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Abstract. Data lies at the core of modern deep learning. The impressive
performance of supervised learning is built upon a base of massive accu-
rately labeled data. However, in some real-world applications, accurate
labeling might not be viable; instead, multiple noisy labels (instead of one
accurate label) are provided by several annotators for each data sample.
Learning a classifier on such a noisy training dataset is a challenging task.
Previous approaches usually assume that all data samples share the same
set of parameters related to annotator errors, while we demonstrate that
label error learning should be both annotator and data sample depen-
dent. Motivated by this observation, we propose a novel learning algo-
rithm. The proposed method displays superiority compared with several
state-of-the-art baseline methods on MNIST, CIFAR-100, and ImageNet-
100. Our code is available at: https://github.com/zhengqigao/Learning-
from-Multiple-Annotator-Noisy-Labels.

1 Introduction

In addition to improved neural network architectures (e.g., residual connec-
tions [10], batch-norm [11]), the prevalence and success of modern deep learn-
ing are attributed to the availability of large datasets (e.g., CIFAR-100 [15],
COCO [17], ImagNet [4]). The massive amount of labeled data plays a critical
role in the training of deep neural networks under a supervised learning setting.
Thanks to the efforts of many researchers, access to these accurately labeled
data is so convenient that we often take them for granted.

However, in many real-world applications, large numbers of accurate labels
are not available or practicable to generate. Instead, only multiple noisy labels
for data samples are gathered, due to economic limitations. Consider the need
for training data to support a binary labeling (i.e., good or bad) neural network
of drug vial images in an automated visual inspection system for pharmaceutical
products. Training dataset generation involves labeling of a set of collected vial
images (with and without defects) by a modest number of highly trained human
experts. Because visual acuity, conditions, and expertise can vary among experts,
not all experts will agree on labels. As a result, golden labels are not always
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available. Instead, we seek to take maximal advantage of the available labels
from these multiple annotators.

This problem corresponds to a supervised classification task on a training
dataset with multiple noisy labels available for each data point. To address this
problem, a naive approach is to aggregate labels for each sample via a weighted
summation, followed by a vanilla training procedure on the weighted aggregate.
When all elements of the weight vector are equal, this approach is known as
majority voting [19]. More sophisticated approaches have been proposed over
the past several decades. The first major category, built on Bayesian meth-
ods [13,19,24], has been dominant before the era of deep learning. In these meth-
ods, a probabilistic model is first defined and the maximum likelihood estima-
tion or the maximum-a-posteriori solution is found by leveraging the expectation
maximization (EM) algorithm. The second category, which is learning-based, has
emerged more recently. For instance, WDN [9] generalizes the idea of majority
voting by learning the weight vector instead of directly setting all its entries to
a single constant. In contrast, rather than using a weight vector, MBEM [14]
introduces an annotator-specific confusion matrix to mimic the labeling process
of each annotator, and embeds this into the training of the classifier using an EM
framework. Later, the authors in [23] proposed to learn the annotator confusion
matrices by a novel loss function involving trace regularization (referred to as
TraceReg in our paper).

However, these previous methods adopt assumptions – that all data samples
share a single annotator weight vector, or that the same set of confusion matrices
apply to all data samples – that can be overly limiting, as will be demonstrated in
this paper. Motivated by this observation, we propose a new learning algorithm
to jointly learn sample-wise weight vectors and sample-wise annotator confusion
matrices, and thus make label fusion possible. Specifically, for any input data
sample, our neural network outputs its label prediction, an annotator weight
vector, and a set of confusion matrices. To carry out the training process to
learn these values, a novel loss function is proposed. Furthermore, for practical
utility, we take advantage of the Birkhoff–von Neumann theorem and matrix
decomposition technique so that only a small set of coefficients can be learned
to approximate the set of confusion matrices. To exhibit our method’s superior
performance, we compare it with several state-of-the-art baseline methods on
MNIST, CIFAR-100, and ImageNet-100.

