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Abstract. This paper considers few-shot anomaly detection (FSAD), a
practical yet under-studied setting for anomaly detection (AD), where
only a limited number of normal images are provided for each category at
training. So far, existing FSAD studies follow the one-model-per-category
learning paradigm used for standard AD, and the inter-category com-
monality has not been explored. Inspired by how humans detect anoma-
lies, i.e., comparing an image in question to normal images, we here lever-
age registration, an image alignment task that is inherently generalizable
across categories, as the proxy task, to train a category-agnostic anomaly
detection model. During testing, the anomalies are identified by compar-
ing the registered features of the test image and its corresponding support
(normal) images. As far as we know, this is the first FSAD method that
trains a single generalizable model and requires no re-training or parame-
ter fine-tuning for new categories. Experimental results have shown that
the proposed method outperforms the state-of-the-art FSAD methods
by 3%-8% in AUC on the MVTec and MPDD benchmarks. Source code
is available at: https://github.com/MediaBrain-SJTU/RegAD
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1 Introduction

Anomaly detection (AD), with a wide range of applications such as defect detec-
tion [24], medical diagnosis [44], and autonomous driving [10], has received quite
some attention in the computer vision community over the last decades. With
the ambiguous definition of “anomaly”, i.e., samples that do not conform to the
“normal”, it is impossible to train with an exhaustive set of anomalous samples.
As a result, recent studies on anomaly detection have largely been devoted to
unsupervised learning, i.e., learning with only the “normal” samples. Through
modeling the normal distribution with one-class classification [35,30,43], recon-
struction [47,13,39,18], or self-supervised learning tasks [12,42,33,45], many AD
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Fig. 1. Different from (a) vanilla AD, and (b) existing FSAD methods under the one-
model-per-category learning paradigm, the proposed method (c) leverages feature reg-
istration as a category-agnostic approach for FSAD, under the one-model-all-category
learning paradigm. Trained with aggregated data of multiple categories, the model is
directly applicable to novel categories without any parameter fine-tuning, with the only
need to estimate the normal feature distribution given the corresponding support set.

methods detect anomalies by identifying samples with different distributions
than the model.

Most existing AD methods have focused on training a dedicated model for
each category (Fig. 1 (a)). However, in real-world scenarios such as defect detec-
tion, given hundreds of industrial products to handle, it is not cost-effective to
collect a large training set for each product, not to mention the need for many
time-sensitive applications. A couple of studies [36,29] have recently explored a
special, yet practical, setting of AD, i.e., few-shot anomaly detection (FSAD),
where only a limited number of normal images are provided for each category
at training (Fig. 1 (b)). The few-shot learning of anomaly detection has been
approached with strategies to reduce the demand on training samples, such as
radical data augmentation with multiple transformations [36] or a lighter es-
timator for the normal distribution estimation [29]. However, such approaches
still follow the one-model-per-category learning paradigm and fail to leverage the
inter-category commonality.

This paper aims to explore a new paradigm for FSAD, by learning a com-
mon model shared among multiple categories and also generalizable to novel
categories, and inspired by how human beings detect anomalies. In fact, when a
human is asked to search for the anomaly in an image, a simple strategy one may
adopt is to compare the sample to a normal one to find the difference. As long
as one knows how to compare two images, the actual semantics of the images
does not matter anymore. To achieve such a human-like comparison process, we
resort to registration, a process of transforming different images into one co-
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ordinate system in order to better enable comparison [4,46,25]. Registration is
particularly suitable for FSAD, as registration is expected to be category-agnostic
and thus generalizable across categories, allowing the model to be adaptable to
novel categories without the necessity of parameter fine-tuning.

Fig. 1 (c) provides an overview of the proposed Registration based few-shot
Anomaly Detection (RegAD) framework. To train a category-agnostic anomaly
detection model, we leverage registration, a task that is inherently generalizable
across categories, as the proxy task. A Siamese network [5] with three spatial
transformer network [19] blocks is employed as the registration network (see
Fig. 2). For better robustness, instead of registering the images pixel-by-pixel as
typical registration methods [25], here we propose a feature-level registration loss
by maximizing the cosine similarity of features from the same category, which
may be deemed as a relaxed version of the pixel-wise registration loss. Normal
images from different categories are used together to aggregately train the model,
with two images from the same category randomly selected as a training pair.
Such aggregated training procedure is adopted so as to enable the trained regis-
tration model to be category-agnostic. At test time, a support set of a few normal
samples is provided for the target category, together with each test sample. It is
straightforward to identify anomalies by comparing the registered features of the
test image and the corresponding support (normal) images. Given the support
set, the normal distribution of registered features for the target category is esti-
mated with a statistical-based distribution estimator [8]. Test samples that are
out of the statistical normal distribution are considered anomalies. In this way,
the model quickly adapts to novel categories by simply estimating its normal
feature distribution without any parameter fine-tuning.

