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Abstract. There is an increasing need to determine whether inputs are
out-of-distribution (OOD) for safely deploying machine learning mod-
els in the open world scenario. Typical neural classifiers are based on
the closed world assumption, where the training data and the test data
are drawn i.i.d. from the same distribution, and as a result, give over-
confident predictions even faced with OOD inputs. For tackling this
problem, previous studies either use real outliers for training or gen-
erate synthetic OOD data under strong assumptions, which are either
costly or intractable to generalize. In this paper, we propose boundary
aware learning (BAL), a novel framework that can learn the distribution
of OOD features adaptively. The key idea of BAL is to generate OOD
features from trivial to hard progressively with a generator, meanwhile,
a discriminator is trained for distinguishing these synthetic OOD fea-
tures and in-distribution (ID) features. Benefiting from the adversarial
training scheme, the discriminator can well separate ID and OOD fea-
tures, allowing more robust OOD detection. The proposed BAL achieves
state-of-the-art performance on classification benchmarks, reducing up to
13.9% FPR95 compared with previous methods.
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1 Introduction

Deep convolutional neural networks are one of the basic architectures in deep
learning, and they have achieved great success in modern computer vision tasks.
However, the over-confidence issue of OOD data has always been with CNN
which harms its generalization performance seriously. In previous research, neu-
ral networks have been proved to generalize well when the test data is drawn
i.i.d. from the same distribution as the training data, i.e., the ID data. However,
when deep learning models are deployed in an open world scenario, the input
samples can be OOD data and therefore should be handled cautiously.

Generally, there are two major challenges for improving the robustness of
models: adversarial examples and OOD examples. As pointed out in [10], adding
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(a) ResNet18 [11] (b) MLP (c) BAL (ours)

Fig. 1. Over-confidence issue in typical classification nets. (a): A ResNet18
trained on MNIST. The number of neurons of its penultimate layer is set to 2 for
feature visualization. The blue points are feature representations of ID data. The
background color represents confidence score given by the ResNet18. It is shown that
the region far from the blue points gets high confidence score. (b): Classification on
two gaussian distribution with a MLP. The green points are training data. It can be
seen the classification net gives OOD regions high confidence which is abnormal. (c):
Boundary aware learning (BAL) gives ID regions much higher confidence than OOD
regions. More visualization results are shown in the Appendix Figure 7.

very small perturbations to the input can fool a well-trained classification net,
and these modified inputs are the so-called adversarial examples. Another prob-
lem is how to detect OOD examples that are drawn far away from the training
data. The trained neural networks often produce very high confidence to these
OOD samples which has raised concerns for AI Safety [4] in many applications,
which is the so-called over-confidence issue [28]. As shown in Figure 1 (a), a
trained ResNet18 is used for extracting features from the MNIST dataset, and
the blue points indicate feature representations of ID data. It can be found that
almost the whole feature space is assigned with high confidence score but the ID
data only concentrates in some narrow regions densely.

Previous studies have proposed different approaches for detecting OOD sam-
ples to improve the robustness of classifiers. In [12], a max-softmax method is
proposed for identifying OOD samples. Further, in ODIN [25], temperature scal-
ing and input pre-processing are introduced for improving the confidence scores
of ID samples. In [38], convolutional prototype learning is proposed for image
classification which shows effectiveness in OOD detection and class-incremental
learning. In [7], it points out that the outputs of softmax can not represent the
confidence of neural net actually, and thus, a new branch is separated for con-
fidence estimation independently. All these previous works have brought many
different perspectives and inspirations for solving the open world recognition
tasks. However, these methods pay limited attention to the learning of OOD
features which is a key factor in OOD detection. The neural networks can better
detect OOD samples if they are supervised by the trivial and hard OOD infor-
mation, and that’s why we argue OOD feature learning is important for OOD
uncertainty estimation.

In this paper, we attribute the reason of poor OOD detection performance to
the fact that the traditional classification networks can not perceive the bound-
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ary of ID data due to lack of OOD supervision, as illustrated in Figure 1 (a)
and (b). Consequently, this paper focuses on how to generate synthetic OOD
information that supervises the learning of classifiers. The key idea of our pro-
posed boundary aware learning (BAL) is to generate synthetic OOD features
from trivial to hard gradually via a generator. At the same time, a discrimina-
tor is trained to distinguish ID and OOD features. Powered by this adversarial
training phase, the discriminator can well separate ID and OOD features. The
key contributions of this work can be summarized as follows:

– A boundary aware learning framework is proposed for improving the rejec-
tion ability of neural networks while maintaining the classification perfor-
mance. BAL can be combined with mainstream CNN architectures easily.