2 Preliminaries

2.1 Related Works

Multi-Label Classification. Generally, multi-label classification refers to the
classification problem where multiple (valid) labels are assigned to each instance.
For example, in the movie genre classification problem, one movie could belong
to each of action, comedy, and fiction classes at the same time. One intuitive
way to solve this problem is converting to several separate binary classification
problems. Specifically, if there are R distinct classes that one instance could
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belong to, we assign a set of binary labels {y(r) ∈ {0, 1}}Rr=1 to the instance x,
where R is the total number of classes and the r-th label represents whether the
sample belongs to the r-th class or not. The same formalism can be adopted in
our problem, but we now interpret R as the number of annotators and notice
that y(r) resides in {0, 1, · · · ,K−1} (instead of {0, 1}) for a K-class classification
problem. One subtle difference is that in our problem each instance has only one
correct label, i.e., ideally, the provided labels {y(r)}Rr=1 should be identical for
a specific sample x (i.e., y(1) = y(2) = · · · = y(R)). However, in multi-label
classification, y(1) could be different from y(2) in principle, with both labels
being correct.

Learning with Noisy Labels. In a conventional K-class classification setting,
‘noisy label’ refers to the fact that the label y assigned to the instance x might
be corrupted. Learning with noisy labels has been a hot topic for the past several
years and various methods have been proposed [1,25,18,20,22,12,21,3,8]. These
methods can be generally grouped into two categories [1]: (i) model-based ap-
proaches, and (ii) model-free approaches. Model-based approaches attempt to
find the underlying noise structure and eliminate its impact from the observed
data, while model-free approaches aim to achieve label noise robustness without
explicitly modeling the noise [1]. To name one example for each kind, the noisy
channel approach [18] assumes a noisy channel on top of a base classifier [1].
It will learn the noise structure in the training phase and thus the base classi-
fier can be trained using the processed clean labels. On the other hand, many
model-free approaches focus on designing loss functions robust to the noise [3,8].
For instance, the authors in [8] show that mean absolute value of error (MAE)
is more resilient to noise, compared with the commonly used categorical cross
entropy loss.

In our problem, we have multiple noisy labels provided by different anno-
tators which might be consistent or inconsistent. Majority voting [19] simply
aggregates all labels via a weighted summation over one-hot-encoded annotator
labels with a 1/R constant weight vector, while WDN [9] automatically learns the
weight vector. On the other hand, MBEM [14] and TraceReg [23] both introduce
the concept of a per-annotator confusion matrix to model the labeling of each
annotator. In what follows, we demonstrate that the data sample-independent
assumption used in these methods is overly restrictive, and justify why an alter-
native data sample-dependent configuration is intriguing.

2.2 Motivations

Formally, we consider a supervised K-class classification problem on a given

dataset D = {(xn, y
(r)
n ) |n = 1, 2, · · · , N, r = 1, 2, · · · , R}, where (xn, y

(r)
n ) de-

notes the n-th input feature and its corresponding label from the r-th annotator,
N and R respectively represent the number of samples and annotators. In our

paper, when the bold symbol y
(r)
n ∈ RK is presented, it denotes the one-hot-

encoding of y
(r)
n ∈ {0, 1, · · · ,K − 1}.
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Two sorts of parameters are usually exploited in previous relevant work. The
first one is a weight vector w ∈ RR used by majority voting and WDN [9].
Namely, they use w to weight the opinions of annotators and assume that the
golden (one-hot-encoded) label y?

n can be approximated by a weighted summa-
tion of all annotators’ labels ytarg

n :

y?
n ≈ ytarg

n = [y(1)
n ,y(2)

n , · · · ,y(R)
n ] ·w ∀n ∈ {1, 2, · · · , N} (1)

where w is set as a constant vector with all elements equal to 1/R in soft
majority voting [19], and with variable elements that are automatically learned
in WDN [9]. Note that in both approaches, one single w is shared among all N
samples. However, we argue that this modeling assumption can be too strong in
some cases, such as the example shown in the blue box of Figure 1. Specifically,
consider two annotators on the MNIST dataset. Because of personal writing and
perception habits, the first and second annotators, AnT-1 and AnT-2, might
erroneously assign label ‘6’ to an image of ‘5’, and label ‘2’ to an image of ‘1’,
respectively. Thus, for an input image of ‘6’, the weight vector should be more
biased towards the second annotator AnT-2 (say w = [0.3, 0.7]T ) since in this
case the first annotator AnT-1 is more likely to provide a problematic label.
Alternatively, when the input image shows ‘1’, the weight vector should rely
more on the first annotator (say with weights w = [0.7, 0.3]T ). This example
implies that the weight vector should be different for different input images
(i.e., sample-wise) when considering the reliability of annotators.