To validate the effectiveness of RegAD, we experiment with two challeng-
ing benchmark datasets for industrial defect detection, MVTec AD [2] and
MPDD [20]. Our experimental results have shown that RegAD outperforms the
state-of-the-art FSAD methods [36,29], achieving improvements of 5.1%, 6.9%,
and 8.0% in AUC on MVTec, and improvements of 3.2%, 5.0%, and 3.4% in
AUC on MPDD, for 2-shot, 4-shot, and 8-shot scenarios, respectively.

The main contributions of the paper are summarised as follows:

– We introduce feature registration as a category-agnostic approach for few-
shot anomaly detection (FSAD). To our best of knowledge, it is the first
FSAD method that trains a single generalizable model and requires no re-
training or parameter fine-tuning for new categories.

– Extensive experiments on recent benchmark datasets have shown that the
proposed RegAD outperforms the state-of-the-art FSAD methods on both
the anomaly detection and anomaly localization tasks.

2 Related Work

2.1 Anomaly Detection

AD is a task where training datasets contain only normal data. To better es-
timate the normal distributions, one-class classification based approaches tend
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to depict the normal data directly with statistical approaches [9,35,26,30]. Self-
supervised based approaches are trained using only normal data, and then make
inferences by assuming that anomalous data performs differently. In this domain,
reconstruction [40,34,47,32,1,13,39,17] is the most popular self-supervision. Some
approaches [12,42,33] introduce other self-supervisions, e.g., [12] applies dozens
of image geometric transforms for transformation classification; [42] proposes
a restoration framework for attribute restoration. Recent AD methods usually
use feature embeddings extracted from a pre-trained deep neural network. Fea-
ture embedding is mostly used as an input for a traditional machine learning
algorithm or statistical metrics such as the Mahalanobis distance [8]. The net-
work used as a feature extractor can be trained from scratch [43], while several
methods [21,8,45,28,14] have also achieved state-of-the-art results using models
pre-trained on the ImageNet dataset [31]. This paper differs from these previous
works by focusing on FSAD, where only a few normal images are available.

2.2 Few-shot Learning

Few-shot learning (FSL) aims to adapt to novel classes with a few annotated
examples. Representative FSL methods can be categorized into metric learn-
ing, generation, and optimization. Metric learning approaches [37,38,15] learn to
calculate a feature space that classifies an unseen sample based on its nearest
example category. Generation methods [22,41,6] enhance the novel class per-
formance by generating its images or features. Optimization methods [27,11]
learn commonalities among different categories and explore efficient optimiza-
tion strategies for novel classes based on these commonalities. In this paper, the
proposed method predicts ‘normal’ or ‘anomaly’ for a new category. In contrast
to previous work on FSL, both training data and support set only have positive
(normal) examples without any negative (anomaly) samples.

2.3 Few-shot Anomaly Detection

FSAD aims to indicate anomalies with only a few normal samples as the support
images for target categories. TDG [36] proposes a hierarchical generative model
that captures the multi-scale patch distribution of each support image. They use
multiple image transformations and optimize discriminators to distinguish be-
tween real and fake patches, as well as between different transformations applied
to the patches. The anomaly score was obtained by aggregating the patch-based
votes of the correct transformations. DiffNet [29] leverages the descriptiveness of
features extracted by convolutional neural networks to estimate their density us-
ing a normalizing flow, which is a tool well-suited to estimate distributions from
a few support samples. Metaformer [39] can be applied to the FSAD, although
an additional large-scale dataset, MSRA10K [7], should be used during its entire
meta-training procedure (beyond parameter pre-training), together with addi-
tional pixel-level annotations. In this paper, we design registration based FSAD
to learn the category-agnostic feature registration, enabling the model to detect
anomalies in new categories given a few normal images without fine-tuning.
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Fig. 2. The model architecture of the proposed RegAD. Given paired images from
the same category, features are extracted by three convolutional residual blocks each
followed by a spatial transformer network. A Siamese network acts as the feature
encoder, supervised by a registration loss for feature similarity maximization.

3 Problem Setting

We first formally define the problem setting for the proposed few-shot anomaly
detection. Given a training set consisting of only normal samples of n categories,
i.e., Ttrain =

⋃n
i=1 Ti, where the subset Ti consists of normal samples from the

category ci, (i = 1, 2, · · · , n), we want to train a category-agnostic anomaly
detection model. At test time, given a normal or anomalous image from a target
category ct (t /∈ {1, 2, · · · , n}) and its associated support set St consisting of
k normal samples from the target category ct, the trained category-agnostic
anomaly detection model should predict whether the image is anomalous or not.

