, 512]) is utilized for the adjustment component. The structure of
the elicitation component and FC layers of the incremental branch are the same
as the base branch. The matrix size of the point-wise memory bank is 16 × 64.
The proposed method is implemented by PyTorch, which is trained on a Tesla
K80 GPU. The batch size is set as 24 and the Adam [24] optimizer is adopted
with an initial learning rate of 0.001 multiplied by 0.5 after 20 epochs.

Metrics. For object recognition and gesture recognition, prediction accu-
racy is adopted as the evaluation metric. In addition, the giga floating-point
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operations of the network (GFLOPs), the million floating-point operations per
sliding window (MFLOPs/win), and the million floating-point operations per
event (MFLOPs/event) are used for evaluating the computational complexity.

5.2 Ablation Study

For verifying the improvement of accuracy brought by the proposed adjustment
component, point-wise memory bank, and double polarities calculation method,
as well as the reduction of computational complexity and time consumption
brought by the dual-branch structure, we conduct ablation experiments on the
DVS128 Gesture Dataset [1]. Since the average duration of each event stream
is 6s, the fixed time interval is set as T = 0.5s for producing sliding windows.
In addition, for improving processing efficiency and considering that meaningful
events have the characteristic of aggregation, each window is sampled 512 events
randomly in the time dimension for processing.

Table 1. Contribution of the proposed adjustment component and the point-wise
memory bank, evaluated on the DVS128 Gesture Dataset.

Method
Adjustment Point-wise

Accuracy %
component memory bank

MENet
× ✓ 97.34
✓ × 96.96
✓ ✓ 98.86

Adjustment component and Point-wise memory bank. For verify-
ing the effectiveness of adjustment component and memory bank, we conduct
experiments on two additional structures. The first structure removes the adjust-
ment component from MENet, and the second removes the memory bank but
retains elicitation component and adjustment component. As shown in Table 1,
removing either the adjustment component or memory bank will both decrease
accuracy. The results confirm that the memory bank can sketch representative
information of event feature space for feature enhancement, and the adjustment
component can align recalled memory features with features extracted by branch.

Double Polarities Calculation Method. Table 2 confirms the effect of
the proposed calculation method, and both the models adopt memory bank
and adjustment component. In Table 2, Sub-diff represents that the differences
between two windows are obtained by directly subtracting the unordered event
clouds of the previous window from the clouds of the current input one. The
results show that even though taking the rough differences calculated by Sub-
diff as input, the incremental branch can still capture useful information and
obtain an accuracy of 97.34%. When higher quality differences calculated by the
proposed calculation method are obtained, the accuracy is increased by 1.52%.
The results confirm that the double polarities calculation method can obtain
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Table 2. Contribution of the proposed double polarities calculation method, evaluated
on the DVS128 Gesture Dataset.

Method
Double Polarities

Sub-diff Accuracy %
Calculation

MENet
× ✓ 97.34
✓ × 98.86

Table 3. The average time and MFLOPs of the base branch and the incremental
branch for processing a single sliding window.

Method Branch MFLOPs/win Time (ms)

MENet
Base branch 4732 288

Incremental branch 1045 15

meaningful differences to assist incremental branch to obtain temporal dynamics
between two adjacent spatiotemporal windows.

Computational complexity and time consumption. For utilizing the
correlation between two spatiotemporal windows and avoiding repeated extrac-
tion of redundant information, MENet adopts a dual-branch structure. For ver-
ifying the efficiency improvement brought by the incremental branch, we record
the average time and MFLOPs required by the base branch and incremental
branch to process a sliding window, as shown in Table 3. Compared with the
base branch, the incremental branch reduces the MFLOPs/win by nearly 5 times
and speeds up by 19 times. In testing, Nwin sliding windows are treated as
a processing package, as mentioned in Section 4.4. Table 4 evaluates the im-
pact of choosing different Nwin on MFLOPs/win, inference time of processing
a single window, and accuracy. As shown in Table 4, as Nwin increases, both
MFLOPs/win and inference time are reduced due to the low computational com-
plexity of the incremental branch. The best result is achieved by setting the Nwin

as 4, and when Nwin = 6, MENet also achieves a competitive accuracy.