Other works such as MBEM [14] and TraceReg [23], instead of resorting
to a weight vector w, introduce a set of annotator confusion matrices {P(r) ∈
RK×K}Rr=1 to mimic the labeling processes of annotators. Specifically, the entry

on the i-th row and j-th column P
(r)
ij represents the probability that the r-th

annotator returns label i, given that the golden label y?n equals j:

P
(r)
ij = Pr[y(r)n = i | y?n = j] ∀n ∈ {1, 2, · · · , N} (2)

These works assume that the probability of the r-th annotator corrupting the
label is independent of the input data point, and thus all samples share the same
confusion matrix for the given annotator. However, similar to the case of w, this
assumption can also be too restrictive, as demonstrated in the yellow box of
Fig. 1. This example indicates that the confusion matrix P(2) of a single anno-
tator AnT-2 should be different for different input images x1 and x2. Motivated
by the observations that the annotator weight vector and annotator confusion
matrix should be sample-wise, we propose our method in the next section.

3 Proposed Approach

To begin with, we assume that for each input xn, knowing the confusion matrix

P
(r)
n ∈ RK×K can eliminate the bias (e.g., writing or recognition habit in our

example) of the r-th annotator and yield a clean soft label:

y(r),cln
n = P(r)

n y(r)
n (3)
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Fig. 1. An illustration of why weight vector and confusion matrix need to be sample-
wise using MNIST dataset. (i) The orange box contains examples of the first and second
annotator writing ‘6’ and ‘2’, respectively. (ii) In the blue box, when input image x1

is provided, AnT-1 might assign label ‘6’ due to his/her writing habit, while AnT-2
provides the correct label 5. Thus in this case, the weight vector should emphasize on
AnT-2. Alternatively, the weight vector should emphasize on AnT-1 when x2 is given.
(iii) In the yellow box, we only consider AnT-2. When x1 is given, it looks less like

digit ‘2’, thus P
(2)
21 = Pr[y

(2)
1 = 2|y?1 = 1] is small (say 0.1). Yet when x2 is provided,

P
(2)
21 = Pr[y

(2)
1 = 2|y?1 = 1] will be large (say 0.6).

where {P(r)
n }Rr=1 will be learned by the network. Note that in our definition of

confusion matrix, the entry on the i-th row and j-th column of P
(r)
n represents

the probability of y
(r),cln
n = i given y

(r)
n = j, i.e., Pr[y

(r),cln
n = i | y(r)n = j]. Our

definition differs from that of MBEM [14] or TraceReg [23] given by Eq (2). We

emphasize that y
(r)
n ∈ RK is one-hot-encoded and only one of its entries is 1,

while y
(r),cln
n ∈ RK is a soft stochastic vector, which can be regarded as the clean

label after removing the annotator’s bias.

Once the confusion matrix P
(r)
n is learned, we can use the clean label y

(r),cln
n

to guide the training of a neural network by KL divergence. In this situation,
a natural thought would be to use their weighted summation with wn ∈ RR as
the coefficient to approximate the true label:

y?
n ≈ ytarg

n = [y(1),cln
n ,y(2),cln

n , · · · ,y(R),cln
n ] ·wn (4)

where wn is also learned by the network. An advantage of learning from multiple
clean labels in this approach is that ytarg

n becomes more stable. Intuitively, when

P
(r)
n is sufficiently good, {y(r),cln

n }Rr=1 can be regarded as R i.i.d. samples drawn

from P (Y |X = xn). Thus, the weighted summation of y
(r),cln
n is closer to the

expected y?
n compared to using only one clean label, i.e., E[(ytarg

n − y?
n)2] =

1
NE[(y

(1),cln
n −y?