For FSAD, we attempt to detect anomalies from test samples of unseen/novel
categories using only a few normal images as the support set. The key challenges
lie in: (i) Ttrain has only access to normal samples from multiple known cate-
gories (e.g., different objects or textures), without any image-level or pixel-level
annotations, (ii) the test data is from an unseen/novel category, and (iii) only a
few normal samples from the target category ct are available, making it hard to
estimate the normal distribution of the target category ct.

4 Method

Motivated by how humans detect anomalies, the feature registration is used as a
generalization paradigm for FSAD. During the training procedure, we leverage
an anomaly-free feature registration network to learn category-agnostic feature
registration. During testing, given the support set of a few normal images, the
normal distribution of registered features for the target category is estimated
with a statistical-based distribution estimator. Test samples that are out of the
learned statistical normal distribution are considered anomalies.

4.1 Feature Registration Network

Given a pair of images Ia and Ib randomly selected from a same category in the
training set Ttrain, a ResNet-type convolutional network [16] is leveraged as the
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feature extractor. Specifically, as shown in Fig. 2, the first three convolutional
residual blocks of ResNet, C1, C2, and C3, are adopted, and the last convolution
block in ResNet’s original design is discarded, in order to ensure that final fea-
tures still retain spatial information. A spatial transformer network (STN) [19]
is inserted into each block as a feature transformation module, so as to enable
the model to learn feature registration flexibly, inspired by [45]. Specifically, a
transformation function Si (i = 1, 2, 3) is applied on an input feature fs
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transformation matrix. The module Si is used to learn the mappings from fea-
tures of convolutional block Ci with the same tiny architecture as used in [19].

Given paired extracted features f t
3,a and f t

3,b as the final transformation out-
puts, we design the feature encoder as a Siamese network [3]. A Siamese network
is a parameter-sharing neural network applied on multiple inputs. To avoid the
collapsing problem when optimized without negative pairs, inspired by Sim-
Siam [5], features are processed by the same encoder network E followed by a
prediction head P applied on one branch. A stop-gradient operation is applied
on the other branch, as shown in Fig. 2, which is critical to prevent such col-
lapsing solutions. Denote pa ≜ P (E(f3,a)) and zb ≜ E(f3,b), a negative cosine
similarity loss is applied:

D(pa, zb) = − pa
||pa||2

· zb
||zb||2

, (2)

where || · ||2 is a L2 norm. Instead of registering the images pixel-by-pixel, here
we use a feature-level registration loss which may be deemed as a relaxed version
of the pixel-wise registration constraints for better robustness. Finally, following
SimSiam [5], a symmetrized feature registration loss is defined as:

L =
1

2
(D(pa, zb) +D(pb, za)). (3)

Discussion. Features from the proposed method retain relatively complete
spatial information, since we adopt the first three convolutional blocks of ResNet
as the backbone without global average pooling, followed by a convolutional en-
coder and predictor architecture, but not the MLP architecture in SimSiam [5].
Thus Eq. (3) should be computed by averaging cosine similarity scores at every
spatial pixel. Features containing spatial information are beneficial for the AD
task, which needs to provide anomaly score maps as prediction results. Differ-
ent from SimSiam [5], which defines the inputs as two augmentations of one
image and maximizes their similarity to enhance the model representation, the
proposed feature registration leverages two different images as inputs and max-
imizes the similarity between the features to learn the registration.
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4.2 Normal Distribution Estimation

To perform testing, it is assumed that the feature registration ability can general-
ize to the target category, and the learned feature registration model is applied to
the support set St for the target category without parameter fine-tuning. Multi-
ple data augmentations are applied to the support images, consistent with [36].
As the two branches of the Siamese network are exactly the same, only one
branch feature is used for the normal distribution estimation. After achieving
the registered features, a statistical-based estimator [8] is used to estimate the
normal distribution of target category features, which uses multivariate Gaussian
distributions to get a probabilistic representation of the normal class. Suppose
an image is divided into a grid of (i, j) ∈ [1,W ]× [1, H] positions where W ×H
is the resolution of features used to estimate the normal distribution. At each
patch position (i, j), let Fij = {fk

ij , k ∈ [1, N ]} be the registered features from
N augmented support images. fij is the aggregated features at patch position
(i, j), achieved by concatenating the three STN outputs at the corresponding
position with upsampling operations to match their sizes. By the assumption
that Fij is generated by N (µij , Σij), the sample covariance is:

Σij =
1

N − 1

N∑
k=1

(
fk
ij − µij

) (
fk
ij − µij

)T
+ ϵI, (4)

where µij is the sample mean of Fij , and the regularization term ϵI makes the
sample covariance matrix full rank and invertible. Finally, each possible patch
position is associated with a multivariate Gaussian distribution.