– We use a GAN to learn the distribution of OOD features adaptively step by
step without introducing any assumptions about the distribution of ID fea-
tures. Alongside, we propose an efficient method called RSM (Representation
Sampling Module) to sample synthetic hard OOD features.

– We test the proposed BAL on several datasets with different CNN architec-
tures, the results suggest that BAL significantly improves the performance
of OOD detection, achieving state-of-the-art performance and allowing more
robust classification in the open world scenario.

2 Related Work

OOD detection with softmax-based scores. In [12], a baseline approach to
detect OOD inputs named max-softmax is proposed, and the metrics of evaluat-
ing OOD detectors are defined properly. Following this, inspired by [10], ODIN
[25] and generalized ODIN [15] are proposed for improving the detection ability
of max-softmax using temperature scaling, input pre-processing, and confidence
decomposition. In [3,24], these studies argue that the feature maps from the
penultimate layer of neural networks are not suitable for detecting outliers, and
thus, they use the features from a well-chosen layer and adopt some metrics such
as Euclidean distance, Mahalanobis distance, and OSVM [34]. In [7], a branch
is separated for confidence regression since the outputs of softmax can not well
represent the confidence of neural networks. More recently, GradNorm [17] finds
that the magnitude of gradients is higher in ID than that of OOD, making it
informative for OOD detection. In [26], energy score derived from discriminative
models is used for OOD detection which also brings some improvement.
OOD detection with synthetic data. These kinds of methods usually use the
ID samples to generate fake OOD samples, and then, train a (C + 1) classifier
which can improve the rejection ability of neural nets. [35] treats the OOD
samples as two types, one indicates these samples that are close to but outside
the ID manifold, and the other is these samples which lie on the ID boundary.
This work uses Variational AutoEncoder [33] to generate such data for training.
In [23], the authors argue that samples lie on the boundary of ID manifold can
be treated as OOD samples, and they use GAN [9] to generate these data. The
proposed joint training method of confident classifier and adversarial generator
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inspires our work. It can not be ignored that the methods mentioned above are
only suitable for small toy datasets, and the joint training method harms the
classification performance of neural nets. Further, in [6], the study points out
that AutoEncoder can reconstruct the ID samples with much less error than
OOD examples, allowing more effective detection with taking reconstruction
error into consideration. Very recently, a newly proposed VOS [8] introduces
the OOD detection into object detection tasks, and its main focus is still the
OOD feature generation. In these previous works, the features of each category
from penultimate layer of CNN are assumed to follow a multivariate gaussian
distribution. We argue and verify that this assumption is not reasonable. Our
proposed BAL uses a GAN to learn the OOD distribution adaptively without
making assumptions, and the experimental results show that BAL outperforms
gaussian assumption based methods significantly.
Improving detection robustness with model ensembles. In [21], the au-
thors initialize different parameters for neural networks randomly, and the bag-
ging sampling method is used for generating training data. Similarly, in [31], the
features from different layers of neural networks are used for identifying OOD
samples. The defined higher order Gram Matrices in this work yield better OOD
detection performance. More recently, [32] converts the labels of training data
into different word embeddings using GloVe [29] and FastText [18] as the su-
pervision to gain diversity and redundancy, the semantic structure improves the
robustness of neural networks.
OOD detection with auxiliary supervision. In [30], the authors argue that
the likelihood score is heavily affected by the population level background statis-
tics, and thus, they propose a likelihood ratio method to deal with background
and semantic targets in image data. In [14], the study finds that self-supervision
can benefit the robustness of recognition tasks in a variety of ways. In [40], a
residual flow method is proposed for learning the distribution of feature space of
a pre-trained deep neural network which can help to detect OOD examples. The
latest work in [36] treats ood samples as near-OOD and far-OOD samples, it
argues that contrastive learning can capture much richer features which improve
the performance in detecting near-OOD samples. In [13], the author uses auxil-
iary datasets served as OOD data for improving the anomaly detection ability of
neural networks. Generally, these kinds of methods use some prior information
to supervise the learning of OOD detector.