n)2]. In a nutshell, for each input xn, if P
(r)
n and wn are available,

then we can obtain ytarg
n by Eq (3)-(4) and minimize the KL divergence between

it and the neural network’s label prediction f(xn).
Inspired by this idea, our model architecture and learning framework are

shown in Figure 2. For each input xn, it is first fed into a deep neural network
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to obtain a good high-level representation, followed by three separate MLPs,

outputting a set of confusion matrices {P(r)
n }Rr=1, a weight vector wn, and a

class prediction f(xn), respectively. The loss function is defined as follows:

L =
1

N

N∑
n=1

LKL(f(xn),ytarg
n ) (5)

It should be noticed that ytarg
n is a function of wn and {P(r)

n }Rr=1 as shown in
Eq (3) and (4). Thus, the loss function L is a composite function with variables

f(xn), {P(r)
n }Rr=1, and wn, for n = 1, 2, . . . , N . These variables are what we will

learn simultaneously via training the model in Figure 2.
Although intuitive, further thought reveals that the above loss is insufficient.

Let us provide an example of achieving minimum loss L = 0, but it is completely

meaningless. Consider all entries on the first row of P
(r)
n equal to 1 for any n

and r. Then, no matter what wn is, the network always returns the prediction
f(xn) = [1, 0, · · · , 0]T no matter what the input is. This network can achieve zero
loss, but obviously it is an undesired trivial solution. The essence of the problem
is that we attempt to learn the annotators’ biases (and thus the clean labels)

along with learning the label prediction, but the critical parameters {P(r)
n }Rr=1

are free to vary, which can lead to bizarre clean labels.

Fig. 2. Training flow of our proposed method. The trainable neural network is high-
lighted by the dashed line. The set of confusion matrices, weight vector, and the class
prediction vector share the same representation extraction network shown in the orange
box. The green and purple arrows correspond to Eq (3) and (4), respectively. During
training, all paths are active, while in inference time, only the bottom blue path is
active and the label prediction f(xn) is used.

To overcome this, we invoke some facts about the confusion matrices so

that they can be formulated as constraints and imposed on {P(r)
n }Rr=1. Recall

in the above illustrating example, that setting the first row of all P
(r)
n equal to

1 is to say that the clean labels always indicate the first class no matter what
the annotator’s labels are for all annotators on all data samples. In reality, the
annotators will typically not be that bad at labeling. To encode a preference
toward the provided annotator labels, we revise the loss as follows:
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L =
1

N

N∑
n=1

{
LKL(f(xn),ytarg

n ) +
λ

R
uT D̃2u

}
(6)

where D̃ = Diag[I − P
(r)
n ] ∈ RK×K , u ∈ RK represents a column vector with

all elements equal to 1, and λ is a user-defined hyper-parameter. Intuitively, this

quadratic term encourages the diagonal elements in P
(r)
n to be large (i.e., ap-

proaching to 1 from below). Namely, we have implicitly assumed that annotators
won’t provide completely erroneous labels, considering our definition of confu-
sion matrix. As will be visualized in the TwoMoon example, the introduction

of this quadratic term prevents the occurrence of pathological P
(r)
n , and thus

produces a meaningful trained network.
The training flow presented so far still has a memory problem. Namely, as

shown in Figure 2, there are RK2 + R + K ≈ O(RK2) outputs for one input
during training, which is orders larger than that (i.e., O(K)) of a conventional
neural network in the K-class classification problem. Carefully examining the
training flow reveals that the memory bottleneck lies in the set of confusion
matrices, which might also be a key reason why previous works have not adopted
sample-wise confusion matrices. To properly address this issue, we first notice

that P
(r)
n satisfies two conditions: (i) all entries are between 0 and 1, and (ii) the

summation of entries in each column equals 1. The matrix satisfying the above
two requirements is known as singly stochastic [2]. Built upon this, if the row
summation also equals 1, then the matrix is doubly stochastic [6]. Furthermore,
the Birkhoff–von Neumann theorem [5] states that any K×K doubly stochastic
matrix can be decomposed into a convex combination of permutation matrices
{Bm ∈ RK×K}Mm=1, where M is the number of basis matrices. Consequently,

we impose an additional constraint that our P
(r)
n be doubly stochastic so that

the theorem can be applied. Under this constraint, the network does not need to

output P
(r)
n , but only the coefficients c

(r)
n = [c

(r)
n,1, c

(r)
n,2, · · · , c

(r)
n,M ]T ∈ RM instead.