Discussion. Data augmentations are widely adopted in AD, and especially
in FSAD, including TDG [36] and DiffNet [29]. However, most methods simply
apply the data augmentations on both the support and test images without any
exploration of the impact. In this paper, we emphasize that data augmentation
plays a very important role in expanding the support set, which is beneficial for
the normal distribution estimation. Specifically, we adopt augmentations includ-
ing rotation, translation, flipping, and graying for each image in the support set
St. Other augmentations like mixup and cutpaste are not considered since they
seem more suitable for simulating anomalies [21]. We conduct the possible com-
binations of all these augmentations for each sample in the support set, which
jointly combine into a larger support set. We conduct the normal distribution
estimation on such an augmented support set. We study the impacts of different
augmentations in the supplementary material.

4.3 Inference

During inference, test samples that are out of the normal distribution are con-
sidered anomalies. For each test image in Ttest, we use the Mahalanobis distance
M (fij) to give an anomaly score to the patch in position (i, j), where

M (fij) =
√

(fij − µij)
T
Σ−1

ij (fij − µij). (5)
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The matrix of Mahalanobis distances M = (M (fij))1⩽i⩽W,1⩽j⩽H forms an
anomaly map. Three inverse affine transformations corresponding to the three
STN modules are applied to this anomaly map to get the final anomaly score
map Mfinal aligned with the original image. High scores in this map indicate the
anomalous areas. The final anomaly score of the entire image is the maximum
of anomaly map Mfinal. Compared with [36,29], RegAD cancels the data aug-
mentation of the test images which reduces the inference computational costs.

5 Experiments

5.1 Experimental Setups

Datasets. We experiment on two challenging real-world benchmark datasets
for AD [2,20], which are both related to industrial defect detection.

– MVTec [2]: MVTec comprises 15 categories with 3629 images for training
and validation and 1725 images for testing. The training set contains only
of normal images without defects. The test set contains both images with
various kinds of defects (anomaly) and defect-free images (normal). On av-
erage five per category, 73 different defect types are given. All images are in
the resolution range between 700 × 700 and 1024 × 1024 pixels. Pixel-wise
ground truth labels for each defective image region are provided.

– MPDD [20]: MPDD is a newly proposed dataset focused specifically on
defect detection during painted metal part fabrication, containing 6 classes
of metal parts. Images are captured under the conditions of various spatial
orientations, positions, and distances of multiple objects, concerning different
light intensities and a non-homogeneous background.

For each dataset, we conduct experiments on two different experimental set-
tings. (i) Aggregated training on multiple categories and then adapting to
unseen categories, and (ii) Individual training only with the support set for
each category.

Competing Methods. We consider two state-of-the-art FSAD approaches,
TDG [36] and DiffNet [29]. These two methods both train models individually for
each category (setting (ii)). Results are reproduced using the official source code.
Considering that our method uses data from multiple categories, for fairness of
comparison, we extend them to leverage the same amount of data (setting (i)).
A pre-training procedure is added to these methods, where data from multiple
categories are used to pre-train the transformation classifier for TDG or initialize
the normalizing flow-based estimator for DiffNet. The corresponding methods are
TDG+ and DiffNet+. We also evaluate RegAD under the individual training
setting, and denote the corresponding method as RegAD-L. We compare with
some state-of-the-art vanilla AD methods, such as GANomaly [1], ARNet [42],
MKD [33], CutPaste [21], FYD [45], PaDiM [8], PatchCore [28] and CflowAD
[14]. These methods use the whole normal dataset for their training, so they can
be deemed as the upper bound on FSAD performance.
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Table 1. Results of k-shot anomaly detection on the MVTec dataset, comparing with
state-of-the-art methods. Results are listed as the average AUC in % of 10 runs and
are marked individually for each category. A macro-average score over all categories is
also reported in the last row. The best-performing method is in bold.