3 Preliminaries

Problem Statement. This work considers the problem of separating ID and
OOD samples. Suppose Pin and Pout are distributions of ID and OOD data,
X = {x1, x2, ..., xN} are images randomly sampled from these two distributions.
This task aims to give lower confidence of image xi sampled from Pout while
higher to that of Pin. Typically, OOD detection can be formulated as a binary
classification problem. With a chosen threshold γ and confidence score S(x),
input is judged as OOD data if S(x) < γ otherwise ID. Figure 2 (a) shows
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(a) Classification with ResNet18 [11] (b) Classification with BAL (ours)

Fig. 2. Confusion between ID and OOD data. (a): In typical classifiers, the
ID and OOD data are confused, and both of them get very high confidence scores.
(b): With the proposed BAL, the OOD data is assigned with much lower confidence,
allowing more effective OOD detection.

the traditional classifiers can not capture the OOD uncertainty, and as a result,
produce over-confident predictions on OOD data. Figure 2 (b) shows an ideal
case where ID data gets higher score than OOD. Methods that aim to boost the
performance of OOD detection should use no data labeled as OOD explicitly.
Methodology. For a given image x, its corresponding feature representation
f can be got from the penultimate layer of a pre-trained neural network, and
based on the total probability theorem, we have:

P (w|f) = P (w|f ∈ Mf ) · P (f ∈ Mf |f)
+P (w|f /∈ Mf ) · P (f /∈ Mf |f)

(1)

where w is the category label of ID data, and Mf represents the manifold of
ID features. Typical neural networks have no access to OOD data, therefore the
softmax output is actually the conditional probability assuming the inputs are ID
data, i.e., P (w|f ∈ Mf ). Empirically, since the OOD data has quite different
semantic meanings compared with ID data, it is reasonable to approximate
P (w|f /∈ Mf ) to 0. Then, we have:

P (w|f) ≈ P (w|f ∈ Mf ) · P (f ∈ Mf |f) (2)

It tells that the approximation of posterior can be formulated as the product of
outputs from pre-trained classifiers and the probability f belongs to Mf . The
proposed BAL aims to estimate P (f ∈ Mf |f) with features from the penulti-
mate layer of pre-trained CNN.

4 Boundary Aware Learning

The proposed boundary aware learning framework contains three modules as
illustrated in Figure 3. These modules handle the following problems: (I) Rep-
resentation Extraction Module (REM): how to generate trivial OOD features
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Fig. 3. The proposed BAL framework. The ID features are extracted from pre-
trained classifier. The trivial OOD features are uniformly sampled in feature space.
The hard OOD features are generated using FGSM method. All features except ID
feature are treated as OOD when training the discriminator. Mf is the manifold of ID
features. REM, RSM and RDM are representation extraction module, representation
sampling module and representation discrimination module respectively.

to supervise the learning of conditional discriminator; (II) Representation Sam-
pling Module (RSM): how to generate synthetic hard OOD features to enhance
the discrimination ability of conditional discriminator step by step; (III) Repre-
sentation Discrimination Module (RDM): how to make the conditional discrim-
inator aware the boundary of ID features.

4.1 Representation Extraction Module (REM)

This module handles the problem of how to generate trivial synthetic OOD
features. As in prior works, we use the outputs of penultimate layer in CNN to
represent the input images. In the following parts, H and h are used to indicate
the pre-trained classification net with and without the top classification layer,
and θ is the pre-trained weights. Formally, the feature f of an input image x is:

f = h(x; θ) (3)

During training, image x and its corresponding label c are sampled from
dataset X . We get an ID feature-label pair ⟨f, c⟩ with Eq.(3). For generating
trivial synthetic OOD features, we sample data in feature space uniformly. Given
a batch features {f1, f2, f3, ..., fk}, the length of each feature vector fi is m. We
first calculate the minimal and maximal bound in m-dimensional space that
contains all features within this batch. For j ∈ {1, 2, 3, ...,m}, we have:

R
(j)
min = min

1≤i≤k
f
(j)
i , R(j)

max = max
1≤i≤k

f
(j)
i (4)

