
Learning Hierarchy Aware Features for
Reducing Mistake Severity

Ashima Garg, Depanshu Sani, and Saket Anand

Indraprastha Institute of Information Technology, Delhi, India
{ashimag, depanshus, anands}@iiitd.ac.in

Abstract. Label hierarchies are often available apriori as part of bio-
logical taxonomy or language datasets WordNet. Several works exploit
these to learn hierarchy aware features in order to improve the classifier
to make semantically meaningful mistakes while maintaining or reducing
the overall error. In this paper, we propose a novel approach for learn-
ing Hierarchy Aware Features (HAF) that leverages classifiers at each
level of the hierarchy that are constrained to generate predictions con-
sistent with the label hierarchy. The classifiers are trained by minimiz-
ing a Jensen-Shannon Divergence with target soft labels obtained from
the fine-grained classifiers. Additionally, we employ a simple geometric
loss that constrains the feature space geometry to capture the semantic
structure of the label space. HAF is a training time approach that im-
proves the mistakes while maintaining top-1 error, thereby, addressing
the problem of cross-entropy loss that treats all mistakes as equal. We
evaluate HAF on three hierarchical datasets and achieve state-of-the-art
results on the iNaturalist-19 and CIFAR-100 datasets. The source code
is available at https://github.com/07Agarg/HAF

1 Introduction

Conventional classifiers trained with the cross-entropy loss treat all misclassifi-
cations equally. However, certain categories may be more semantically related to
each other than to other categories, implying that some classification mistakes
may be more severe than others. For instance, an autonomous vehicle confusing
a car for a truck is not as severe as mistaking a pedestrian for road, where the
latter mistake could lead to a catastrophe. Similarly, falsely identifying a pine

tree with an oak tree is less severe than identifying it as a rose. Classifiers
trained to make mistakes with lower severity could benefit and are often critical
in many real-world applications.

The severity of a mistake is typically defined based on some notion of semantic
similarity between class labels. For example, a taxonomic hierarchy tree defined
over the class labels can express specific semantic relationships between classes
through its tree structure, thus enabling an ordering of classes. This ordering
was obtained using the lowest common ancestor (LCA) measure in [4, 14]. These
hierarchies are often readily available in the class label space as part of language
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Fig. 1: Overview of HAF. We propose a probabilistic approach using to learn
hierarchy-aware features that respect the label hierarchy in the feature space and
thereby make semantically meaningful mistakes. We train separate classifiers,
with a shared feature space, for each level of the label hierarchy. We model the
relationship between the fine-grained classes and their respective coarser classes
using the label hierarchy and impose consistency constraints on the probability
distributions. We further impose simple geometric constraints on the weight
vectors of classifiers from different levels to align the weight vectors of fine-
grained classes with their corresponding weight vectors of coarser-classes.

datasets like WordNet [19] or from biological taxonomies, e.g., the one used with
the iNaturalist-19 dataset [25].

Bertinetto et al. [4] proposed approaches to reduce the severity of mistakes
by employing hierarchy-sensitive adaptations of the cross-entropy loss. They
reported reduction in the mistake severity based on the average hierarchical
distance of top-k predictions at the cost of an increased top-1 error, with the
trade-off being controlled by a hyperparameter. A more desirable solution would
be the one that reduces the severity of mistakes while maintaining or reducing
the overall top-1 error. Karthik et al. [14] highlighted this trade-off and pointed
out that the classical approach of Conditional Risk Minimization (CRM) could
reduce the mistake severity without a significant change in the top-1 error. More-
over, CRM is a test-time intervention that applies post-hoc corrections on the
class likelihoods using the LCA measure between classes. Despite its simplicity,
the CRM approach is versatile and its effectiveness is remarkable. In Sec. 4, we
show that CRM, when combined with other approaches, almost always improves
the mistake severity, without a significant impact on the top-1 error.

While CRM improves the quality of prediction errors, being a test-time ap-
proach, it does not affect the model. Consequently, the learned representations
are inherently inadequate because the cross-entropy loss function ignores all
semantic structure in the label space and treats each class independently. To
overcome this limitation, the hierarchical cross-entropy (HXE) loss was proposed
in [4], which essentially amounts to a weighted combination of the cross-entropy
loss applied at different levels of the hierarchy1. Chang et al. [7] pointed out
that training with a coarse class cross-entropy loss deteriorates the accuracy at
fine-grained levels. This is likely the reason why both variants proposed in [4],

1 See the supplementary material for a derivation



HAF 3

HXE and the soft-labels loss, result in a trade-off between top-1 error and the
severity of mistakes. Chang et al. [7] mitigate this trade-off by disentangling the
coarse and the fine-grained features by explicitly partitioning the feature space.
This disentangling approach proved to be successful for small hierarchies, how-
ever, the feature vector partitioning limits its scalability to larger hierarchies. We
argue that for addressing the problem of mistake severity, while maintaining the
top-1 error, it is important to learn a feature space that captures the structure
available in the label space. To this end, we propose learning a hierarchy-aware
feature (HAF) space that is explicitly trained to inherit the hierarchical structure
of the labels.

