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A Ablation Studies on MNIST

Hammer-Spammer Synthesis. Here we conduct experiments on MNIST un-
der the hammer-spammer synthesis method used in MBEM and TraceReg.
Specifically, we consider the class-wise hammer-spammer synthesis. A hammer
refers to always correct and a spammer refers to always wrong. In their original
implementations, an annotator is a hammer with probability p and a spammer
with probability 1 − p for any class k ∈ {0, 1, · · · ,K − 1} (where K = 10 in
MNIST dataset). During our implementation, we find that this synthesis has
too much variance. Namely, one annotator provides wrong labels for all samples
while other annotators provide correct labels for some classes and achieve mod-
erate accuracies. Thus, we slightly revise the hammer-spammer implementation.
For one annotator, we randomly select Ncorrect classes and specify that this anno-
tator is a hammer on those classes, and a spammer on the remaining ones. In this
example, we make up five annotators following our class-wise hammer-spammer
synthesis. Other settings (e.g., learning rate, hyper-parameter) are identical to
the experiment in the main text.

Table 1. Test accuracies of different methods (%) are evaluated under Ncorrect = 3.
The test accuracy of training with golden labels (i.e., upper bound) is 99.20%.

Max AnTs’ Mean AnTs’ Min AnTs’ TraceReg Mjv MBEM WDN Ours

40.68% 39.56% 38.55% 84.54% 86.27% 88.31% 88.26% 88.26%

Test accuracies of different methods are reported in Table 1. The first, sec-
ond, and third columns report the max, mean, and min test accuracy that the
model trained solely with one annotator’s labels could achieve. All values in
the table are reported after averaging five independent experiments. We observe
that in this case, MBEM, WDN, and our method achieve similar accuracies and
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outperform others. Since in this setting, the annotator synthesis method is not
sample-wise4, it makes sense that our method is not outstanding. This alterna-
tively indicates that our method might be better suitable to the case when the
annotator labels are data-dependent. When labels are data-independent, meth-
ods such as MBEM might be sufficient. Nevertheless, it appears to us that in
real applications, sample-wise annotator labels seem more reasonable. It would
be great if a public dataset is available in the future so that all methods could
be tested on the same page.

Remarks on our Euclidean synthesis. At present, no publicly available
dataset provides annotator error data, and we have to synthesize annotators’
labels in some way. In previous literature, they also use synthetic methods (e.g.,
the hammer-spammer synthesis mentioned above) to generate annotator labels
on ImageNet, CIFAR-10. We believe a synthesis method based on image similar-
ity metric is more realistic, and Euclidean distance is widely used in literature
and code packages. Another major reason to use Euclidean distance in synthesis
is that it can measure similarity not only in images, but also in audio, text,
etc. Our Euclidean distance is calculated on raw inputs. Using it on latent fea-
tures would require training a good network and performing inference on all
data in preprocessing, which is time consuming. A dataset containing multiple
annotators’ labels for one data sample would greatly help the community, as
we could then more easily inspect the performances of different methods with
apple-to-apple comparisons.

Remarks on the range of ϵ in our synthesis. Going back to our annotator
label synthesis methods, when Euclidian distance between an image and annota-
tor’s ‘weakness’ image is smaller than ϵ, random labels are returned. The range
of ϵ (e.g., [30, 35] in Table 1 of the main text) was selected as follows: (i) min ϵ
corresponds to when annotators provide wrong labels, but our method achieves
similar accuracy as training with true labels; (ii) max ϵ corresponds to train-
ing where one annotator’s labels gives disastrous accuracy (e.g., around 15%).
Case (i) shows how bad the annotators’ labels can be such that our proposed
method will start to drop from the golden accuracy. Case (ii) demonstrates how
good our method is when at least one annotators’ labels are almost completely
unreliable. Our choices of min and max ϵ lie at two extreme ends and the cho-
sen range is wide enough to verify the method at all cases. Similar criterion is
applied to CIFAR-100 and ImageNet-100 experiments.

B Ablation Studies on CIFAR-100

Here we report results of ablation studies on (i) only using confusion matri-

ces {P(r)
n }Rr=1, (ii) only using weight vectors wn, (iii) hyper-parameter λ, and

(iv) number of basis matrices M in Table 2 and Fig. 1.

4 Precisely, not as sample-wise as the synthesis method in our main text.
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Fig. 1. Left: ablation study on λ. The best test accuracy is achieved at λ = 1.0 for
both ϵ = 22 and ϵ = 23. This is also the value we use in the main text. Right: ablation
study on M . The best test accuracy is achieved at M = 150.

Table 2. Accuracies (%) on CIFAR-100 under different ϵ.

ϵ Ours (w/ only wn) Ours (w/ only P
(r)
n ) Ours (w/ both)

22 63.59 60.25 64.48
23 59.40 57.07 60.12

As we mentioned earlier, there is no publicly available dataset provides anno-
tator error data, and we have to synthesize annotators’ labels in some way. Most
of our experiments are carried out based on our Euclidean synthesis technique.
Here we perform an extra experiment using neural networks as annotators in
Table 3. This, to the best of our efforts, is the closest to a real-world scenario.
Specifically, we inspect the reported test accuracies of the trained models listed at
https://github.com/chenyaofo/pytorch-cifar-models. Next, for our experimental
purpose, we deliberately choose three models (MobileNet, Vgg11, ShuffleNet)
which perform badly, download and regard them as the three annotators. Re-
sults are reported in the following Table 3.

Table 3. Accuracies (%) on CIFAR-100. We take pretrained MobileNet, Vgg11, Shuf-
fleNet as the three annotators. Their test accuracies are 65.28%, 66.90%, 60.17%, re-
spectively. We note that since our data normalization might be different from the one
used to originally train these three models, we witness a difference between the accu-
racies reported here and on https://github.com/chenyaofo/pytorch-cifar-models. The
results of this experiment show that our label fusion approach again outperforms other
annotator error methods, with this alternative setup to obtain example annotator er-
rors.

MBEM WDN TraceReg Mjv Ours w/ true

70.48 72.08 71.47 70.60 73.14 73.24

https://github.com/chenyaofo/pytorch-cifar-models
https://github.com/chenyaofo/pytorch-cifar-models
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