Consequently, the batch-wise lower and upper bound of feature vectors are
obtained as follows:

a = (R
(1)
min, R

(2)
min, ..., R

(m)
min)

T , b = (R(1)
max, R

(2)
max, ..., R

(m)
max)

T (5)
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Fig. 4. Feature distribution in penultimate layer of CNN. Left: Classification
on MNIST with ResNet18, the penultimate layer has 2 neuros for visualization. Right:
Same as the left, the penultimate layer has 3 neurons. There is a large deviation between
the distribution of ID feature and a multivariate gaussian. Moreover, it is clear that
ID features densely distribute at some narrow regions in feature space.

We use U(a, b) to indicate a batch-wise uniform distribution in feature space.

Randomly sampled feature f̂ from U(a, b) is treated as a negative sample with

a randomly generated label ĉ. The negative pair is expressed as
〈
f̂ , ĉ

〉
. We give

the reasons of uniform sampling: (a) It can not be guaranteed that features
from the penultimate layer of CNN follow a multivariate gaussian distribution
no matter in low dimensional space or higher feature space. For verifying this
idea, we set the penultimate layer of CNN to have two and three neurons for
feature visualization, the results shown in Figure 4 indicate the unreasonableness
of this assumption. (b) ID features densely distribute in some narrow regions
which means the most samples from uniform sampling are OOD data. Conflicts
may happen when f̂ is close to ID and ĉ does match with f̂ , the RDM deals
with these conflicts.

4.2 Representation Sampling Module (RSM)

This module is used for generating hard OOD features. For noise z sampled
from normal distribution Pz, its corresponding synthetic ID feature f can be
got by G(z, c) where c is a conditional label. Since the generator G is trained for
generating ID data, the feature f is much closer to ID instead of OOD. With
Fast Gradient Sign Method [10], we push the feature f towards the boundary of
ID manifold which gets a much lower score from discriminator.

f̃ = f − ϵ
∂D(f ; c)

∂f
≈ f − ϵ sgn(

∂D(f ; c)

∂f
) (6)

z̃ = z − ϵ
∂D(f ; c)

∂z
= z − ϵ

∂D(G(z; c); c)

∂G(z; c)

∂G(z; c)

∂z
(7)

where f̃ represents the OOD feature which scatters at the low density area of ID
feature distribution Pf . z̃ can be used for generating OOD features by G(z̃; c).
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In particular, we set ϵ a random variable which follows a gaussian distribution

for improving the diversity of sampling.
〈
f̃ , c̃

〉
is treated as hard OOD feature

pair because its quality is growing with the adversarial training process.

4.3 Representation Discrimination Module (RDM)

This module aims to make the discriminator aware the boundary of ID features.
The generator with FGSM is used for generating hard OOD representations
while the discriminator is used for separating ID and OOD features. The noise
vector z is sampled from a normal distribution Pz. The features of training
images from REM follow a distribution Pf . For learning the boundary of ID
data via discriminator, we propose shuffle loss and uniform loss. The shuffle
loss makes the discriminator aware the category of each ID cluster in feature
space, and the uniform loss makes the discriminator aware the boundary of each
ID feature cluster.
Shuffle loss. In each batch of the training data, we get feature-label pairs like
⟨f, c⟩. In a conditional GAN, these ⟨f, c⟩ pairs are treated as positive samples.
With a shuffle function T (·), the positive pair ⟨f, c⟩ is transformed to a negative
pair ⟨f, c̃⟩ where c̃ = T (c) ̸= c is a mismatched label with feature f . The discrim-
inator is expected to identify these mismatch pairs as OOD data for awareness
of category label, and the classification loss is the so called shuffle loss as below:

Ls = EPf
(logD(f ;T (c))− logD(f ; c)) (8)

Uniform loss. We get positive pair ⟨f, c⟩ and negative pair
〈
f̂ , ĉ

〉
from REM. It

is mentioned before that conflicts may happen when f̂ is close to some ID feature
clusters and the randomly generated label ĉ dose match with them. For tackling
this issue, we strengthen the memory of discriminator about positive pair ⟨f, c⟩
while weaken that about negative pair