We observe that a hierarchy-aware feature space should enable classification
at all levels of the hierarchy, and simultaneously lead to a lower mistake severity
at the finest level. The label hierarchy structure constrains the coarse-level class
labels to be a composition of disjoint sets of its sub-classes in the hierarchy. We
exploit two key properties of the classifiers acting on the feature space to help
inherit this compositional structure from the label space.

First, we train a classifier using the fine-grained cross-entropy and use its pre-
dictions to obtain target soft labels (Fig. 1) for training the coarse-level auxiliary
classifiers. The coarse-level classifiers minimize the Jensen-Shannon divergence
(JSD) between their predictions and the target soft labels. This loss avoids the
use of hard labels at coarser levels and thus serves as a consistency regular-
ization for the fine-grained classifier, which in turn leads to improved mistake
severity without compromising the top-1 error. We take this approach to avoid
the pitfall highlighted in [7], which states that fine-grained features can lead to
better coarse-grained predictions, however, explicitly using cross-entropy loss for
coarse-level classifiers leads to feature spaces that worsens the performance at
a finer granularity. Second, we impose geometric consistency constraints on the
classifier weight vectors that align sub-classes belonging to the same super-class
(Fig. 1(b)). The resulting loss promotes a feature space (Fig. 1(a)) that respects
the semantic hierarchy of the label space (Fig. 1(c)). We present further details
of the loss terms in Sec. 3. We summarize our contributions below.

– We introduce a novel approach for learning a hierarchy-aware feature (HAF )
space by inheriting the structure of the label space. We design the loss func-
tions that impose probabilistic and geometric constraints between coarse and
fine level classifiers.

– We empirically demonstrate that HAF scales well with large label hierarchies
and reduces mistake severity while maintaining the top-1 fine-grained error.

2 Related Work

Several works exploit the hierarchical taxonomy of the data for image classifi-
cation for visual [4, 14, 7] and text [18] data, multi-label classification tasks [27],
image retrieval [2, 29], object recognition [22], and recently to improve semi-
supervised approaches [12, 24]. We discuss some of the important works that are
closely related with our objective.
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Label-embedding methods. These methods model the class relationships
using soft-embeddings. DeViSE [10] maximizes the cosine similarity between
the embeddings of an image extracted from a pretrained visual model and the
embeddings of label obtained using pretrained word2vec model on Wikipedia.
Liu et al. [17] exploit hyperbolic geometry to learn the hierarchical represen-
tations. Similar to DeViSE [10], they minimize the Poincaré distance between
the Poincaré label embeddings [20] and the image features embeddings. Barz &
Denzler [2] map the embeddings onto a unit hypersphere and use LCA to encode
the hierarchical distances. Bengio et al. [3] impose the structure over the classes
and fastens learning to embed in low dimensional space to model semantic re-
lationships between classes. Bertinetto et al. [4] proposed Soft-labels that uses
the soft-targets encoded with inter-class semantic information based on LCA.

Hierarchical-architecture based methods. Wu et al. [28] jointly opti-
mize multi-task loss function wherein cross-entropy loss is applied at each hier-
archical level. Recently, Chang et al. [7] established that jointly optimizing fine-
grained with coarse-grained recognition in vanilla framework deteriorates per-
formance on fine-grained classification. The authors proposed architecture for
multi-granularity classification with independent level-specific classifiers. Red-
mon et al. [22] proposed a probabilistic model, YOLOv2, for object detection
and classification, where softmax is applied at every coarse-category level to
address the mutual exclusion of all the classes in conventional softmax classifier.

Hierarchical-loss based methods. Bertinetto et al. [4] proposed another
approaches - hierarchical cross-entropy (HXE). HXE is a probabilistic approach
that optimizes a loss function based on conditional probabilities, where predic-
tions for a particular class is conditioned on the parent-class probabilities. Brust
& Denzler et al. [6] proposed a conditional probability classifier for DAGs. Bilal
et al. [5] proposed hierarchical-aware convolutional neural networks by adding
branches to the intermediate network pipeline. In [16], authors use prototypical
network which uses softmax over distances between the features to the class pro-
totypes, along with a regularization term that encourages the class prototypes
to follow the relationship in label hierarchy. Our work is in line with this body
of research. We study a different probabilistic model and propose a loss function
based on that model. In HAF, we explicitly define class prototypes at every level
and take a different approach for arrangement of these prototype vectors.

Cost based methods. Another line of research is based on assigning differ-
ent costs depending on the types of misclassification [1]. Deng et al. [8] proposed
to use mean classification cost to make hierarchy-aware predictions by penal-
izing the mistakes based on the hierarchies. [9, 26] used semantic hierarchy to
design cost matrix optimizing accuracy-specificity trade-offs between the level
of abstraction of the selected class while selecting the best in specificity. These
methods include both internal and leaf nodes in the cost matrix. While Karthik
et al. [14] study conditional risk minimization (CRM) on similar lines to [8], an
inference-time approach that weighs the predictions based on the cost matrix
defined using LCA distances among the leaf nodes. HAF also fits in this frame-
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work. However, unlike CRM [14], HAF is a training-time approach to learn
feature embeddings such that they are hierarchically meaningful.

