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Abstract. Convolutional Neural Networks (CNNs) have dominated
computer vision for years, due to its ability in capturing locality and
translation invariance. Recently, many vision transformer architectures
have been proposed and they show promising performance. A key
component in vision transformers is the fully-connected self-attention
which is more powerful than CNNs in modelling long range dependencies.
However, since the current dense self-attention uses all image patches
(tokens) to compute attention matrix, it may neglect locality of
images patches and involve noisy tokens (e.g., clutter background and
occlusion), leading to a slow training process and potential degradation of
performance. To address these problems, we propose the k-NN attention
for boosting vision transformers. Specifically, instead of involving all
the tokens for attention matrix calculation, we only select the top-k
similar tokens from the keys for each query to compute the attention
map. The proposed k-NN attention naturally inherits the local bias of
CNNs without introducing convolutional operations, as nearby tokens
tend to be more similar than others. In addition, the k-NN attention
allows for the exploration of long range correlation and at the same time
filters out irrelevant tokens by choosing the most similar tokens from
the entire image. Despite its simplicity, we verify, both theoretically and
empirically, that k-NN attention is powerful in speeding up training and
distilling noise from input tokens. Extensive experiments are conducted
by using 11 different vision transformer architectures to verify that
the proposed k-NN attention can work with any existing transformer
architectures to improve its prediction performance. The codes are
available at https://github.com/damo-cv/KVT.

1 Introduction

Traditional CNNs provide state of the art performance in vision tasks, due to its
ability in capturing locality and translation invariance, while transformer [53]
is the de-facto standard for natural language processing (NLP) tasks thanks to
its advantages in modelling long-range dependencies. Recently, various vision
? The first two authors contribute equally.
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transformers [16,51,70,55,24,69,41,59,52,71] have been proposed by building pure
or hybrid transformer models for visual tasks. Inspired by the transformer scaling
success in NLP tasks, vision transformer converts an image into a sequence
of image patches (tokens), with each patch encoded into a vector. Since self-
attention in the transformer is position agnostic, different positional encoding
methods [16,11,14] have been developed, and in [59,8] their roles have been
replaced by convolutions. Afterwards, all tokens are fed into stacked transformer
encoders for feature learning, with an extra CLS token [16,51,14] or global
average pooling (GAP) [41,8] for final feature representation. Compared with
CNNs, transformer-based models explicitly exploit global dependencies and
demonstrate comparable, sometimes even better, results than highly optimised
CNNs [26,47].

Albeit achieving its initial success, vision transformers suffer from slow
training. One of the key culprits is the fully-connected self-attention, which
takes all the tokens to calculate the attention map. The dense attention not
only neglects the locality of images patches, an important feature of CNNs,
but also involves noisy tokens into the computation of self-attention, especially
in the situations of cluttered background and occlusion. Both issues can slow
down the training significantly [12,14]. Recent works [69,59,8] try to mitigate this
problem by introducing convolutional operators into vision transformers. Despite
encouraging results, these studies fail to resolve the problem fundamentally
from the transformer structure itself, limiting their success. In this study, we
address the challenge by directly attacking its root cause, i.e. the fully-connected
self-attention.

To this end, we propose the k-NN attention to replace the fully-connected
attention. Specifically, we do not use all the tokens for attention matrix calculation,
but only select the top-k similar tokens from the sequence for each query token
to compute the attention map. The proposed k-NN attention not only naturally
inherits the local bias of CNNs as the nearby tokens tend to be more similar than
others, but also builds the long range dependency by choosing the most similar
tokens from the entire image. Compared with convolution operator which is an
aggregation operation built on Ising model [43] and the feature of each node is
aggregated from nearby pixels, in the k-NN attention, the aggregation graph is
no longer limited by the spatial location of nodes but is adaptively computed via
attention maps, thus, the k-NN attention can be regarded as a relieved version of
local bias. The similar idea is proposed in [75] where the k-NN attention is mostly
evaluated on NLP tasks. Despite the similarity in terms of the calculation of top-k,
our work focuses on the recent vision transformers, makes a deep theoretical
understanding and presents a thoroughly analysis by defining several metrics.
We verify, both theoretically and empirically, that k-NN attention is effective in
speeding up training and distilling noisy tokens of vision transformers. Eleven
different available vision transformer architectures are adopted to verify the
effectiveness of the proposed k-NN attention.
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2 Related Work