〈
f̂ , ĉ

〉
. We force the discriminator to

maximize D(f ; c) for remembering positive pairs, meanwhile, a hyperparameter
λc is used to mitigate the negative effects of conflicts. The uniform loss is
defined as follows:

Lu = λc · EPU logD(f̂ ; ĉ)− EPf
logD(f ; c) (9)

Alongside, the hard OOD features from RSM introduce no conflicts, and they
are treated as negative OOD pairs for calculating uniform loss when training
discriminator. Formally, the loss function Ld for conditional discriminator can
be formulated as below:

Lt = −EPf
logD(f ; c)− EPz

log(1−D(G(z); c)) (10)

Ld = Lt + Ls + Lu (11)

where Lt is the loss of discriminator in a vanilla conditional GAN. A well trained
discriminator is a binary classifier for separating ID and OOD features. In the
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process of training generator, we add a regularization term to accelerate the
convergence. The loss function of generator is written as:

Lg = EPz log(1−D(G(z; c); c)) + λ( min
fc∈Mc

||fc −G(z; c)||1) (12)

where || · ||1 indicates the L1 norm, Mc is the set of ID features with label c, and
λ is a balance hyperparameter. The regularization term reduces the difference
between synthetic features and the real. We set λ to 0.01 in our experiments. In
the process of training generator, the label c is generated randomly.

Generally, the BAL framework only trains the conditional GAN while keeping
the pre-trained classification net unchanged. The confidence score outputted by
a trained discriminator is treated as P (f ∈ Mf |f). Based on Eq.(2), the approx-
imation of posteriori is formulated as the product of outputs from pre-trained
classification net and discriminator. The training and inference pipeline is shown
in Algorithm 1. Code is available at: https://github.com/ForeverPs/BAL

Algorithm 1: OOD Detection with Boundary Aware Learning

Input: pre-trained network H (backbone h) on ID data with parameter
θ, initial generator G, initial discriminator D, ID dataset X

Output: OOD discriminator D, synthetic ID generator G
1 while Training do
2 # Discriminator training;
3 Sample a batch data x from X ;
4 Get the corresponding feature vectors : f = h(x; θ);
5 Calculate the lower and upper bound of f with Eqs.(4,5);
6 Transform the positive pairs ⟨f, c⟩ into negative pairs ⟨f, T (c)⟩;
7 Sample trivial and hard OOD feature pairs

〈
f̂ , ĉ

〉
via uniform

sampling and RSM;
8 Calculate the shuffle loss Ls, the uniform loss Lu, and the vanilla

loss Lt with Eqs.(8,9,10);
9 Update the parameters of D with gradient descent method.

10 # Generator training;
11 Sample noise z from normal distribution;
12 Get the features conditioned by random labels : G(z; c);
13 Calculate the loss function of generator with Eq.(12);
14 Update the parameters of G with gradient descent method.

15 while Inference do

16 Get feature vector : f̂ = h(x̂; θ);
17 Get predict label and corresponding confidence: p1, ĉ = H(x̂; θ);

18 Get ID confidence score : p2 = D(f̂ , ĉ);
19 Perform OOD detection with p1 · p2 under a chosen threshold.
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5 Experiments

In this section, we validate the proposed BAL on several image classification
datasets and neural net architectures. Experimental setup is described in Sec-
tion 5.1 and Section 5.2, evaluation metrics are detailed in Appendix Section
6.10 and ablation study is described in Section 5.3. We report the main results
and metrics in Section 5.4. Visualization of synthetic OOD data is given in
Section 5.5.

5.1 Dataset

MNIST [22] : A database of handwritten digits in total 10 categories, has a
training set of 60k examples, and a test set of 10k examples.
Fashion-MNIST [37] : A dataset contains grayscale images of fashion products
from 10 categories, has a training set of 60k images, and a test set of 10k images.
Omniglot [20] : A dataset that contains 1623 different handwritten characters
from 50 different alphabets. In this work, we treat Omniglot as OOD data.
CIFAR-10 and CIFAR-100 [19] : The former one contains 60k colour images
in 10 classes, with 6k images per class. The latter one also contains 60k images
but in 100 classes, with 600 images per class.
TinyImageNet [5] : A dataset contains 120k colour images in 200 classes, with
600 images per class.
SVHN [27] and LSUN [39] : The former one contains colour images of street
view house number. The latter one is a large-scale scene understanding dataset.