3 HAF: Proposed Approach

Consider a label hierarchy tree with H+1 levels, where the root is at level-0, and
h ∈ [1, . . . ,H] denote the hierarchical level with h=1 and h=H the coarsest and
finest levels respectively. We ignore the root node for our purposes as it denotes
the universal super-set containing all classes. Let X = {xi, y

h
i |i = 1, . . . , N}

be the set of N images and their respective ground-truth labels at level h. We
denote the common feature extractor fϕ(·), which is implemented using some
backbone neural network and is parameterized by ϕ. As illustrated in Fig. 1,
we use classifiers at each level of the hierarchy in training HAF and denote the
level-h classifier as gh(·) parameterized by the weight matrix Wh. The resulting
prediction probabilities are denoted by ph(ŷhi |xi;W

h) = gh(fϕ(xi)), where ŷhi
is the label predicted for xi by gh(·) and can take class labels from the set of

classes at level-h as Ch =
{⋃|A|

i=1 Ai,
⋃|B|

i=1 Bi,
⋃|C|

i=1 Ci, . . .
}
, where we define the

set of classes at level-(h − 1) as Ch−1 = {A,B,C, . . .}. With a slight abuse of
notation, here we use A to denote a super-class label at level-(h− 1) and the set
of its sub-classes {A1, A2, . . .} at level-h.

3.1 Fine Grained Cross-entropy (LCEfine)

We use the ground truth labels only at the finest level of the hierarchy and apply
the cross-entropy loss to train the level-H classifier, i.e., gH(·). The fine-grained
cross-entropy loss for a sample is given by

LCEfine
= −

∑
c∈CH

1
[
yHi =c

]
log

(
pH(ŷHi =c|xi;W

H)
)

(1)

where 1[·] serves as an indicator function and takes a value of one when the
argument is true, else zero.

3.2 Soft Hierarchical Consistency (Lshc)

For making better mistakes, we want the classifiers at all levels to use the same
feature space and yet make predictions consistent with the label hierarchy. While
it is natural to use the cross-entropy loss for training the classifiers at all levels, as
noted in [7] and observed during our initial experiments, this choice of loss com-
promises the fine-grained accuracy. Instead, we enforce the consistency across
classifiers at different levels by using soft labels and a symmetric entropy-based
loss function. We minimize the Jensen-Shannon Divergence (JSD) [11] between
the predictions of a coarse classifier gh−1(·) and the soft labels obtained from the
next fine-level classifier gh(·). As defined above, for a given class label A ∈ Ch−1,
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let P [ŷh−1=A|xi] denote the probability of the sample xi belonging to the class
A, which is computed as

P
[
ŷh−1
i =A|xi

]
=

|A|∑
k=1

ph(ŷhi = Ak|xi;W
h) (2)

The probabilities P [c],∀c ∈ Ch−1 are concatenated together to construct the
probability vector p̂h−1(ŷh−1

i |xi), which is used as the soft label for xi. This soft
label generation process is illustrated in Fig. 2.

The JSD is minimized between the soft labels and the predictions from the
classifier gh(·). For convenience, we use phi to refer to ph(ŷi

h|xi;W
h) and simi-

larly p̂hi for the corresponding soft label. The JSD based total Soft Hierarchical
Consistency is computed by summing the pairwise losses across the levels

Lshc =

H−1∑
h=1

JSh
(
phi ||p̂hi

)
=

1

2

H−1∑
h=1

(KL(phi ||m) + KL(p̂hi ||m)) (3)

where m = 1
2 (p

h
i + p̂hi ) and KL(·||·) refers to Kullback-Leibler divergence.

Fig. 2: Constructing the soft la-
bels for training the coarse-level
classifiers. The super-class target
probability is the sum of its sub-
classes’ predicted probability. The
colors indicate the class relation-
ships across levels h− 1 and h.

It is important to highlight the key dif-
ference between the soft labels generated
above and those defined in [4]. The lat-
ter are designed using the LCA-based dis-
tance between classes, whereas our choice
of soft labels can be interpreted as a
learned label-smoothing that better regu-
larizes the coarse-level classifiers. Yuan et
al. [30] make a similar argument about la-
bel smoothing in the context of knowledge
distillation. The use of a symmetric loss
like in eqn. (3) further enables the clas-
sifiers at both levels to jointly drive the
feature space learning. This behavior of
the coarse classifiers improving the perfor-
mance of the finer-level classifiers is anal-
ogous to the Reversed Knowledge Distilla-
tion (Re-KD) setting as presented in [30],
where the authors showed that a student
(gh−1(·)) is capable of improving the per-
formance of the teacher (gh(·)).

3.3 Margin Loss (Lm)

While Lshc improves the mistake sever-
ity (as we show in Sec. 5) successfully by
virtue of better regularization, it does not directly encourage discrimination be-
tween coarse-level classes. Therefore, we use a pairwise margin-based loss to
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promote a more discriminative feature space. We use this loss over coarser levels
h ∈ H where H is [k, H − 1] and k ranges from [1 , H − 1]. For a given batch of
samples, we create pairs of samples that have dissimilar labels at a level h, i.e.,
Bh = {(i, j)|yhi ̸= yhj }. Then we compute the margin loss over the batch as

Lm =
∑
h∈H

∑
(i,j)∈Bh

max
(
0,m− JSh(phi ||phj )

)
(4)

where phi is the softmax probability generated by gh(fϕ(xi)) andm is the margin.
The margin loss is only applied to the coarser levels of the hierarchy, as the cross-
entropy loss of (1) is sufficient for fine-grained discrimination.