Category
k=2 k=4 k=8

TDG+
[36]

DiffNet+
[29]

RegAD
(ours)

TDG+
[36]

DiffNet+
[29]

RegAD
(ours)

TDG+
[36]

DiffNet+
[29]

RegAD
(ours)

Bottle 69.3 99.3 99.4 69.6 99.3 99.4 70.3 99.4 99.8
Cable 68.3 85.3 65.1 70.3 85.2 76.1 74.7 87.9 80.6

Capsule 55.1 73.0 67.5 47.6 80.3 72.4 44.7 78.6 76.3
Carpet 66.2 78.4 96.5 68.7 78.6 97.9 78.2 78.5 98.5
Grid 83.8 62.1 84.0 86.2 60.5 91.2 87.6 78.5 91.5

Hazelnut 67.2 94.9 96.0 71.2 95.8 95.8 82.8 97.9 96.5
Leather 93.6 90.7 99.4 93.2 91.2 100 93.5 92.2 100

Metal Nut 67.1 61.9 91.4 69.2 67.3 94.6 68.7 67.6 98.3
Pill 69.2 83.2 81.3 64.7 84.0 80.8 67.9 82.1 80.6

Screw 98.8 73.4 52.5 98.8 72.5 56.6 99.0 75.0 63.4
Tile 86.3 97.0 94.3 87.2 98.0 95.5 87.4 99.6 97.4

Toothbrush 54.4 60.8 86.6 57.8 62.5 90.9 57.6 60.8 98.5
Transistor 55.9 61.8 86.0 67.7 62.2 85.2 71.5 63.3 93.4

Wood 98.4 98.1 99.2 98.3 96.4 98.6 98.4 99.4 99.4
Zipper 64.4 89.2 86.3 65.3 84.8 88.5 66.3 87.3 94.0

Average 73.2 80.6 85.7 74.4 81.3 88.2 76.6 83.2 91.2

Evaluation Protocols. We quantify the model performance using the area
under the Receiver Operating Characteristic (ROC) curve metric (AUC), which
is commonly adopted as the performance measurement for AD tasks. The image-
level AUC and the pixel-level AUC are used for anomaly detection and anomaly
localization respectively.

Model Configuration and Training Details. An ImageNet pre-trained
ResNet-18 [16] is used as the backbone, followed by a convolutional-based en-
coder and predictor. To retain the spatial information, the encoder contains three
1× 1 convolutional layers, while the predictor contains two 1× 1 convolutional
layers, without any pooling operation. We train models on 224× 224 images on
one NVIDIA GTX 3090. We update the parameters using momentum SGD with
a learning rate of 0.0001 for 50 epochs, with a batch size of 32. A single cycle of
cosine learning rate is used as the decay schedule.

5.2 Comparison with State-of-the-art Methods

Comparison with Few-Shot Anomaly Detection Methods. Experiments
were conducted using the leave-one-out setting, i.e., a target category was chosen
to be tested, while other categories in the dataset are used for training. Table 1
and Table 2 show the comparison results on MVTec and MPDD, respectively,
under the experimental setting (i). RegAD achieves an improvement of 5.1%,
6.9%, 8.0% in average AUC on MVTec, and an improvement of 3.2%, 5.0%,
3.4% in average AUC on MPDD, over DiffNet+ [29], with 2-shot, 4-shot, and
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Table 2. Results of k-shot anomaly detection on the MPDD dataset, comparing with
state-of-the-art methods. Results are listed as the average AUC in % of 10 runs and
are marked individually for each category. A macro-average score over all categories is
also reported in the last row. The best-performing method is in bold.

Category
k=2 k=4 k=8

TDG+
[36]

DiffNet+
[29]

RegAD
(ours)

TDG+
[36]

DiffNet+
[29]

RegAD
(ours)

TDG+
[36]

DiffNet+
[29]

RegAD
(ours)

bracket black 46.4 56.7 63.3 48.8 59.9 63.8 51.0 69.7 67.3
bracket brown 54.9 61.3 59.4 57.5 64.2 66.1 65.4 66.3 69.6
bracket white 64.0 42.2 55.6 65.4 51.8 59.3 66.8 69.1 61.4
connector 53.1 54.1 73.0 55.8 54.8 77.2 62.9 54.5 84.9
metal plate 91.8 96.8 61.7 95.1 98.2 78.6 98.4 98.8 80.2

tubes 51.8 49.8 67.1 58.5 50.7 67.5 64.9 52.6 67.9

Average 60.3 60.2 63.4 63.5 63.3 68.3 68.2 68.5 71.9

Table 3. Results of anomaly detection on the MVTec and MPDD datasets under two
different experimental settings (i) and (ii), comparing with state-of-the-art few-shot
anomaly detection methods on k = 2, 4, 8. Results are listed as the macro-average
AUC in % over all categories in each dataset of 10 runs. The best-performing method
for each experimental setting is in bold.

