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A Mathematical Derivation and Proof

A.1 Derivation of Nearest Orthogonal Gradient

The problem of finding the nearest orthogonal gradient can be defined as:

min
R

|| ∂l

∂W
−R||F subject to RRT = I (1)

To solve this constrained optimization problem, We can construct the following
error function:

e(R) = Tr
(
(
∂l

∂W
−R)T (

∂l

∂W
−R)

)
+ Tr

(
ΣRTR− I

)
(2)

where Tr(·) is the trace measure, and Σ denotes the symmetric matrix Lagrange
multiplier. Setting the derivative to zero leads to:

de(R)

dR
= −2(

∂l

∂W
−R) + 2RΣ = 0

∂l

∂W
= R(I+Σ), R =

∂l

∂W
(I+Σ)−1

(3)

The term (I+Σ) can be represented using ∂l
∂W . Consider the covariance of ∂l

∂W :

(
∂l

∂W
)T

∂l

∂W
= (I+Σ)TRTR(I+Σ) = (I+Σ)T (I+Σ)

(I+Σ) =
(
(
∂l

∂W
)T

∂l

∂W

) 1
2

(4)

Substituting the term (I + Σ) in eq. (3) with the above equation leads to the
closed-form solution of the nearest orthogonal gradient:

R =
∂l

∂W

(
(
∂l

∂W
)T

∂l

∂W

)− 1
2

(5)
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A.2 Derivation of Optimal Learning Rate

To jointly optimize the updated weight W−η ∂l
∂W , we need to achieve the fol-

lowing objective:

min
η

||(W−η
∂l

∂W
)(W−η

∂l

∂W
)T − I||F (6)

This optimization problem can be more easily solved in the form of vector. Let
w, i, and l denote the vectorized W, I, and ∂l

∂W , respectively. Then we construct
the error function as:

e(η) =
(
(w − ηl)T (w − ηl)− i

)T(
(w − ηl)T (w − ηl)− i

)
(7)

Expanding the equation leads to:

e(η) = (wTw − 2ηlTw + η2lT l− i)T (wTw − 2ηlTw + η2lT l− i) (8)

Differentiating e(η) w.r.t. η yields:

de(η)

dη
= −4wwT lTw + 4ηwwT lT l+ 8ηlTwlTw − 12η2lTwlT l+ 4lwT i

+4η3llT − 4ηillT
(9)

Since η is typically very small, the higher-order terms (e.g., η2 and η3) are
sufficiently small such that they can be neglected. After omitting these terms,
the derivative becomes:

de(η)

dη
≈ −4wwT lTw + 4ηwwT lT l+ 8ηlTwlTw + 4lwT i− 4ηillT (10)

Setting the derivative to zero leads to the optimal learning rate:

η⋆ ≈ wTwlTw − lTwi

wTwlT l+ 2lTwlTw − lT li
(11)

Notice that i is the vectorization of the identify matrix I, which means that i
is very sparse (i.e., lots of zeros) and the impact can be neglected. The optimal
learning rate can be further simplified as:

η⋆ ≈ wTwlTw

wTwlT l+ 2lTwlTw
(12)

A.3 Proof of the learning rate bounds

Proposition 1 When both W and ∂l
∂W are orthogonal, η⋆ is both upper and

lower bounded. The upper bound is N2

N2+2 and the lower bound is 1
N2+2 where N

denotes the row dimension of W.
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Proof. Since the vector product is equivalent to the matrix Frobenius inner prod-
uct, we have the relation:

lTw = ⟨ ∂l

∂W
,W⟩F (13)

For a given matrix pair A and B, the Frobenius product ⟨·⟩F is defined as:

⟨A,B⟩F =
∑

Ai,jBi,j ≤ σ1(A)σ1(B) + · · ·+ σN (A)σN (B) (14)

where σ(·)i represents the i-th largest eigenvalue, N denotes the matrix size, and
the inequality is given by Von Neumann’s trace inequality [6, 2]. The equality
takes only when A and B have the same eigenvector. When both W and ∂l

∂W
are orthogonal, i.e., their eigenvalues are all 1, we have the following relation:

⟨ ∂l

∂W
,

∂l

∂W
⟩F = N, ⟨ ∂l

∂W
,W⟩F ≤ N (15)

This directly leads to:

⟨ ∂l

∂W
,W⟩F ≤ ⟨ ∂l

∂W
,

∂l

∂W
⟩F, lTw ≤ lT l (16)

Exploiting this inequality, the optimal learning rate has the relation:

η⋆ ≈ wTwlTw

wTwlT l+ 2lTwlTw
≤ wTwlT l

wTwlT l+ 2lTwlTw
(17)