3.4 Geometric Consistency (Lgc)

HAF uses classifiers at all the levels of hierarchy. In a hierarchy-aware feature
space, the weight vectors of the coarse class and its fine-grained classes should be
correlated. The losses introduced in the previous subsections impose probabilistic
consistency across the classifier predictions, and only indirectly affect the feature
space geometry. In order to better orient the feature space to inherit the label
space hierarchy, we use a geometric consistency loss. As before, let A ∈ Ch−1 be a
given super-class and its sub-classes be Ak ∈ Ch, k = 1, . . . , |A|. Let the weight
vector corresponding to the super-class A be wh−1

A and similarly the weight
vectors corresponding to the sub-classes be wh

Ak
. Note that the classifier gh−1(·)

is defined by the weight matrix Wh−1, which is obtained by stacking the weight
vectors wc, c ∈ Ch−1. We further constrain each weight vector to be unit norm
||wh

c ||2 = 1,∀c, h, across all classifiers. For the super-class A ∈ Ch−1, we define

the target weight vector as ŵh−1
A = w̃h−1

A /||w̃h−1
A ||2, where w̃h−1

A =
∑|A|

k=1 w
h
Ak

.
Thus, the Geometric Consistency loss to be minimized is

Lgc =

H−1∑
h=1

∑
c∈Ch

(
1− cos

(
wh

c , ŵ
h
c

))
(5)

where cos
(
wh

c , ŵ
h
c

)
refers to the cosine similarity between the weight vectors

wh
c and ŵh

c .
Finally, the total loss is given by Ltotal = LCEfine

+ Lshc + Lm + Lgc .

4 Experiments and Results

4.1 Experimental Setup

Datasets. We present the evaluation of HAF approach on the CIFAR-100 [15],
iNaturalist-19 [25] and tieredImageNet-H [23] datasets. We follow the hierar-
chical taxonomy as is in [16] for CIFAR-100, and [4] for iNaturalist-19 and
tieredImageNet-H. In all the three datasets, Level-0 has only one node, i.e., the
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root node. Therefore, we only consider the bottom H hierarchical levels. Similar
to [4], we compute the distance between any two nodes by finding the minimum
distance between the node and their Lowest Common Ancestor (LCA). Table 1
summarizes the dataset statistics.

Train Val Test #Classes #Levels
CIFAR-100 45,000 5,000 10,000 100 6
iNaturalist-19 187,385 40,121 40,737 1010 8
tieredImageNet-H 425,600 15,200 15,200 608 13

Table 1: Statistics of the datasets.

Baselines. We directly compare HAF with the baseline cross-entropy, Barz &
Denzler’s [2], YOLO-v2 [22], both approaches of Bertinetto et al’s [4] work -
soft-labels and HXE, and the recently proposed CRM-based method from [14].
We also compare with recently proposed Chang et al.’s [7] multi-task framework
for classification with different granularities. For fair comparisons, we re-run all
the experiments with the same codebase under the new best hyperparameter
settings for all the methods and report mean and standard deviation of each
experiment averaged over three-different seeds.
Evaluation Metrics. We use the same evaluation metrics as Bertinetto et
al. [4]; Karthik et al. [14]. We report the following three metrics: i) top-1 er-
ror, ii) average mistakes severity, i.e., average LCA-based distance between the
ground-truth and predicted class label for only incorrectly classified samples,
and iii) average hierarchical distance @k, i.e., average distance from the LCA of
ground-truth label and k most likely predictions for all the samples.

4.2 Training Configurations

We adopt the Wideresnet-28-2 [31] backbone for evaluation on the CIFAR-100
dataset. For the iNaturalist-19 and tieredImageNet-H datasets, we use the Im-
ageNet pretrained ResNet-18 [13] backbone with an additional fully-connected
(FC) layer of 600 hidden units. Chang et al. [7] only employ this fully connected
layer for facilitating disentanglement, however, we use this additional layer as
part of the backbone for consistency across all the methods. Classifiers for each
hierarchical level follow this layer. We train all the models with a batch size
of 256. We use a fixed margin m of 3.0 across all the datasets defined in Eq
(4) and create a total of 256 dissimilar pairs from a batch of data. For CIFAR-
100, we employ RandomPadandCrop(32) and RandomFlip() for augmentation.
For iNaturalist-19 and tieredImagenet-H, we use RandomHorizontalFlip() fol-
lowed by RandomResizedCrop() as carried out in [4].