Table 4. The MFLOPs, inference time, and accuracy of choosing different Nwin.

Nwin MFLOPs/win Time(ms) Accuracy(%)

2 2889 151.5 98.11
4 2003 85.0 98.86
6 1708 64.1 98.48
8 1561 53.2 96.59
10 1450 45.0 95.07
12 1376 39.5 94.31

It is worth noting that the accuracy shows a trend of rising first and then
falling, with the increase of Nwin. There are reasons for this phenomenon. Tak-
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Table 5. Comparison with different methods on the MNIST-DVS dataset and N-Cars
dataset. Red and blue represent the best and the second best result, respectively.

MNIST-DVS N-Cars
Methods Representation Accracy% MFLOPs/event Accuracy% MFLOPs/event

Shi et al. [56] Spike 78.1 - - -
H-First [43] Spike 59.5 - 56.1 -
HATS [58] TimeSurface 98.4 - 90.2 -
HOTS [27] TimeSurface 80.3 26 62.4 14.0
DART [51] TimeSurface 98.5 - - -

LIAF-Net [61] Frame 99.1 - - -
YOLE [7] VoxelGrid 96.1 - 92.7 328.1
Asynet [35] VoxelGrid 99.4 112 94.4 21.5
Bi et al. [3] Graph 98.6 - 91.4 -
EvS-S [62] Graph 99.1 15.2 93.1 6.1

Dominic et al. [18] Point-clouds 99.1 - - -
Single-nomem Point-clouds 98.8 9.2 93.4 4.6
MENet-single Point-clouds 99.57 9.2 95.32 4.6

ing differences between adjacent windows as input, the incremental branch can
model the motion information contained in the two windows. Then, features of
the previous window will be used for prediction of the current one, which accu-
mulates the motion information. The accumulation of motion context in a short
time period can provide guidance for estimation. Therefore, as Nwin increases,
the accuracy first shows an upward trend. However, in the long-term accumula-
tion of motion context, events in the front window have a weak connection with
the events in the back. When Nwin is too large, part of the accumulated motion
context may even introduce noise for prediction, thus the accuracy decreases.

5.3 Object Recognition

The experiments are conducted on three commonly used object recognition
datasets. Since the average duration of each event stream in the CIFAR10-DVS
dataset is 1.2s, the fixed time interval is set as 200ms. Each window is randomly
sampled 4096 events. In addition, for verifying the effect of the proposed point-
wise memory bank on object recognition, two additional structures are proposed,
including MENet-single without incremental branch and Single-nomem further
removing the memory bank. These two structures are evaluated on MNIST-DVS
and N-Cars, in which each stream is sampled 512 or 1024 events, respectively.

Comparison with State of the Art. Table 5 compares the proposed
Single-nomem and MENet-single with previous methods on MNIST-DVS and
N-Cars. Firstly, compared with Single-nomem, MENet-single improves accuracy
by 0.77% and 1.92% with almost the same computational complexity. The re-
sults confirm that the proposed memory bank stores representative information
of event feature space, and the features recalled from it contains discrimination
information of categories, which improves the accuracy with very low computa-
tional complexity. Secondly, previous methods have achieved high accuracy on
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Table 6. Comparison with different methods on the CIFAR10-DVS dataset. Red and
blue represent the best and the second best result, respectively.

Methods Representation Accuracy (%) MFLOPs/event GFLOPs

STBP-tdBN [65] Spike 67.8 - -
HOTS [27] TimeSurface 27.1 26 -
HATS [58] TimeSurface 52.4 - -
DART [51] TimeSurface 65.8 - -
Asynet [35] VoxelGrid 66.3 103 -

Kugele et al. [26] Frame 66.7 - 8.8
LIAF-Net [61] Frame 70.4 - 7.1
TA-SNN [64] Frame 72.0 - -
EvS-S [62] Graph 68.0 33.2 -