When it is needed, we can recover P
(r)
n by:

P(r)
n ≈ c(r)n,1B1 + c

(r)
n,1B2 + · · · c(r)n,MBM (7)

We employ this idea in our training flow to reduce the memory requirement,
as shown in Figure 3(b). Specifically, the number M of basis matrices is treated
as a hyper-parameter, and the permutation matrices {Bm}Mm=1 are randomly

generated before training and fixed for later use. The coefficient c
(r)
n is produced

after a Softmax activation to guarantee its entries no smaller than zero and all
sum to one. Essentially, we shrink the exploration space of the confusion matrix

P
(r)
n as shown in Figure 3(a). Representing P

(r)
n by a convex combination of fixed

permutation matrices and introducing the quadratic term into the loss function
can be regarded as two techniques to regularize the confusion matrices.

For an intuitive understanding of our approach, we perform some visualiza-
tions on the TwoMoon toy example [26,7]. We generate 20,000 samples on the
XY-plane and specify their golden labels according to which branch (i.e., upper
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Fig. 3. (a) A Venn Diagram shows the relationship among the convex hull of Bm,
doubly stochastic matrix, and singly stochastic matrix. (b) Our improved training
flow. The red, green and purple arrows correspond to Eq (7), (3) and (4), respectively.

or lower) the samples lie in. Assume that two annotators respectively view the
data from horizontal and vertical perspectives. For instance, the first annotator
AnT-1 assigns label 1 to samples with X-coordinates less than zero, and label 0
to those larger than zero. See Figure 4 for an illustration of the generated data
and labels. Next, we divide data into training and test dataset according to the
ratio 4 : 1. In the training dataset, only annotators’ labels are provided, while the
golden labels are available in the test dataset. Note that TwoMoon is a binary
classification task (i.e., K = 2) and that only two 2 × 2 permutation matrices
exist, so we can use two basis matrices {B1,B2} to approximate the confusion
matrix. A three-layer MLP is used as the backbone model. In one experiment
running, the classifier obtained by learning from AnT-1’s labels alone attains
66.51% test accuracy, and that from AnT-2’s labels alone is 83.67%. Moreover,
due to the nature of AnT-1’s and AnT-2’s labels, the decision boundary of these
two classifiers are vertical and horizontal, respectively. On the other hand, the
classifier obtained via our method achieves 86.70% test accuracy and the deci-
sion boundary, as shown in Figure 5(a), is curved, neither vertical nor horizontal
anymore.

Fig. 4. The modified TwoMoon toy example. Red and blue dots represent label 1 and
0, respectively. In (d), the regions where AnT-1 is wrong while AnT-2 is correct are
marked with pink circles B and C. Similarly, orange circles A and D denote where
AnT-1 is correct while AnT-2 is wrong. The remaining regions are those where both
annotators are wrong or correct simultaneously.
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To verify that our method comes to effect, another necessary action is to
examine whether the resulting weight vectors and confusion matrices are indeed
sample-dependent. Figure 5(b) plots the heatmap of the weight associated with
AnT-1. Matching it with Figure 4(d), we see that the region B and C have
smaller weights than 0.5. That coincides with our intuition: because region B
and C correspond to where AnT-1 is wrong while AnT-2 is correct, the weight
vector should incline more to AnT-2. Applying the same reasoning, we expect
region A and D are painted with light color in Figure 5(b). We notice that
D matches our expectation while A does not. Moreover, in Figure 5(c), we do
witness that the places corresponding to region B and C have darker color than
that of D; while the place of region A should be light colored, it is dark in reality.
This discrepancy between our solution (Figure 5) and the real case (Figure 4)
might be attributed to two reasons: (i) the assumption of annotator labels being
not too bad is violated in this example considering that there are places where
both annotators are wrong, and generally (ii) the discrepancy is inevitable due
to the nature of the inverse problem. Namely, the real case is only one possible
scenario (or local optimum) among many that could be reached via minimizing
our loss function. With our hyper-parameter setting, we currently reach the
solution shown in Figure 5. Nevertheless, the most important observation is that
different colors (i.e., sample-dependent parameters) do indeed appear, which is
our main proposition. Since our concern here is not to precisely recover the
generating function, but rather to have a more accurate classifier, the example
still demonstrates the potential of our method.