Methods
ImageNet Aggregated Time of MVTec MPDD
Pretrain Training Adaptation k=2 k=4 k=8 k=2 k=4 k=8

TDG [36] ✓ ✗ - 71.2 72.7 75.2 57.3 60.4 64.4
DiffNet [29] ✓ ✗ - 80.5 80.8 82.9 58.4 61.2 66.5

RegAD-L (ours) ✓ ✗ - 81.5 84.9 87.4 50.8 54.2 61.1

TDG+ [36] ✓ ✓ 1559.76s 73.2 74.4 76.6 60.3 63.5 68.2
DiffNet+ [29] ✓ ✓ 357.75s 80.6 81.3 83.2 60.2 63.3 68.5
RegAD (ours) ✓ ✓ 4.47s 85.7 88.2 91.2 63.4 68.3 71.9

8-shot scenarios, respectively. Also, with one-shot, RegAD achieves 82.4% and
57.8% AUC on MVtec and MPDD respectively.

RegAD is tested without any parameter fine-tuning, which may not guaran-
tee the best performance for every category, while other baselines have unfair
advantages in that they tune the parameters for each category. In 9 out of the 15
categories, RegAD outperforms all the other baselines. RegAD also achieves the
least standard deviation (10.94) for the 15 categories when k=8, compared to
TDG+ (15.20) and DiffNet+ (13.11), suggesting its better generalizability across
different categories. Also, although using different training settings, for MVTec
(k=8), RegAD achieves 91.2% AUC, with an ≈3% improvement compared with
Metaformer [39] which uses an additional large-scale dataset, MSRA10K [7],
during its entire training procedure.

Discussion. Adaptation time is important for real-world applications of
FSAD. The procedures of fine-tuning for both TDG+ and DiffNet+ are time-
consuming since they update the models for many epochs, while RegAD has the
fastest adaptation speed since it is based on a statistical estimator which needs
only one inference for each support image. In Table 3, we report the adapta-
tion times for each method, by averaging the results for k = 2, 4, 8 on both the
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Table 4. Results of anomaly detection and anomaly localization on the MVTec and
MPDD datasets, comparing with state-of-the-art vanilla ADmethods. Results are listed
as AUC in % as the macro-average score over all categories in each dataset.

Methods Data
ImageNet

Backbone
MVTec MPDD

Pretrain image pixel image pixel

RegAD (k=4) 4 images ✓ Res18 88.2 95.8 68.8 93.9
RegAD (k=8) 8 images ✓ Res18 91.2 96.7 71.9 95.1
RegAD (k=16) 16 images ✓ Res18 92.7 96.6 75.3 96.3
RegAD (k=32) 32 images ✓ Res18 94.6 96.9 76.8 96.3

GANomaly [1] full data ✗ UNet 80.5 - 64.8 -
ARNet [42] full data ✗ UNet 83.9 - 69.7 -
MKD [33] full data ✓ Res18 87.7 90.7 - -

CutPaste [21] full data ✓ Res18 95.2 96.0 - -
FYD [45] full data ✓ Res18 97.3 97.4 - -
PaDiM [8] full data ✓ WRN50 97.9 97.5 74.8 96.7

PatchCore [28] full data ✓ WRN50 99.1 98.1 82.1 95.7
CflowAD [14] full data ✓ WRN50 98.3 98.6 86.1 97.7

MVTec and MPDD datasets. Compared with TDG+ (1559.76s) and DiffNet+
(357.75s), the proposed RegAD has the fastest adaptation speed (4.47s).

Table 3 also compares these methods under experimental setting (ii), where
we train the models individually using the support images for each category.
RegAD-L means RegAD with individual training on one category only. Assum-
ing that features pre-trained by ImageNet are fully representative, we simply
fine-tune features using limited support images. Thus, we conduct the fine-
tuning procedures directly under an ImageNet pre-training backbone for all
methods. All methods use the same ImageNet pre-training backbone to have
a fair comparison. In this setting, RegAD-L outperforms both TDG and DiffNet
on the MVTec dataset. DiffNet performs better than the proposed method on
the MPDD dataset. However, compared with RegAD-L, the proposed RegAD
improves a lot, showing the effectiveness of the proposed feature registration
aggregated training procedure on multiple categories.

Comparison with Vanilla Anomaly Detection Methods. The state-of-
the-art vanilla AD methods use the whole normal dataset for their training
and train a separate model for each category, so their performance can be seen
as the upper bound for FSAD. We consider methods including GANomaly [1],
ARNet [42], MKD [33], CutPaste [21], FYD [45], PaDiM [8], PatchCore [28]
and CflowAD [14]. Results in Table 4 show that the proposed RegAD reaches
competitive performance even compared with vanilla AD methods that are based
on extensive normal data. For example, with only 4 support images, the proposed
method (88.2% AUC) outperforms MKD (87.7%) with the same ImageNet pre-
trained backbone, and with 32 support images its AUC increases to 94.6%.