2.1 Self-attention

Self-attention [53] has demonstrated promising results on NLP related tasks, and
is making breakthroughs in speech and computer vision. For time series modeling,
self-attention operates over sequences in a step-wise manner. Specifically, at
every time-step, self-attention assigns an attention weight to each previous input
element and uses these weights to compute the representation of the current
time-step as a weighted sum of the past inputs. Besides the vanilla self-attention,
many efficient transformers [50] have been proposed. Among these efficient
transformers, sparse attention and local attention are one of the main streams,
which are highly related to our work. Sparse attention can be further categorized
into data independent (fixed) sparse attention [9,29,1,72] and content-based sparse
attention [13,45,34,48]. Local attention [42,40,41] mainly considers attending only
to a local window size. Our work is also content-based attention, but compared
with previous works [13,45,34,48], our k-NN attention has its merits for vision
domain. For example, compared with routing transformer [45] that clusters both
queries and keys, our k-NN attention equals only clustering keys by assigning each
query as the cluster center, making the quantization more continuous which is a
better fitting of image domain; compared with reformer [34] which adopts complex
hashing attention that cannot guarantee each bucket contain both queries and
keys, our k-NN attention can guarantee that each query has number k keys for
attention computing. In addition, our k-NN attention is also a generalized local
attention, but compared with local attention, our k-NN attention not only enjoys
the locality but also empowers the ability of global relation mining.

2.2 Transformer for Vision

Transformer [53] is an effective sequence-to-sequence modeling network, and it
has achieved state-of-the-art results in NLP tasks with the success of BERT [15].
Due to its great success, it has also be exploited in computer vision community,
and ‘Transformer in CNN’ becomes a popular paradigm [2,58,7,80,36,37,25,4].
ViT [16] leads the other trend to use ‘CNN in Transformer’ paradigm for
vision tasks [27,35,68,62,66]. Even though ViT has been proved compelling in
vision recognition, it has several drawbacks when compared with CNNs: large
training data, fixed position embedding, rigid patch division, coarse modeling of
inner patch feature, single scale, unstable training process, slow speed training,
easily fitting data and poor generalization, shallow & narrow architecture, and
quadratic complexity. To deal with these problems, many variants have been
proposed [74,32,57,19,30,20,44,67,78,17,56,64,79]. For example, DeiT [51] adopts
several training techniques and uses distillation to extend ViT to a data-efficient
version; CPVT [11] proposes a conditional positional encoding that is adaptable
to arbitrary input sizes; CvT [59], CoaT [63] and Visformer [8] safely remove
the position embedding by introducing convolution operations; T2T ViT [70],
CeiT [69], and CvT [59] try to deal with the rigid patch division by introducing
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convolution operation for patch sequence generation; Focal Transformer [65] makes
each token attend its closest surrounding tokens at fine granularity and the tokens
far away at coarse granularity; TNT [24] proposes the pixel embedding to model
the inner patch feature; PVT [55], Swin Transformer [41], MViT [18], ViL [73],
CvT [59], PiT [28], LeViT [22], CoaT [63], and Twins [10] adopt multi-scale
technique for rich feature learning; DeepViT [77], CaiT [52], and PatchViT [21]
investigate the unstable training problem, and propose the re-attention, re-scale
and anti-over-smoothing techniques respectively for stable training; to accelerate
the convergence of training, ConViT [14], PiT [28], CeiT [69], LocalViT [38]
and Visformer [8] introduce convolutional bias to speedup the training; conv-
stem is adopted in LeViT [22], EarlyConv [60], CMT [23], VOLO [71] and
ScaledReLU [54] to improve the robustness of training ViTs; LV-ViT [31] adopts
several techniques including MixToken and Token Labeling for better training
and feature generation; T2T ViT [70], DeepViT [77] and CaiT [52] try to train
deeper vision transformer models; T2T ViT [70], ViL [73] and CoaT [63] adopt
efficient transformers [50] to deal with the quadratic complexity; To further
exploit the capacities of vision transformer, OmniNet [49], CrossViT [6] and So-
ViT [61] propose the dense omnidirectional representations, coarse-fine-grained
patch fusion and cross co-variance pooling of visual tokens, respectively. However,
all of these works adopt the fully-connected self-attention which will bring the
noise or irrelevant tokens for computing and slow down the training of networks.
In this paper, we propose an efficient sparse attention, called k-NN attention, for
boosting vision transformers. The proposed k-NN attention not only inherits the
local bias of CNNs but also achieves the ability of global feature exploitation. It
can also speed up the training and achieve better performance.