We find the training strategy (learning rate and optimizer) of Chang et al. [7]
to give optimal results on both CIFAR-100 and iNaturalist-19 datasets on the
baseline cross-entropy. This training strategy with the SGD optimizer boosts the
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performance of cross-entropy on iNaturalist-19 as opposed to the ones reported
using Adam optimizer in [4]. We obtain the best results for CIFAR-100 and
iNaturalist-19 using the SGD optimizer on all methods, except for soft-labels
and HXE where Adam [21] performs the best. For the methods trained with
SGD, we set different learning rates for the backbone network and the FC layer
as 0.01 and 0.1 respectively, following [7]. For training with soft-labels and HXE
with Adam optimizer, using a hyperparameter sweep we find that the model
performs the best with learning rate as 1e − 3 and 1e − 4 for CIFAR-100 and
iNaturalist-19 respectively. We train all the models on tieredImageNet-H for 120
epochs with a learning rate of 1e−5. Unlike other datasets, we employ the Adam
optimizer for tieredImageNet-H as it performed better than the SGD optimizer.

4.3 Results

Tables 2, 3 and 4 present the comparisons of our proposed technique with
the baselines on CIFAR-100, iNaturalist-19, and tieredImageNet-H respectively.
Karthik et al. [14] apply the CRM technique on the baseline cross-entropy. Since
CRM is a test-time approach that reweighs the probability distribution of sam-
ples obtained from any trained model, it can be applied to all other approaches.
Therefore, in each of the Tables 2-4, we group the results to report evaluation
metrics with and without using CRM at test-time. We re-emphasize that the goal
of the problem is to improve the hierarchical metrics by maintaining or improv-
ing the top-1 error. Towards this goal, in each table, we highlight the competitive
methods (rows) on the top-1 error with lightgreen . Among these competitive

methods, we highlight the best-performing entries for each metric with green .

On CIFAR-100 (Table 2), baseline cross-entropy, Chang et al.[7] and HAF and
their counterparts using CRM are competitive methods on top-1 error. How-
ever, HAF and HAF + CRM outperforms all other hierarchical metrics without
compromising top-1 error. We observe similar trends on iNaturalist-19 (Table
3), where HAF , and HAF + CRM are the only competitive training method to
cross-entropy, which maintain the top-1 error and yet improve the hierarchical
metrics. On tieredImageNet-H (Table 4), baseline cross-entropy, HXE α = 0.1,
Soft-labels β = 30, and HAF are competitive for both, top-1 error and hierar-
chical metrics. However, HAF is the best performing method on hier dist@20.

It is worth pointing out that Chang et al.’s [7] method does not scale well
with increasing number of hierarchical levels. For CIFAR-100 with six levels,
the accuracy is competitive with cross-entropy, however, with both iNat and
tieredImageNet-H, which have 8 and 13 levels, the top-1 error worsens. This
is not unexpected as the feature vector is divided based on number of levels.
While increasing the feature space may be a reasonable solution to maintain
performance, it may not be straightforward to decide the feature vector size for
each level, especially for hierarchies that may be skewed. On the contrary, HAF is
independent of the number of hierarchical levels used despite using hierarchical
classifiers at each level. We also note that the CRM approach fails to improve
Soft-labels β=4. This is perhaps because the label distribution is very flat for
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Method
Top-1 Error(↓) Mistakes severity(↓) Hier dist@1(↓) Hier dist@5(↓) Hier dist@20(↓)

Without CRM

Cross-Entropy 22.27 ± 0.001 2.35 ± 0.024 0.52 ± 0.003 2.24 ± 0.007 3.17 ± 0.007
Barz & Denzler 31.69 ± 0.004 2.36 ± 0.025 0.75 ± 0.012 1.25 ± 0.364 2.49 ± 0.004
YOLO-v2 [22] 32.03 ± 0.006 3.72 ± 0.022 1.19 ± 0.019 2.85 ± 0.010 3.39 ± 0.0109
HXE α=0.1 [4] 28.41 ± 0.003 2.43 ± 0.004 0.69 ± 0.008 2.08 ± 0.008 3.02 ± 0.012
HXE α=0.6 [4] 30.42 ± 0.003 2.29 ± 0.008 0.7 ± 0.008 1.76 ± 0.007 2.79 ± 0.008
Soft-labels β = 30 [4] 26.99 ± 0.003 2.38 ± 0.004 0.64 ± 0.008 1.39 ± 0.027 2.79 ± 0.005
Soft-labels β = 4 [4] 32.15 ± 0.008 2.21 ± 0.037 0.71 ± 0.024 1.23 ± 0.018 2.23 ± 0.008
Chang et al. [7] 21.94 ± 0.002 2.32 ± 0.005 0.51 ± 0.005 2.06 ± 0.018 3.08 ± 0.007
HAF 22.27 ± 0.001 2.24 ± 0.014 0.50 ± 0.003 1.41 ± 0.007 2.64 ± 0.002

With CRM

Cross-Entropy [14] 22.23 ± 0.001 2.31 ± 0.033 0.51 ± 0.006 1.11 ± 0.006 2.18 ± 0.002
YOLO-v2 32.01 ± 0.006 3.72 ± 0.020 1.19 ± 0.021 3.17 ± 0.003 3.64 ± 0.004
HXE (α=0.1) 28.41 ± 0.003 2.42 ± 0.005 0.69 ± 0.007 1.24 ± 0.005 2.24 ± 0.005
HXE (α=0.6) 30.46 ± 0.003 2.28 ± 0.009 0.69 ± 0.009 1.22 ± 0.007 2.22 ± 0.004
Soft-labels (β = 30) 27.17 ± 0.004 2.36 ± 0.001 0.64 ± 0.008 1.20 ± 0.005 2.22 ± 0.003
Soft-labels (β = 4) 32.73 ± 0.007 2.21 ± 0.023 0.72 ± 0.017 1.23 ± 0.011 2.23 ± 0.006
Chang et al. [7] 21.92 ± 0.001 2.27 ± 0.009 0.50 ± 0.003 1.10 ± 0.002 2.18 ± 0.002
HAF 22.31 ± 0.001 2.23 ± 0.018 0.50 ± 0.003 1.10 ± 0.003 2.17 ± 0.003