Fig. 5. (a) Prediction heatmap and classification boundary of our learned classifier.
(b) Heatmap of the first element in wn ∈ R2. (c) Heatmap of the diagonal elements in

P
(1)
n ∈ R2×2. (d) Heatmap of the diagonal elements in P

(2)
n ∈ R2×2. Specifically, when

the annotator’s label is 0, we plot the first diagonal element, while if it is 1, we plot
the second. Namely, the heatmap represents the probability that the annotator’s label
is correct.

4 Numerical Results

4.1 MNIST

Synthesis Method. The MNIST dataset is a collection of handwritten digits
with 10 classes [16]. We divide all images into a training dataset, a validation
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dataset, and a test dataset containing 55,000, 5,000, and 10,000 images, respec-
tively. We note that no well-known public datasets suit our purpose (i.e., data
with annotator identification) in the community, so that the existing literature
all uses some sort of annotator synthesis method. For example, MBEM [14]
and TraceReg [23] use a ‘hammer-spammer’ synthesis rule, assuming that each
annotator is either a hammer, always returning golden labels, or a spammer,
randomly choosing labels in a uniform way. However, it appears to us that bad
annotators are generally better than randomly picking labels and good anno-
tators sometimes also make mistakes. Thus, in our experiment, we synthesize
three annotators according to the following rule: We assume that for each of
these annotators, there exists one ‘weakness’ image that the annotator cannot
identify. For the images whose Euclidean distance to the ‘weakness’ image are
smaller than a threshold ε, the annotator will randomly pick another class label
different from the golden one, in a uniform way. Otherwise, the annotator will
provide the correct label.

Setting. For comparison purpose, besides training with solely one single anno-
tator’s labels, we also implement majority voting, TraceReg [23], MBEM [14],
and WDN [9] as baselines. We choose LeNet [16] as the backbone model, set
the number of epochs to 40, learning rate to 0.01, and use SGD with momen-
tum as the optimizer. For our method, we randomly generate 20 (i.e., M = 20)
base permutation matrices to approximate the confusion matrices, and set the
hyper-parameter λ in Eq. (6) to 1.0. Following the setting of TraceReg [23], we
assume that golden labels are available in the validation dataset, so that valida-
tion can be used to compare models among different training epochs and select
the optimal model for a specific method.

Table 1. Accuracies (%) on MNIST under different annotator skills ε

ε = 30 ε = 31 ε = 32 ε = 33 ε = 34 ε = 35

w/ AnT-1’s 80.79 75.67 67.48 59.49 47.63 43.06
w/ AnT-2’s 66.53 57.47 49.25 41.42 33.68 25.99
w/ AnT-3’s 48.35 40.75 33.01 27.08 21.25 16.25
Mjv 87.72 80.35 74.47 67.15 56.75 44.46
TraceReg 85.98 76.91 70.47 62.38 51.52 40.09
MBEM 83.30 74.66 66.35 56.52 49.36 36.65
WDN 81.09 72.16 64.32 52.90 44.50 32.00
Ours 92.49 80.67 76.76 70.44 61.19 46.21

w/ true label 99.20 99.20 99.20 99.20 99.20 99.20

Results. The accuracies of different optimal models yielded by different meth-
ods on the test dataset are reported in Table 1. All results are reported by
averaging five independent experiments, and the left plot of Figure 6 visualizes
these results. Our method outperforms all other methods and is the closest to
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training with true golden labels (i.e., the upper bound) under all different an-
notator skills. Moreover, at ε = 30, our method achieves 4.77% more accuracy
compared to the second best method. It is worth mentioning that in some cases,
TraceReg [23] and MBEM [14] perform even worse than majority voting, which
seems contradictory to what they report. However, this is because our annotator
synthesis method is different from theirs, and we hypothesize that their method
might not perform well under a sample-dependent synthesis (as in our case) due
to the assumption of sample-independent weight vector or confusion matrix. We
perform further experiments under their synthesis method; for this and further
discussion, please refer to the supplementary material.