3 k-NN Attention

3.1 Vanilla Attention

For any sequence of length n, the vanilla attention in the transformer is the dot
product attention [53]. Following the standard notation, the attention matrix
A 2

n⇥n is defined as:

A = softmax
✓
QK>
p
d

◆
,

where Q 2
n⇥d denotes the queries while K 2

n⇥d denotes the keys, and d
represents the dimension. By multiplying the attention weights A with the values
V 2

n⇥d, the new values V̂ are calculated as:

V̂ = AV .

The intuitive understanding of the attention is the weighted average over the
old ones, where the weights are defined by the attention matrix A. In this paper,
we consider the Q, K and V are generated via the linear projection of the input
token matrix X:
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Q = XWQ, K = XWK , V = XWV ,

where X 2
n⇥dm , WQ,WK ,WV 2

dm⇥d and dm is the input token
dimension.

One shortcoming with fully-connected self-attention is that irrelevant tokens,
even though assigned with smaller weights, are still taken into consideration
when updating the representation V , making it less resilient to noises in V . This
shortcoming motivates us to develop the k-NN attention.

3.2 k-NN Attention

Instead of computing the attention matrix for all the query-key pairs as in vanilla
attention, we select the top-k most similar keys and values for each query in the
k-NN attention. There are two versions of k-NN attention, as described below.

Slow Version: For the i-th query, we first compute the Euclidean distance
against all the keys, and then obtain its k-nearest neighbors N

k
i and N

v
i from

keys and values, and lastly calculate the scaled dot product attention as:

Ai = softmax
✓
hqi, (kj1 , ...,kjl , ...,kjk)i

p
d

◆
,kjl 2 N

k
i .

The shape of final attention matrix is Aknn
2

n⇥k, and the new values V̂ knn

is the same size of values V̂ . The slow version is the exact definition of k-NN
attention, but it is extremely slow because for each query it has to compute
distances for different k keys.

Fast Version: As the computation of Euclidean distance against all the keys
for each query is slow, we propose a fast version of k-NN attention. The key
idea is to take advantage of matrix multiplication operations. Same as vanilla
attention, all the queries and keys are calculated by the dot product, and then
row-wise top-k elements are selected for softmax computing. The procedure can
be formulated as:

V̂ knn = softmax
✓
Tk

✓
QK>
p
d

◆◆
· V ,

where Tk (·) denotes the row-wise top-k selection operator:

[Tk(A)]ij =

(
Aij Aij 2 top-k(row j)

�1 otherwise.

3.3 Theoretical Analysis on k-NN Attention

In this section, we will show theoretically that despite its simplicity, k-NN
attention is powerful in speeding up network training and in distilling noisy
tokens. All the proof of the lemmas are provided in the supplementary.
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Convergence Speed-up. Compared to CNNs, the fully-connected self-
attention is able to capture long range dependency. However, the price to
pay is that the dense self-attention model requires to mix each image patch
with every other patch in the image, which has potential to mix irrelevant
information together, e.g. the foreground patches may be mixed with background
patches through the self-attention. This defect could significantly slow down
the convergence as the goal of visual object recognition is to identify key visual
patches relevant to a given class.

To see this, we consider the model with only learnable parameters WQ, WK

in attention layers and adopting Adam optimizer [33]. According to Theorem 4.1
in [33], Adam’s convergence is proportional to O

�
↵�1(G1 + 1) + ↵G1

�
, where

↵ is the learning rate and G1 is an element-wise upper bound on the magnitude
of the batch gradient1. Let fi be the loss function corresponding to batch i.
Via chain rule of derivative, the gradient w.r.t the WQ in a self-attention block
can be represented as rWQfi = Fi(V̂ knn) · @V̂ knn

@WQ
, where Fi(V̂ knn) is a matrix

output function. Since the possible value of V̂ knn is a subset of its fully-connected
counterpart, the upper bound of on the magnitude of Fi(V̂ knn) is no larger than
the full attention. We then introduce the weighed covariate matrix of patches to
characterize the scale of @V̂ knn

@WQ
in the following lemma.

Lemma 1. (Informal) Let V̂ knn
l be the l-th row of the V̂ knn. We have

@V̂ knn
l

@WQ
/ Varal(x) and

@V̂ knn
l

@WK
/ Varal(x),

where Varal(x) is the covariate matrix on patches {x1, ...,xn} with probability
from l-th row of the attention matrix.
The same is true for V̂ of the fully-connected self-attention.