5.2 Experimental setup

Softmax baseline. ResNet [11] and DenseNet [16] are used as backbones, and
they are trained with an Adam optimizer using cross-entropy loss in total of 300
epochs. Images from MNIST, Fashion-MNIST and Omniglot are resized to 28
× 28 with only one channel. Other datasets are resized to 32 × 32 with RGB
channels. For MNIST, Fashion-MNIST and Omniglot, ResNet18 is used as the
feature extractor. For any other datasets, ResNet34 and DenseNet-BC with 100
layers are used for feature extraction.
GCPL. We use distance-based cross-entropy loss and prototype loss as men-
tioned in [38]. The hyperparameter λ (weight of prototype loss) is set to 0.01.
ODIN and Generalized ODIN. Parameters (T , ϵ) are provided in Table 7.
AEC. This method uses reconstruction error to detect outliers. We reproduce
it following the details in [6]. See Appendix Figure 7 for more details.

5.3 Ablation study

Ablation on proposed loss functions. We compare different loss functions
proposed in BAL. Specifically, we use DenseNet-BC as the feature extractor.
CIFAR-10 is set as ID data while TinyImageNet is set as OOD data. We con-
sider four combinations of proposed loss functions: Lt, Lt + Ls, Lt + Lu and
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Table 1. Ablation on different combinations of loss functions. All networks are trained
with the training set of CIFAR-10, and no OOD data is used. λc in uniform loss Lu is
set to 0.7. It can be seen that the proposed shuffle loss and uniform loss enhance the
ability for detecting outliers.

↑ AUPRin ↑ AUPRout ↑ AUROC ↓ FPR 95

Softmax baseline 95.3 92.2 94.1 41.1
BAL (Lt) 97.0 96.0 96.6 17.9
BAL (Lt + Ls) 97.1 96.2 96.6 9.3
BAL (Lt + Lu) 97.2 96.3 96.7 8.1
BAL (Lt + Ls + Lu) 98.2 98.0 97.0 5.0

Table 2. Ablation on parameter λc. All networks are trained with the training set of
CIFAR-10, and no OOD data is used. In the following experiments, if not specified,
λc is set to 0.7 throughout.

λc 0.1 0.3 0.5 0.7 0.9
AUROC 94.8 95.2 96.7 97.0 96.2
AUPRin 95.3 95.3 97.1 98.2 96.3
AUPRout 92.1 93.4 96.9 98.0 97.1

Lt+Ls+Lu. The details of pre-mentioned loss functions can be found in Eqs.(8-
10). For uniform loss Lu, we set the hyperparameter λc to 0.7. The results are
summarized in Table 1, where BAL with shuffle loss and uniform loss outper-
forms the alternative combinations. Compared to max-softmax, BAL reduces
FPR95 up to 36.1%.
Ablation on λc in uniform loss. We test the sensitivity of λc in Eq.(9).
CIFAR-10 and TinyImageNet are set as ID and OOD respectively. DenseNet-BC
is used as the backbone. The ablation results shown in Table 2 demonstrate that
with the increasing of λc, AUPRout of neural networks increases synchronously
which means the classifier can aware more OOD data. In particular, using λc as
0.7 yields both better ID and OOD detection performance.
Ablation on OOD synthesis sampling methods.We consider different triv-
ial OOD feature sampling methods. As described in Section 4.1, the distribution
of features in convolutional layer is usually assumed to follow a multivariate
gaussian distribution. Therefore, the low density area of each category is treated
as OOD region. We argue this assumption is not reasonable enough because: (I)
From Figure 1 (a) and Figure 4, we can see that in low dimensional feature space,
the conditional distribution of each category has a great deviation with multi-
variate gaussian distribution; (II) In high dimensional space, the distribution of
ID features is extremely sparse, therefore it is hard to estimate the probability
density of assumed gaussian distribution accurately; (III) It is costly to calculate
the mean vector µ and covariance matrix Σ of multivariate gaussian distribution
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Table 3. Ablation on BAL with different sampling methods. The values in the table are
AUROC. Both uniform and gaussian sampling are performed within BAL framework.

feature dim 2 64 256 512 1024
BAL (Gaussian) 94.3 96.4 96.9 98.1 98.5
BAL (Uniform) 96.5 97.0 97.3 98.1 98.8

Table 4. Detecting OOD samples on MNIST, Fashion-MNIST and Omniglot with
ResNet18. We use the mixture of two datasets as OOD samples.