5.3 Ablation Studies

Experiments were performed to evaluate the contribution made by individual
components of the proposed method. Results of ablation studies for k-shot
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Table 5. Ablation studies of k-shot anomaly detection and localization on the MVTec
and MPDD datasets. Modules of ‘A’, ‘F’, and ‘S’ mean the augmentations for the
support set, the feature registration aggregated training, and the spatial transformer
networks (STN), respectively. Results are listed as the macro-average AUC in % over
all categories in each dataset of 10 runs. The best-performing method is in bold.

Modules
MVTec MPDD

image pixel image pixel

A F S k=2 k=4 k=8 k=2 k=4 k=8 k=2 k=4 k=8 k=2 k=4 k=8

74.7 78.0 80.5 88.6 90.5 92.1 49.6 53.7 55.5 89.5 91.2 92.0
✓ 81.5 84.9 87.4 93.3 94.7 95.5 50.8 54.2 61.1 92.4 93.3 93.9

✓ 78.0 80.9 83.1 90.8 92.5 94.0 53.9 55.5 57.2 91.5 92.2 93.0
✓ ✓ 79.1 82.9 84.9 90.5 93.3 94.3 57.6 60.9 62.7 91.0 91.8 93.0

✓ ✓ 83.0 86.4 89.3 94.7 95.9 96.6 52.8 57.7 64.8 93.3 94.1 94.4
✓ ✓ ✓ 85.7 88.2 91.2 94.6 95.8 96.7 63.4 68.8 71.9 93.2 93.9 95.1

Table 6. Ablation studies of different transformation versions of STN modules on
MVTec and MPDD for anomaly detection with k = 2. T, R means translation, and
rotation, respectively. Results are listed as the macro-average AUC in % over all cate-
gories in each dataset of 10 runs. The best-performing method is in bold.

Data no STN T R scale shear
R

+scale
T

+scale
T+R

T+R
+scale

affine

MVTec 83.0 84.5 85.0 84.9 84.9 85.7 84.9 84.2 84.9 84.5
MPDD 52.8 62.3 57.7 59.2 59.0 61.5 61.8 61.0 61.7 63.4

anomaly detection and localization on the MVTec and MPDD datasets are shown
in Table 5. Modules of ‘A’, ‘F’, and ‘S’ mean the augmentations for support sets,
the feature registration aggregated training on multiple categories, and the spa-
tial transformer networks (STN), respectively. Results in Table 5 show that:

(i) Augmentations. The proposed support set augmentations are shown to
be essential for both detection and localization. With k = {2, 4, 8}, the AUC is
improved for 6.8%, 6.9%, 6.9% on MVTec and for 1.2%, 0.5%, 0.6% on MPDD,
respectively. We further presents the ablation studies of comparing different
augmentation methods for support images in the supplementary material.

(ii) Feature Registration Aggregated Training. The feature registra-
tion aggregated training on multiple categories is effective both with and without
support image augmentations. It shows that the proposed feature registration
is beneficial for estimating the normal distribution. As shown in Table 5, with
k = {2, 4, 8}, the proposed anomaly-free feature registration can improve the
AUC by 3.3%, 2.9%, 2.6% on MVTec, respectively.

(iii) Spatial Transformer Modules. The proposed STN module is good
for improving the ability of the feature registration and thus beneficial for AD.
For example, as shown in Table 5, when k = 8, the STN module can further
improve the performance from 89.3% to 91.2% on MVTec and from 64.8% to
71.9% on MPDD. However, models with STN modules show similar pixel-level
localization performance with models without STN modules. The reason comes
from the information lost of the inverse transformation operation and its impre-



Registration based Few-Shot Anomaly Detection 13

(a) input (b) heat map (c) result (d) heat map (e) result (f) ground truth

Individual Training Aggregated Training

Fig. 3. Qualitative results of anomaly localization for RegAD on the MVTec dataset
(top three rows) and the MPDD dataset (bottom two rows) for several cases, including
localization results with individual training and aggregated training. Results from (e)
show better performance than results from (c), showing the effectiveness of the pro-
posed feature registration aggregated training procedure.

cision. These inverse transformations are designed as post-processing operations
to rematch the spatial location of transformed features and the original images.

We further conduct ablation studies on different transformation versions of
STN modules on MVTec and MPDD for AD, as shown in Table 6. The best
performing STN version is rotation+scale on MVTec, which matches the obser-
vation that samples in this dataset are all aligned to the center, and thus, there
is no need for translation. While for the MPDD dataset, since the samples are
not well be centered, the version of STN with affine transformations shows the
best performance. STN is used as a feature transformation module, enabling
the model to implicitly transform the images to facilitate feature registration.
Images in MPDD are captured under various spatial orientations and positions,
thus aligning the features is expected to be helpful. For MVTec, objects are well
centralized and have similar orientations, so STN is less helpful to MVTec.