Since k-NN attention only uses patches with large similarity, its Varal(x) will
be smaller than that computed from the fully-connected attention. As indicated
in Lemma 1, @V̂ knn

@WQ
is proportional to variance Varal(x) and thus the scale of

rWQfi becomes smaller in k-NN attention. Similarly, the scale of rWKfi is also
smaller in k-NN attention. Therefore, the element-wise upper bound on batch
gradient G1 in Adam analysis is also smaller for k-NN attention. For the same
learning rate, the k-NN attention yields faster convergence. It is particularly
significant at the beginning of training. This is because, due to the random
initialization, we expect a relatively small difference in similarities between
patches, which essentially makes self-attention behave like “global average". It
will take multiple iterations for Adam to turn the "global average" into the real
function of self-attention. In Table 2 and Figure 2, we numerically verify the
training efficiency of k-NN attention as opposed to the fully-connected attention.
1 Theorem 4.1 in [33] describes the upper bound for regrets (the gap on loss function

value between the current step parameters and optimal parameters). One can telescope
it to the average regrets to consider the Adam’s convergence.
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Noisy patch distillation. As already mentioned before, the fully-connected
self-attention model may mix irrelevant patches with relevant ones, particularly
at the beginning of training when similarities between relevant patches are not
significantly larger than those for irrelevant patches. k-NN attention is more
effective in identifying noisy patches by only considering the top k most similar
patches. To formally justify this point, we consider a simple scenario where all
the patches are divided into two groups, the group of relevant patches and the
group of noisy patches. All the patches are sampled independently from unknown
distributions. We assume that all relevant patches are sampled from distributions
with the same shared mean, which is different from the means of distributions
for noisy patches. It is important to know that although distributions for the
relevant patches share the mean, those relevant patches can look quite differently,
due to the large variance in stochastic sampling. In the following Lemma, we will
show that the k-NN attention is more effective in distilling noises for the relevant
patches than the fully-connected attention.

Lemma 2 (informal). We consider the self-attention for query patch l. Let’s
assume the patch xi are bounded with mean µi for i = 1, 2, ..., n, and ⇢k is the
ratio of the noisy patches in all selected patches. Under mild conditions, the follow
inequality holds with high probability:

���V̂ knn
l � µlWV

���
1

 O(k�1/2 + c1⇢k),

where c1 is a positive number.

In the above lemma, the quantity
���V̂ knn

l � µlWV

���
1

measures the distance

between V̂ knn
l , represention vector updated by the k-NN attention, and its

mean µlWV . We now consider two cases: the normal k-NN attention with
appropriately chosen k, and fully-connected attention with k = n. In the first
case, with appropriately chosen k, we should have most of the selected patches
coming from the relevant group, implying a small ⇢k. By combining with the
fact that k is decently large, we expect a small upper bound for the distance���V̂ knn

l � µlWV

���
1

, indicating that k-NN attention is powerful in distilling noise.
For the case of fully-connected attention model, i.e. k = n, it is clearly that
⇢n ⇡ 1, leading to a large distance between transformed representation V̂l and
its mean, indicating that fully-connected attention model is not very effective in
distilling noisy patches, particularly when noise is large.

Besides the instance with low signal-noise-ratio, the instance with a large
volume of backgrounds can also be hard. In the next lemma, we show that under
a proper choice of k, with a high probability the k-NN attention will be able to
select all meaningful patches.

Lemma 3 (informal). Let M⇤ be the index set contains all patches relevant
to query ql. Under mild conditions, there exist c2 2 (0, 1) such that with high
probability, we have
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nX

i=1

(qlk
>
i � min

j2M⇤
qlk

>
j )  O(nd�c2).

The above lemma shows that if we select the top O(nd�c2) elements, with
high probability, we will be able to eliminate almost all the irrelevant noisy
patches, without losing any relevant patches. Numerically, we verify the proper k
gains better performance (e.g., Figure 1) and for the hard instance k-NN gives
more accurate attention regions. (e.g., Figure 4 and Figure 5).