ID MNIST F-MNIST
OOD F-MNIST & Omniglot MNIST & Omniglot

Methods Softmax baseline[12] / ODIN[25] / GCPL[38] / BAL(ours)

↑ Cls Acc 99.43 99.43 99.23 99.43 91.51 91.51 90.93 91.51
↓ Det Err 4.14 5.01 4.77 3.06 32.42 19.14 30.73 7.10
↓ FPR 95 3.29 5.03 4.54 1.11 59.84 33.27 56.45 9.20
↑ AUROC 97.66 97.94 97.96 99.32 89.44 93.45 81.79 97.82
↑ AUPRin 97.22 97.42 98.14 99.46 90.80 94.28 72.40 98.31
↑ AUPRout 97.24 97.64 97.35 99.09 86.20 91.36 82.38 96.95

in high dimensional feature space; (IV) Inefficient sampling. It is of low efficiency
since the probability density needs to be calculated for each synthetic sample.
Without introducing any strong assumptions about the ID features, we verify
that the naive uniform sampling together with a GAN framework can model the
OOD feature distribution effectively. We still use CIFAR-10 and TinyImageNet
as ID and OOD data. We compare uniform sampling and gaussian sampling
in feature space. The dimensionality of features is controlled by setting different
number of neurons in the penultimate fully connected layer. The ablation results
are shown in Table 3. It is clear that BAL with uniform sampling outperforms
gaussian sampling in both low and high dimensional space.

5.4 Detection results

We detail the main experimental results on several datasets with ResNet18,
ResNet34, and DenseNet-BC. For CIFAR-10, CIFAR-100, and SVHN, we use
the pre-trained ResNet-34 and DenseNet-BC, and for MNIST, Fashion-MNIST,
and Omniglot, we train the ResNet18 from scratch.
Results on MNIST, Fashion-MNIST, and Omniglot. We observe the
effects of BAL in two groups. In the first group, MNIST is ID data, and the
mixture of Fashion-MNIST and Omniglot is OOD data. In the second group,
Fashion-MNIST is ID data while MNIST and Omniglot are OOD data. For
simplicity, Cls Acc and Det Err are used to represent Classification Accuracy
and Detection Error. For ODIN, temperature (T ) and magnitude (ϵ) are 10 and
5e-4 respectively. The results summarized in Table 4 tell that BAL is effective on
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Table 5. Main OOD detection results. We use C-10, C-100, TIN, D-BC and R-34 to

represent CIFAR-10, CIFAR-100, TinyImageNet, DenseNet-BC and ResNet-34.

ID OOD ↓ FPR

at 95% TPR

↑ AUPR

in

↑ AUPR

out

Softmax baseline[12] / AEC[6] / ODIN[25] / Generalized ODIN[15] / BAL(ours)