5.4 Visualization Analysis

To qualitatively analyze how the proposed feature registration approach im-
proves the anomaly localization performance, we visualize the results of some
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(a) Without Feature Registration (b) With Feature Registration

Fig. 4. Visualization, using t-SNE, of the features learned from the MVTec dataset, us-
ing (a) the baseline without the feature registration, and (b) the proposed method with
the feature registration. The same t-SNE optimization iterations are used in each case.
Results show that features with registration are more compact within each category,
and more separated from different categories.

cases from the MVTec and MPDD datasets. It can be seen from the results
in Fig. 3 that the localization produced by RegAD using aggregated training
(column e) is closer to the ground truth (column f) than that produced by the
individual training baseline (column c). This illustrates the effectiveness of the
proposed feature registration training procedure on multiple categories.

We also use t-SNE [23] to visualize the features learned on the MVTec
dataset, as shown in Fig. 4. Each dot here represents an augmented normal
sample from the test set. It can be seen that the proposed feature registration
makes the features more compact within each category, and pushes away fea-
tures of different categories, which is desirable for the benefit of estimating the
normal distribution for each category.

6 Conclusion

This paper proposes an FSAD method utilizing registration, a task inherently
generalizable across categories, as the proxy task. Given only a few normal sam-
ples for each category, we trained a category-agnostic feature registration net-
work with the aggregated data. This model is shown to be directly generalizable
to new categories, requiring no re-training or parameter fine-tuning. The anoma-
lies are identified by comparing the registered features of the test image and
its corresponding support (normal) images. For both anomaly detection and
anomaly localization, the method is shown to be competitive, even compared
with vanilla AD methods that are trained with much larger volumes of data.
The impressive results suggest a high potential for the proposed method to be
applicable in real-world anomaly detection environments.
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1. Akçay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: Semi-supervised
anomaly detection via adversarial training. In: Proceedings of the Asian Conference
on Computer Vision (ACCV). pp. 622–637. Springer (2018) 4, 8, 11

2. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad–a comprehensive
real-world dataset for unsupervised anomaly detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 9592–9600 (2019) 3, 8
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34. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsu-
pervised anomaly detection with generative adversarial networks to guide marker
discovery. In: International Conference on Information Processing in Medical Imag-
ing. pp. 146–157. Springer (2017) 4

35. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural computation 13(7),
1443–1471 (2001) 1, 4

36. Sheynin, S., Benaim, S., Wolf, L.: A hierarchical transformation-discriminating
generative model for few shot anomaly detection. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 8495–8504 (2021) 2, 3,
4, 7, 8, 9, 10

37. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems (NeurIPS) 30 (2017) 4

38. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to
compare: Relation network for few-shot learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1199–1208
(2018) 4

39. Wu, J.C., Chen, D.J., Fuh, C.S., Liu, T.L.: Learning unsupervised metaformer for
anomaly detection. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 4369–4378 (2021) 1, 4, 10

40. Xia, Y., Cao, X., Wen, F., Hua, G., Sun, J.: Learning discriminative reconstructions
for unsupervised outlier removal. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 1511–1519 (2015) 4

41. Yang, S., Liu, L., Xu, M.: Free lunch for few-shot learning: Distribution calibration.
In: International Conference on Learning Representations (ICLR) (2021) 4

42. Ye, F., Huang, C., Cao, J., Li, M., Zhang, Y., Lu, C.: Attribute restoration frame-
work for anomaly detection. IEEE Transactions on Multimedia 24, 116–127 (2022)
1, 4, 8, 11

43. Yi, J., Yoon, S.: Patch svdd: Patch-level svdd for anomaly detection and segmenta-
tion. In: Proceedings of the Asian Conference on Computer Vision (ACCV) (2020)
1, 4

44. Zhang, J., Xie, Y., Liao, Z., Pang, G., Verjans, J., Li, W., Sun, Z., He, J., Yi Li, C.S.:
Viral pneumonia screening on chest x-ray images using confidence-aware anomaly
detection. IEEE transactions on medical imaging 40(3), 879–890 (2021) 1

45. Zheng, Y., Wang, X., Deng, R., Bao, T., Zhao, R., Wu, L.: Focus your distribu-
tion: Coarse-to-fine non-contrastive learning for anomaly detection and localiza-
tion. arXiv preprint arXiv:2110.04538 (2021) 1, 4, 6, 8, 11
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