4 Experiments for Vision Transformers

In this section, we replace the dense attention with k-NN attention on the existing
vision transformers for image classification to verify the effectiveness of the
proposed method. The recent DeiT [51] and its variants, including T2T ViT [70],
TNT [24], PiT [28], Swin [41], CvT [59], So-ViT [61], Visformer [8], Twins [10],
Dino [3] and VOLO [71], are adopted for evaluation. These methods include both
supervised methods [51,70,24,28,41,59,61,8,10,71] and self-supervised method [3].
Ablation studies are provided to further analyze the properties of k-NN attention.

4.1 Experimental Settings

We perform image classification on the standard ILSVRC-2012 ImageNet
dataset [46]. In our experiments, we follow the experimental setting of original
official released codes. For fair comparison, we only replace the vanilla attention
with proposed k-NN attention. Unless otherwise specified, the fast version
of k-NN attention is adopted for evaluation. To speed up the slow version,
we develop the CUDA version k-NN attention. As for the value k, different
architectures are assigned with different values. For DeiT [51], So-ViT [61],
Dino [3], CvT [59], TNT [24] PiT [28] and VOLO [71], as they directly split
an input image into rigid tokens and there is no information exchange in the
token generation stage, we suppose the irrelevant tokens are easy to filter, and
tend to assign a smaller k compared with these complicated token generation
methods [70,41,8,10]. Specifically, we assign k to approximate n

2 at each scale
stage; for these complicated token generation methods [70,41,8,10], we assign a
larger k which is approximately 2

3n or 4
5n at each scale stage.

4.2 Results on ImageNet

Table 1 shows top-1 accuracy results on the ImageNet-1K validation set by
replacing the dense attention with k-NN attention using eleven different vision
transformer architectures. From the Table we can see that the proposed k-NN
attention improves the performance from 0.2% to 0.8% for both global and
local vision transformers. It is worth noting that on ImageNet-1k dataset, it is
very hard to improve the accuracy after 85%, but our k-NN attention can still
consistently improve the performance even without model size increase.
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Table 1. The k-NN attention performance on ImageNet-1K validation set. "!" means
we pretrain the model with 300 epochs and finetune the pretrained model for 100 epoch
for linear eval, following the instructions of Dino training and evaluation; "! k-NN
Attn" represents replacing the vanilla attention with proposed k-NN attention;! k-NN
Attn-slow means adopting the slow version.

Arch. Model Input Params GFLOPs Top-1

Transformers DeiT-Tiny [51] 2242 5.7M 1.3 72.2%
(Supervised) DeiT-Tiny [51] ! k-NN Attn 2242 5.7M 1.3 73.0%

DeiT-Tiny [51] ! k-NN Attn-slow 2242 5.7M 1.3 73.0%
So-ViT-7 [61] 2242 5.5M 1.3 76.2%
So-ViT-7 [61] ! k-NN Attn 2242 5.5M 1.3 77.0%

Transformers Visformer-Tiny [8] 2242 10M 1.3 78.6%
(Supervised) Visformer-Tiny [8] ! k-NN Attn 2242 10M 1.3 79.0%
Transformers CvT-13 [59] 2242 20M 4.6 81.6%
(Supervised) CvT-13 [59] ! k-NN Attn 2242 20M 4.6 81.9%

DeiT-Small [51] 2242 22M 4.6 79.8%
DeiT-Small [51] ! k-NN Attn 2242 22M 4.6 80.1%
TNT-Small [24] 2242 24M 5.2 81.5%
TNT-Small [24] ! k-NN Attn 2242 24M 5.2 81.9%
VOLO-D1 [71] 3842 27M 22.8 85.2%
VOLO-D1 [71] ! k-NN Attn 3842 27M 22.8 85.4%
Swin-Tiny [41] 2242 28M 4.5 81.2%
Swin-Tiny [41] ! k-NN Attn 2242 28M 4.5 81.3%
T2T-ViT-t-19 [70] 2242 39M 9.8 82.2%
T2T-ViT-t-19 [70] ! k-NN Attn 2242 39M 9.8 82.7%

Transformer Dino-Small [3]! 2242 22M 4.6 76.0%
(Self-supervised) Dino-Small [3]! ! k-NN Attn 2242 22M 4.6 76.2%

Transformers Twins-SVT-Base [10] 2242 56M 8.3 83.2%
(Supervised) Twins-SVT-Base [10] ! k-NN Attn 2242 56M 8.3 83.4%

PiT-Base[28] 2242 74M 12.5 82.0%
PiT-Base[28] ! k-NN Attn 2242 74M 12.5 82.6%
VOLO-D3 [71] 4482 86M 67.9 86.3%
VOLO-D3 [71] ! k-NN Attn 4482 86M 67.9 86.5%