Table 2: Results comparing top-1 error(%) and hierarchical metrics on the test
set of CIFAR-100. Results in the Top block are reported without using CRM [14]
technique and Bottom block are reported using CRM. Rows highlighted with
lightgreen are competitive methods in top-1 error (%). Of these competitive

methods, we highlight the best performing entries for each metric with green .

Method
Top-1 Error(↓) Mistakes severity(↓) Hier dist@1(↓) Hier dist@5(↓) Hier dist@20(↓)

Without CRM

Cross-Entropy 36.44 ± 0.061 2.39 ± 0.007 0.87 ± 0.004 1.97 ± 0.002 3.25 ± 0.002
Barz & Denzler [2] 62.63 ± 0.278 1.99 ± 0.008 1.24 ± 0.005 1.49 ± 0.005 1.97 ± 0.005
YOLO-v2 [22] 44.37 ± 0.106 2.42 ± 0.003 1.08 ± 0.004 1.90 ± 0.003 2.87 ± 0.010
HXE α=0.1 [4] 41.48 ± 0.204 2.41 ± 0.009 1.00 ± 0.006 1.77 ± 0.011 2.69 ± 0.021
HXE α=0.6 [4] 45.45 ± 0.014 2.24 ± 0.006 1.02 ± 0.003 1.70 ± 0.005 2.55 ± 0.005
Soft-labels β = 30 [4] 41.67 ± 0.134 2.32 ± 0.010 0.97 ± 0.006 1.50 ± 0.006 2.23 ± 0.005
Soft-labels β = 4 [4] 74.70 ± 0.212 1.82 ± 0.005 1.36 ± 0.004 1.49 ± 0.003 1.96 ± 0.004
Chang et al. [7] 37.23 ± 0.175 2.28 ± 0.006 0.85 ± 0.004 1.75 ± 0.005 3.02 ± 0.008
HAF 36.4 ± 0.092 2.28 ± 0.012 0.83 ± 0.002 1.62 ± 0.002 2.55 ± 0.003

With CRM

Cross-Entropy [14] 36.51 ± 0.083 2.33 ± 0.001 0.85 ± 0.002 1.32 ± 0.001 1.86 ± 0.002
YOLO-v2 45.17 ± 0.046 2.43 ± 0.001 1.10 ± 0.001 1.50 ± 0.001 1.99 ± 0.002
HXE α=0.1 41.47 ± 0.220 2.38 ± 0.011 0.99 ± 0.008 1.41 ± 0.006 1.93 ± 0.005
HXE α=0.6 45.60 ± 0.017 2.21 ± 0.008 1.01 ± 0.003 1.40 ± 0.004 1.40 ± 0.004
Soft-labels β = 30 41.99 ± 0.126 2.31 ± 0.009 0.97 ± 0.007 1.40 ± 0.005 1.91 ± 0.005
Soft-labels β = 4 77.34 ± 0.262 2.06 ± 0.012 1.60 ± 0.007 1.72 ± 0.008 2.14 ± 0.007
Chang et al. [7] 37.31 ± 0.145 2.24 ± 0.008 0.84 ± 0.002 1.30 ± 0.002 1.84 ± 0.002
HAF 36.48 ± 0.095 2.25 ± 0.012 0.82 ± 0.003 1.29 ± 0.004 1.84 ± 0.002

Table 3: Results comparing top-1 error(%) and hierarchical metrics on the test
set of iNaturalist-19. Results in the Top block are reported without using CRM
[14] technique and Bottom block are reported using CRM. Rows highlighted with

lightgreen are competitive methods in top-1 error (%). Of these competitive

methods, we highlight the best performing entries for each metric with green .
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Method
Top-1 error(↓) Mistakes severity(↓) Hier dist@1(↓) Hier dist@5(↓) Hier dist@20(↓)