C-10

D-BC

SVHN 59.8 57.2 63.6 44.2 32.6 91.9 92.3 89.1 94.6 99.7 87.0 92.5 83.9 88.7 99.7

LSUN 33.4 27.6 5.6 5.2 4.7 96.4 97.3 98.9 99.0 99.5 94.0 96.3 98.7 98.9 98.9

TIN 41.1 35.1 10.5 9.3 5.0 95.3 96.2 98.1 97.9 98.2 92.2 94.0 97.8 97.4 98.0

C-10

R-34

SVHN 67.5 57.2 64.4 12.7 11.3 92.2 93.4 85.8 94.5 95.5 84.9 84.5 81.8 93.4 97.4

LSUN 54.6 34.6 26.2 21.3 15.8 92.3 91.8 93.7 94.0 93.9 88.5 92.1 93.8 93.9 94.1

TIN 55.3 28.7 28.0 27.4 21.6 92.4 93.1 94.0 94.3 93.9 88.3 90.1 92.9 92.7 93.8

C-100

D-BC

SVHN 73.3 63.2 60.9 31.9 21.5 85.9 89.3 90.2 90.7 91.5 78.5 86.7 85.2 89.5 92.8

LSUN 83.3 66.0 58.4 23.9 11.3 72.4 87.4 85.0 88.1 89.3 65.4 84.9 82.0 87.6 88.7

TIN 82.4 59.7 56.9 22.7 12.0 73.0 83.7 84.7 86.5 91.5 67.4 82.9 83.0 84.3 90.6

C-100

R-34

SVHN 79.7 76.5 76.5 31.2 17.3 81.5 82.5 73.8 85.3 87.1 74.5 79.6 74.2 85.1 89.3

LSUN 81.2 52.1 54.6 27.1 18.7 76.0 80.0 82.4 89.0 91.5 70.1 78.4 84.1 89.0 88.7

TIN 79.6 55.3 50.6 29.7 22.5 79.2 87.1 86.8 89.3 91.6 72.3 85.6 87.0 88.0 89.8

SVHN

D-BC

LSUN 22.9 22.7 22.1 18.7 16.4 96.7 95.4 95.3 97.2 98.5 88.0 88.7 89.3 86.3 89.3

C-10 30.7 20.1 24.7 20.3 12.1 95.4 93.2 92.5 96.0 97.3 88.5 84.7 81.7 84.2 89.9

TIN 21.2 18.6 19.9 15.2 11.7 97.0 96.1 95.5 97.3 98.5 88.9 90.7 90.1 91.6 90.6

SVHN

R-34

LSUN 25.7 21.0 22.2 18.1 13.5 93.8 91.3 91.3 96.4 97.8 84.6 86.5 85.9 89.4 92.1

C-10 21.7 19.5 20.0 16.7 14.8 94.8 92.0 91.9 97.0 97.6 86.4 87.3 87.1 88.2 89.0

TIN 21.0 19.3 18.0 15.4 14.3 95.4 93.4 93.5 96.8 98.2 86.9 88.5 88.6 89.4 89.4

image classification benchmark, particularly, BAL reduces FPR95 up to 24.1%
compared with ODIN in the second group.
Results on CIFAR-10, CIFAR-100, and SVHN. We consider sufficient ex-
perimental settings in this part for testing the generalization ability of BAL. The
pre-trained ResNet-34 and DenseNet-BC on CIFAR-10, CIFAR-100 and SVHN
come from [1]. The main results on image classification tasks are summarized
in Table 5, where BAL demonstrates superior performance compared with the
mainstream methods under different experimental settings. Optimal tempera-
ture (T ) and magnitude (ϵ) are searched for ODIN in each group. Specifically,
BAL reports a decline of FPR95 up to 13.9% compared with Generalized ODIN.

5.5 Visualization of trivial and hard OOD features

We show the visualization results of trivial OOD features from uniform sampling
and the hard OOD features from generator via FGSM in Figure 5. We set the
training data as two gaussian distributions with dimensionality m = 2. We use
a MLP with three layers as the classifier. The discriminator and generator only
use fully connected layers. In the adversarial training process, we sample data in
raw data space uniformly since the dimensionality of raw data is fairly low. The
other training details are the same as pipeline shown in Algorithm 1. We also
report the classification results on dogs vs. cats [2]. The images from ImageNet
are treated as OOD data. The top-1 classification results of BAL and Softmax
baseline are given in Figure 6.
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(a) trivial OOD via uniform sampling (b) hard OOD via FGSM

Fig. 5. Synthetic OOD in raw data space. When the dimensionality of raw data
space is high, we have to perform sampling in feature space as shown in Algorithm 1.

Fig. 6. OOD detection in open world scenario. Two columns on the left: classi-
fication results on ID data. Two columns on the right: classification results on OOD
images from ImageNet. Green: max-softmax baseline. Pink: the proposed BAL. The
threshold for distinguish ID and OOD is set to 0.60 . It is shown that BAL reduces
the false positives among classification results. The image with macarons is a failure
case where BAL misclassifies it as a dog.

6 Conclusion

In this paper, we propose using BAL to learn the distribution of OOD features
adaptively. No strong assumptions about the ID features are introduced. We use
a simple uniform sampling method combined with a GAN framework can gen-
erate OOD features in very high quality progressively. BAL has been proved to
generalize well across different datasets and architectures. Experimental results
on image classification benchmarks promise the state-of-the-art performance.
The ablation study also shows BAL is stable with different parameter settings.
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