4.3 The Impact of Number k

The only parameter for k-NN attention is k, and its impact is analyzed in Figure 1.
As shown in the figure, for DeiT-Tiny, k = 100 is the best, where the total number
of tokens n = 196 (14 ⇥ 14), meaning that k approximates half of n; for CvT-13,
there are three scale stages with the number of tokens n1 = 3136, n2 = 784
and n3 = 196, and the best results are achieved when the k in each stage is
assigned to 1600/400/100, which also approximate half of n in each stage; for
Visformer-Tiny, there are two scale stages with the number of tokens n1 = 196
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and n2 = 49, and the best results are achieved when k in each stage is assigned
to 150/45, as there are more than 21 conv layers for token generation and the
information in each token are already mixed, making it hard to distinguish the
irrelevant tokens, thus larger values of k are desired; for PiT-Base, there are three
scale stages with the number of tokens n1 = 961, n2 = 256 and n3 = 64, and the
optimal values of k also approximate the half of n. Please note that, we do not
perform exhaustive search for the optimal choice of k, instead, a general rule as
below is sufficient: k ⇡

n
2 at each scale stage for simple token generation methods

and k ⇡
2
3n or 4

5n for complicated token generation methods at each scale stage.
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Fig. 1. The impact of k on DeiT-Tiny, Visformer-Tiny, CvT-13 and PiT-Base.

4.4 Convergence Speed of k-NN Attention

In Table 2, we investigate the convergence speed of k-NN attention. Three
methods are included for comparison, i.e. DeiT-Small [51], CvT-13 [59] and
T2T-ViT-t-19 [70]. From the Table we can see that the convergence speed of
k-NN attention is faster than full-connected attention, especially in the early
stage of training. These observations reflect that removing the irrelevant tokens
benefits the convergence of neural networks training.

Table 2. Ablation study on the convergence speed of k-NN attention.

Epoch Top-1 accuracy
DeiT-S DeiT-S ! k CvT-13 CvT-13 ! k T2T-ViT-t-19 T2T-ViT-t-19 ! k

10 29.1% 31.3% 51.4% 54.2% 0.52% 0.68%
30 54.4% 55.4% 65.4% 68.1% 63.0% 63.2%
50 60.9% 62.0% 68.1% 70.5% 73.8% 74.4%
70 65.0% 65.8% 69.9% 72.2% 76.9% 77.3%
90 67.7% 68.2% 71.0% 73.0% 78.4% 78.6%
120 69.9% 70.7% 72.4% 73.7% 79.7% 80.0%
150 72.4% 72.4% 74.4% 74.9% 80.7% 80.9%
200 75.5% 75.7% 77.3% 77.7% 82.0% 82.3%
300 79.8% 80.0% 81.6% 81.9% 81.3% 81.7%
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4.5 Other properties of k-NN attention

To analyze other properties of k-NN attention, four quantitative metrics are
defined as follows.
Layer-wise cosine similarity between tokens: following [21] this metric is
defined as:

CosSim(t) =
1

n(n� 1)

X

i 6=j

tTi tj
ktikktjk

,

where ti represents the i-th token in each layer and k·k denotes the Euclidean
norm. This metric implies the convergence speed of the network.

Layer-wise standard deviation of attention weights: Given a token ti
and its softmax attention weight sfm(ti), the standard deviation of the softmax
attention weight std(sfm(ti)) is defined as the second metric. For multi-head
attention, the standard deviations over all heads are averaged. This metric
represents the degree of training stability.

Ratio between the norms of residual activations and main branch:

The ratio between the norm of the residual activations and the norm of the
activations of the main branch in each layer is defined as kfl(t)k/ktk, where fl(t)
can be the attention layer or the FFN layer. This metric denotes the information
preservation ability of the network.

Nonlocality: following [14], the nonlocality is defined by summing, for each
query patch i, the distances k�ijk to all the key patches j weighted by their
attention score Aij . The number obtained over the query patch is averaged to
obtain the nonlocality metric of head h, which can the be averaged over the
attention heads to obtain the nonlocality of the whole layer l:

Dl,h
loc :=

1

L

X

ij

Ah,l
ij k�ijk , D

l
loc :=

1

Nh

X

h

Dl,h
loc,

where Dloc is the number of patches between the center of attention and the
query patch; the further the attention heads look from the query patch, the
higher the nonlocality.