Dominic et al. [18] Point-clouds 56.6 - -
MENet Point-clouds 74.1 0.9 3.7

these two datasets, but the MENet-single further improves performance with
the lowest computational complexity. Compared with two competitive methods,
Asynet [35] and EvS-S [62] which process events asynchronously, MENet-single
improves accuracy by 0.17% and 0.47% while reducing MFLOPs/event by nearly
12 times and 1.6 times on MNIST-DVS, respectively. On N-Cars, the accuracy
is improved by 0.92% and 2.22% with reducing MFLOPs/event by 4.7 times and
1.3 times. The results confirm that by taking event clouds as input, the proposed
method can process multiple events in parallel and extract the rich information
contained in events effectively. Moreover, compared with the other methods in
Table 5, MENet-single uses fewer events and achieves higher accuracy, which
also confirms that the proposed method is effective and efficient.

In Table 6, compared with other methods on CIFAR10-DVS, MENet achieves
the best performance with the lowest computational complexity. Compared with
two competitive methods LIAF-Net[61] and TA-SNN[64], MENet improves accu-
racy by 3.7% and 2.1%, respectively. These two methods both compressed event
stream into frames and utilized SNN-based model. Experimental results prove
that MENet retains the high time resolution characteristic of event-based data
and the incremental branch can effectively capture the rich temporal dynamics
contained in event data. Therefore, MENet can greatly improve accuracy while
reducing computational complexity.

5.4 Gesture Recognition

As set in the ablation study, in DVS128 Gesture Dataset [1], the fixed time inter-
val is T = 0.5s. For each sliding window, 512 events are sampled for processing.

Comparison with State of the Art. In Table 7, compared with MENet-
single, MENet achieves a better result (98.86% vs 98.11%), while the speed is
increased by 3 times and computational complexity is reduced by 2 times. In ad-
dition, compared with other methods that have achieved high accuracy, MENet
achieves a new state-of-the-art result while significantly reducing the computa-
tional complexity. Although TA-SNN adopts a small time interval dt = 10ms to
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generate the frames and processes all events contained in the window, MENet
also achieves a better result (98.86% vs 98.61%). In addition, compared with
LIAF-Net [61], MENet improves accuracy by 1.3% and reduces the GFLOPs by
7.8 times. These experimental results prove once again that MENet can effec-
tively and efficiently utilize the dynamic information contained in event streams.

Table 7. Comparison with different methods on the DVS128 Gesture Dataset. Red
and blue represent the best and the second best result, respectively.

Methods Representation Accuracy (%) GFLOPs

Slayer [57] Spike 93.64 -
Amir et al. [1] Spike 94.59 -
SpArNet [22] Spike 95.10 -

STBP-tdBN [65] Spike 96.87 -
Bi et al. [3] Graph 97.20 13.7

Wang et al. [59] Point-clouds 95.32 -
PAT [63] Point-clouds 96.00 -

Kugele et al. [26] Frame 95.56 15.0
Massa et al. [34] Frame 89.64 -
LIF-Net [16] Frame 93.40 -
LIAF-Net [61] Frame 97.56 13.6
TA-SNN [64] Frame 98.61 -
MENet-single Point-clouds 98.11 4.73

MENet Point-clouds 98.86 2.00

6 Conclusion

This paper proposes a novel memory-based network with dual-branch for effi-
ciently and effectively processing event-based data, namely MENet. For utilizing
the correlation between adjacent windows and avoiding repeated extraction of
redundant information, MENet contains two branches. The first one is the base
branch which aims at extracting base features, while the second one is the incre-
mental branch with a light-weighted structure for capturing temporal dynamics
between two adjacent spatiotemporal windows. In addition, for calculating the
differences between two adjacent windows to capture meaningful information,
a double polarities calculation method is proposed. Furthermore, a point-wise
memory bank is introduced to sketch the representative information of event fea-
ture space for feature enhancement. Experimental results show that the proposed
dual-branch structure can reduce computational complexity and time consump-
tion while improving accuracy, and the proposed double polarities calculation
method and the point-wise memory bank can play their roles.
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