Without CRM

Cross-Entropy 30.60 ± 0.030 7.05 ± 0.010 2.16 ± 0.006 5.67 ± 0.003 7.17 ± 0.003
Barz & Denzler [2] 39.73 ± 0.240 6.80 ± 0.019 2.70 ± 0.022 5.48 ± 0.271 6.21 ± 0.005
YOLO-v2 [22] 33.37 ± 0.082 7.02 ± 0.004 2.34 ± 0.016 5.85 ± 0.011 7.43 ± 0.016
DeViSE [10] 36.75 ± 0.090 6.87 ± 0.017 2.52 ± 0.009 5.57 ± 0.005 6.98 ± 0.005
HXE α=0.1 [4] 30.72 ± 0.036 7.00 ± 0.019 2.15 ± 0.005 5.62 ± 0.008 7.08 ± 0.015
HXE α=0.6 [4] 34.50 ± 0.007 6.73 ± 0.014 2.32 ± 0.003 5.48 ± 0.001 6.78 ± 0.003
Soft-labels β = 30 [4] 30.53 ± 0.194 7.05 ± 0.009 2.15 ± 0.013 5.66 ± 0.002 7.14 ± 0.008
Soft-labels β = 4 [4] 38.99 ± 0.105 6.60 ± 0.024 2.57 ± 0.004 5.13 ± 0.002 6.21 ± 0.001
Chang et al. [7] 33.46 ± 0.026 6.99 ± 0.010 2.34 ± 0.006 5.75 ± 0.005 7.34 ± 0.010
HAF 30.50 ± 0.010 7.03 ± 0.024 2.14 ± 0.008 5.62 ± 0.011 6.99 ± 0.009

With CRM

Cross-Entropy [14] 30.67 ± 0.020 6.99 ± 0.007 2.14 ± 0.006 4.95 ± 0.002 6.11 ± 0.001
YOLO-v2 33.98 ± 0.099 6.99 ± 0.011 2.38 ± 0.012 5.05 ± 0.001 6.17 ± 0.001
HXE α=0.1 30.80 ± 0.079 6.95 ± 0.021 2.14 ± 0.005 4.94 ± 0.003 6.11 ± 0.002
HXE α=0.6 34.68 ± 0.003 6.69 ± 0.007 2.32 ± 0.001 4.99 ± 0.005 6.13 ± 0.003
Soft-labels β = 30 30.69 ± 0.125 6.99 ± 0.007 2.15 ± 0.008 4.95 ± 0.001 6.11 ± 0.001
Soft-labels β = 4 82.72 ± 0.079 7.54 ± 0.001 6.24 ± 0.005 6.94 ± 0.005 7.25 ± 0.002
Chang et al. [7] 33.73 ± 0.033 6.93 ± 0.015 5.02 ± 0.007 2.34 ± 0.002 6.15 ± 0.001
HAF 30.63 ± 0.007 6.97 ± 0.024 2.14 ± 0.008 4.95 ± 0.004 6.11 ± 0.001

Table 4: Results comparing top-1 error(%) and hierarchical metrics on the test
set of tieredImageNet-H. The Top block reports results without using CRM
[14] and the Bottom block are reported using CRM. Rows highlighted with

lightgreen are competitive methods in top-1 error (%). Of these methods, we

highlight the best performing entries for each metric with green .

smaller β values, leading to predictions with low confidence, which CRM could
not help rectify.

4.4 Coarse classification Accuracy

We also report comparisons over the coarse classification accuracy at all hierar-
chical levels. The learned feature representations guided with label hierarchies is
expected to follow the structure of label hierarchies in the feature space. Such a
feature space must restrict the confusions within their respective coarse classes,
thereby, increasing the coarse-classification accuracy. We map the target labels
and the predicted labels from the finest-level classifier to their respected coarse
classes to evaluate the performance of the models on other hierarchical levels
using coarse-classification accuracy. The results are reported in the Figure 3.
On both CIFAR-100 and iNaturalist-19, HAF outperforms all the other base-
line methods. On tieredImageNet-H, HAF has comparable performance with the
Soft-labels β=30, HXE α=0.1, and HXE α=0.6.

5 Analysis

5.1 Ablation Study

In order to assess the contributions of each loss function used in our proposed
approach, we present in Table 5, the results obtained with different variants of
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(a) CIFAR-100 (b) iNaturalist19 (c) tieredImageNet-H

Fig. 3: Coarse-level top-1 accuracy for each dataset. Level=1 is the coarsest level.

HAF on CIFAR-100 and iNaturalist19 datasets respectively. It is evident that
different variants of HAF perform slightly better than the cross-entropy baseline
but HAF outperforms all the other variants. We can thus conclude that all the
components of the loss function are significant and complementary for the overall
performance of HAF .

Method
Loss function

Top-1 error(↓) Mistakes severity(↓) Hier Dist@1(↓) Hier Dist@5(↓) Hier Dist@20(↓)
LCEfine Lshc Lgc Lm

Cross-entropy ✓ - - - 22.11 2.37 0.52 2.24 3.16
Variant of HAF ✓ ✓ - - 22.70 2.36 0.54 1.61 2.78
Variant of HAF ✓ ✓ ✓ - 22.35 2.32 0.52 1.66 2.87
Variant of HAF ✓ ✓ - ✓ 22.12 2.24 0.5 1.44 2.61

HAF ✓ ✓ ✓ ✓ 22.25 2.22 0.49 1.40 2.64

Cross-entropy ✓ - - - 36.48 2.39 0.87 1.97 3.25
Variant of HAF ✓ ✓ - - 36.23 2.34 0.85 1.73 2.81
Variant of HAF ✓ ✓ ✓ - 36.60 2.32 0.85 1.71 2.73
Variant of HAF ✓ ✓ - ✓ 36.34 2.31 0.84 1.76 2.91

HAF ✓ ✓ ✓ ✓ 36.47 2.27 0.83 1.62 2.56

Table 5: Ablative study comparing top-1 error(%) and hierarchical metrics on
the test sets of CIFAR-100 (top) and iNaturalist-19 (bottom).