Comparisons of the four metrics on DeiT-tiny without distillation token are
shown in Figure 2 and Figure 3. From Figure 2 (a) we can see that by using k-NN
attention, the averaged cosine similarity is larger than that of using dense self-
attention, which reflects that the convergence speed is faster for k-NN attention.
Figure 2 (b) shows that the averaged standard deviation of k-NN attention is
smoother than that of fully-connected self-attention, and the smoothness will
help make the training more stable. Figure 2 (c) and (d) show the ratio between
the norms of residual activations and main branch are consistent with each
other for k-NN attention and dense attention, which indicates that there is
nearly no information lost in k-NN attention by removing the irrelevant tokens.
Figure 3 shows that, with k-NN attention, lower layers tend to focus more on
the local areas (with more lines being pushed toward the bottom area in Figure
3), while the higher layers still maintain their capability of extracting global
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Fig. 2. The properties of k-NN attention. Blue and red dotted lines represent the
metrics for k-NN attetion and the original fully-connected self-attention, respectively.

information. Additionally, it is also observed that the non-locality of different
layers is spreading more evenly, indicating that they can explore a larger variety
of dependencies at different ranges.
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Fig. 3. The nonlocality of DeiT-Tiny. It is plotted averaged over all the images from
training set of ImageNet-1k.
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4.6 Comparisons with temperature in softmax

k-NN attention effectively zeros the bottom N � k tokens out of the attention
calculation. How does this compare with introducing a temperature parameter
to softmax over the attention values? We compare our k-NN attention with
temperature t in softmax as softmax(attn/t). The performance over the t is
shown in Table 3. From the Table we can see that small t makes the training
crash due to large value of attention values; the performance increases a little bit
to 72.5 (baseline 72.2) with t assigned to appropriate values. The k-NN attention
is more robust compared with temperature in softmax, and achieves much better
performance, 73.0 (k-NN attention) vs 72.5 (best performance for temperature
in softmax).

Table 3. The Top-1 (%) over the temperature t in softmax.

t 0.05 0.1 0.25 0.75 2 4 8 16
Top-1 (%) crash crash 72.0 72.5 72.5 72.5 72.5 72.1

de
ns

e
k
-N

N

input head0 head1 head2 head3 head4 head5

Fig. 4. Self-attention heads from the last layer.

4.7 Visualization

Figure 4 visualizes the self-attention heads from the last layer on Dino-Small [3].
We can see that different heads attend to different semantic regions of an image.
Compared with dense attention, the k-NN attention filters out most irrelevant
information from background regions which are similar to the foreground, and
successfully concentrates on the most informative foreground regions. Images
from different classes are visualized in Figure 5 using Transformer Attribution
method [5] on DeiT-Tiny. It can be seen that the k-NN attention is more
concentrated and accurate, especially in the situations of cluttered background
and occlusion.
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Fig. 5. Visualization using Transformer Attribution [5].

Table 4. Object detection and Segmentation results for Swin-Tiny and Twins-SVT-
Base with/without k-NN attention on the COCO and ADE20K validation sets. All the
models are pretrained on ImageNet-1k.

COCO ADE20K
Backbone Method mAP(box) Method mIoU
Swin-T Mask R-CNN 3x 46.0 UPerNet 44.5

Swin-T-k-NN Mask R-CNN 3x 46.2 UPerNet 44.7
Twins-SVT-Base Mask R-CNN 1x 45.2 UPerNet 47.4

Twins-SVT-Base-k-NN Mask R-CNN 1x 45.6 UPerNet 47.9

4.8 Object Detection and Semantic Segmentation

To verify the effects of k-NN attention on object detection and semantic
segmentation tasks, the widely-used COCO [39] and ADE20K [76] are adopted for
evaluation. We adopt Swin-Tiny [41] and Twins-SVT-Base [10] for comparisons
due to the well released codes, and the results are shown in Table 4. From the
Table we can see that by replacing the vanilla attention with our k-NN attention,
the performance increases with almost no overhead.

5 Conclusion

In this paper, we propose an effective k-NN attention for boosting vision
transformers. By selecting the most similar keys for each query to calculate
the attention, it screens out the most ineffective tokens. The removal of irrelevant
tokens speeds up the training. We theoretically prove its properties in speeding
up training, distilling noises without losing information, and increasing the
performance by choosing a proper k. Several vision transformers are adopted to
verify the effectiveness of the k-NN attention.
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