For lTw, we have the inequality as:

lTw = ⟨ ∂l

∂W
,W⟩F =

∑
i,j

∂l

∂W i,j
Wi,j ≥ σmin(

∂l

∂W
)σmin(W) = 1 (18)

Then we have the upper bounded of η⋆ as:

η⋆ ≤ wTwlT l

wTwlT l+ 2lTwlTw
=

N2

N2 + 2lTwlTw
<

N2

N2 + 2
(19)

For the lower bound, since we also have lTw≤wTw, η⋆ can be re-written as:

η⋆ ≈ wTwlTw

wTwlT l+ 2lTwlTw
≥ lTwlTw

wTwlT l+ 2lTwlTw
=

1
wTwlT l
lTwlTw

+ 2
=

1
N2

lTwlTw
+ 2
(20)

Injecting eq. (18) into eq. (20) leads to the further simplification:

η⋆ ≈ 1
N2

lTwlTw
+ 2

≥ 1

N2 + 2
(21)

As indicated above, the optimal learning rate η⋆ has a lower bound of 1
N2+2 .
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Fig. 1. The scheme of the modified ResNet for decorrelated BN. We reduce the kernel
size of the first convolution layer from 7×7 to 3×3. The BN after this layer is replaced
with our decorrelated BN layer.

B Detailed Experimental Settings

In this section, we introduce the implementation details and experimental set-
tings of the two experiments.

B.1 Decorrelated Batch Normalization

We use ResNet-50 [3] as the backbone for the experiment on CIFAR10 and CI-
FAR100 [4]. The kernel size of the first convolution layer of ResNet is 7×7, which
might not suit the low resolution of these two datasets (the images are only of
size 32×32). To avoid this issue, we reduce the kernel size of the first convolution
layer to 3×3. The stride is also decreased from 2 to 1. The BN layer after this
layer is replace with our decorrelated BN layer (see Fig. 1). Let X∈RC×BHW

denotes the reshaped feature. The whitening transform is performed as:

Xwhitened = (XXT )−
1
2X (22)

Compared with the vanilla BN that only standardizes the data, the decorrelated
BN can further eliminate the data correlation between each dimension.

The training lasts 350 epochs and the learning rate is initialized with 0.1.
The SGD optimizer is used with momentum 0.9 and weight decay 5e−4. We
decrease the learning rate by 10 every 100 epochs. The batch size is set to 128.
We use the technique proposed in [7] to compute the stable SVD gradient. The
Pre-SVD layer in this experiment is the 3×3 convolution layer.

B.2 Global Covariance Pooling

We use ResNet-18 [3] for the GCP experiment and train it from scratch on
ImageNet [1]. Fig. 2 displays the overview of a GCP model. For the ResNet
backbone, the last Global Average Pooling (GAP) layer is replaced with our
GCP layer. Consider the final batched convolutional feature X∈RB×C×HW . We
compute the matrix square root of its covariance as:

Q = (XXT )
1
2 (23)



Improving Conditioning by Orthogonality 5

Fig. 2. The architecture of a GCP model [5, 7]. After all the convolution layers, the
covariance square root of the feature is computed and used as the final representation.

where Q∈RB×C×C is used as the final representation and directly passed to the
fully-connected (FC) layer.

The training process lasts 60 epochs and the learning rate is initialize with
0.1. We decrease the learning rate by 10 at epoch 30 and epoch 45. The SGD
optimizer is used with momentum 0.9 and weight decay 1e−4. The model weights
are randomly initialized and the batch size is set to 256. The images are first
resized to 256×256 and then randomly cropped to 224×224 before being passed
to the model. The data augmentation of randomly horizontal flip is used. We use
the technique proposed in [7] to compute the stable SVD gradient. The Pre-SVD
layer denotes the convolution transform of the previous layer.

C Computational Cost

Methods FP (ms) BP (ms)

SVD 44 95
SVD + NOG 44 97 (+2)
SVD + OLR 44 96 (+1)
SVD + OW 48 (+4) 102 (+7)

SVD + OW + NOG + OLR 49 (+5) 106 (+11)
Newton-Schulz Iteration 43 93

Vanilla ResNet-50 42 90

Table 1. Time consumption of each forward pass (FP) and backward pass (BP) mea-
sured on a RTX A6000 GPU. The evaluation is based on ResNet-50 and CIFAR100.

Table 1 compares the time consumption of a single training step for the exper-
iment of decorrelated BN. Our NOG and OLR bring negligible computational
costs to the BP (2% and 1%), while the FP is not influenced. Even when all
techniques are applied, the overall time costs are marginally increased by 10%.
Notice that NOG and OLR have no impact on the inference speed.
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