5.2 Mistakes Severity Plots

We plot histograms to compare HAF with the baselines depicting the distribution
of mistakes at different hierarchical levels. We present them for each dataset in
Fig. 4. Mistakes at hierarchical distance 1 refers to the mistakes with LCA=1. On
CIFAR-100, HAF has the lowest mistake severity compared to all the methods
and has number of mistakes comparable to cross-entropy at all levels except
for level-1, where Chang et al. [7] generates fewer mistakes. However, HAF has
lesser number of high severity mistakes compared to Chang et al.[7] which is a
more desirable solution. On iNaturalist-19 dataset, soft-labels β = 4, Barz &
Denzler, and HXE α = 0.6 has lower mistake severity as compared to HAF , but
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HAFmakes lesser or nearly equal number of mistakes compared to these methods
at all the hierarchical levels. On tieredImageNet-H, Barz & Denzler, DeViSE,
HXE α = 0.6, soft-labels β = 4 has lower mistakes severity than HAF but much
larger number of mistakes at every level. The metric ‘mistakes severity’ alone
does not give a complete picture of a method’s ability to improve the mistakes.
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Fig. 4: Mistakes severity plot showing distributions of mistakes at each level for
each dataset. Numbers in the bracket denote the mistake severity of the method.

5.3 Discussion: Hierarchical Metrics

1 2 3 4 5 6 7 8 9 10
minimum LCA

0

25

50

75

100

125

150

175

Nu
m

be
r o

f c
la

ss
es

Fig. 5: Number of classes
with minimum LCA for
tieredImageNet-H dataset.

We discuss the inadequacy of the hierarchical
metrics that have been proposed thus far. Fig-
ure 5 plots the histogram of the smallest possi-
ble LCA for all classes of the tieredImageNet-
H dataset. Most classes have a minimum LCA
greater than one, which indicates a skewed hi-
erarchy tree, in turn explaining the high values
of the hierarchical metrics in Table 4 across
all methods. When these metrics are averaged
over samples, the resulting change turns out
to be very small, as observed by the reported
standard deviations in Tables 2 - 4. This prob-
lem of large values persists in all LCA-based
metrics, and is dependent on the label hierar-
chy tree.

As is depicted above in Figure 4, mistakes severity favours the model with
the reduction of average LCA over the mistakes, implying that this metric may
prefer a model with a large number of low-severity mistakes. Karthik et. al [14]
highlights the problems with mistakes severity. They overcome this drawback by
using average hierarchical distance@1. However, we also note the problem with
average hierarchical distance@1 metric. It is an average LCA distance of all the
samples from ground-truth to the top-1 predictions. This average includes as
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many zeros as the number of correct predictions (since the LCA distance for
a correct prediction is 0). Therefore, it favours models that make fewer overall
mistakes and thus fails to adequately capture the notion of a mistake’s severity.

An ideal method is the one that improves the mistakes severity metric while
maintaining (or improving) the top-1 error, i.e., the sum of LCA of mistakes
should reduce while maintaining (or improving) the total number of errors. On
the CIFAR-100 dataset, we note that with a minimal drop in the top-1 accuracy,
there is nearly 5% improvement in reducing the sum of LCA of mistakes using
HAF + CRM as compared to 2.17% using cross-entropy + CRM. Similarly, on
iNaturalist-19, HAF + CRM minimizes the sum of LCA of mistakes by 5.68%
compared to 2% on cross-entropy + CRM. We present a more detailed analysis
of these metrics in the supplementary material and defer the design for a more
appropriate metric to measure mistake severity for future work.

6 Conclusion

In this paper, we introduced a novel approach to learn a hierarchy-aware feature
space, which can preserve or improve the top-1 error and yet reduce the severity
of mistakes. Our approach uses auxiliary classifiers at each level of the hierarchy
that are trained by minimizing a Jensen-Shannon Divergence with target soft la-
bels derived from finer-grained predictions of the samples. This training strategy
regularizes the fine-grained classifier to make more consistent predictions with
the coarser level classifiers, leading to a reduction in severity of mistakes. We fur-
ther impose geometric consistency constraints between coarse and fine classifiers
that leads to better alignment of the feature space distributions of the sub-classes
with that of their super-classes. Without any additional hyperparameters, we
simply trained our models with these loss functions and showed a reduction in
mistake severity without trading off the top-1 error. We reported results from
extensive experiments over three large datasets with varying levels of hierarchy
and showed the strengths of our proposed method. We also presented an analysis
of the commonly used hierarchical metrics and highlighted their limitations. We
note that there exist recent works that leverage non-Euclidean spaces to learn
appropriate embeddings for hierarchical data. However, much of the recent work
on evaluating mistake severity is restricted to Euclidean feature spaces, and we
present our analysis in the same space. Nonetheless, we conjecture that the na-
ture of our contributions in this paper, i.e., losses that impose probabilistic and
geometric constraints, would also extend to non-Euclidean spaces like hyperbolic
feature spaces and would serve as a promising direction for future work.
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