In the right plot of Figure 6, we show model accuracy on the validation
dataset as a function of the number of epochs. As classification on MNIST is
rather easy, all methods converge quickly after only a few epochs. We see that our
method is almost consistently better than all other methods among all epochs.

Fig. 6. MNIST test cases. Left: Test accuracy is plotted versus different annotator
skills. Right: During the training phase of one experiment with ε = 30, the validation
accuracy is plotted as a function of the number of epochs. Since MBEM [14] has an
additional loop (corresponding to EM algorithm) outside the training of classifier, it
has been omitted from the figure. WDN [9] is omitted for a similar reason.

4.2 CIFAR-100

Setting. CIFAR-100 [15] is a collection of 32×32 RGB images with 100 classes.
We divide all images into a training dataset, a validation dataset and a test
dataset containing 40,000, 10,000, and 10,000 images, respectively. Following
the synthesize method described in the previous subsection, we create three an-
notators AnT-1, AnT-2 and AnT-3. We select ResNet18 as the backbone model.
Note that we have reduced the convolution kernel size to 3× 3 to suit the case
of 32 × 32 RGB input. We choose SGD with momentum as the optimizer, set
learning rate to 0.1, and number of epochs to 200. For our method, the hyper-
parameter λ is set to 1.0, and since now the number of classes K is 100, we
randomly generate 150 (i.e., M = 150) base permutation matrices to approxi-
mate the confusion matrix.
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Results. Table 2 reports the test accuracies of different methods on CIFAR-100
under different expert skills ε. With ε increasing, the annotators’ labels become
worse and all methods’ accuracies drop. Moreover, it is interesting to note that
when ε = 24, the test accuracy obtained with a model trained solely on AnT-3’s
labels is better than all other baselines except our method. As shown in the left
plot of Figure 7, our method always achieves the highest accuracy among all
other baselines under different ε. For instance, when ε = 22, our method attains
5.74% more accuracy compared to the second best method. Moreover, as shown
in the right plot of Figure 7, our method (i.e., green line) is consistently better
than other baselines after about 30 epochs, and it is even comparable to training
with true labels (i.e., red line) at around 50 to 100 epochs. A few ablation studies

(such as varying λ, only using wn or P
(r)
n , using pretrained neural networks as

annotators) are performed in the supplementary.

Table 2. Accuracies (%) on CIFAR-100 under different expert skills ε

ε = 20 ε = 21 ε = 22 ε = 23 ε = 24

w/ AnT-1’s 62.05 58.98 54.02 50.27 42.97
w/ AnT-2’s 40.64 32.26 25.04 16.99 11.67
w/ AnT-3’s 63.07 58.33 58.74 53.68 50.42
Mjv 65.06 60.97 57.22 52.25 46.77
TraceReg 67.16 65.51 57.70 48.96 42.79
MBEM 64.75 62.69 57.37 55.02 49.74
WDN 66.92 63.37 58.42 53.97 48.17
Ours 70.05 67.83 64.48 60.12 54.77

w/ true label 73.24 73.24 73.24 73.24 73.24

Fig. 7. CIFAR-100 test cases. Left: Test accuracy is plotted versus different annotator
skills. Right: During the training phase of one experiment with ε = 20, the validation
accuracy is plotted as a function of the number of epochs.
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4.3 ImageNet-100

Setting. To make the total running time affordable, we conduct the experi-
ment on a well-known subset of ImageNet, ImageNet-100, in this example. It
is a subset of ImageNet dataset [4], containing 100 random classes and a total
of 135,000 images. We divide all images into a training dataset, a validation
dataset and a test dataset with ratio of 25:1:1. Following the synthesize method
described in previous section, we create three annotators AnT-1, AnT-2, and
AnT-3. We choose ResNet18 as the backbone model and SGD with momentum
as the optimizer. We set learning rate to 0.1 and number of epoch to 200. For our
method, we set the hyper-parameter λ to 1.0 and randomly generate M = 150
permutation matrices as bases.

Results. Table 3 reports the test accuracy of different methods on ImageNet-
100 under expert skill ε. Our method outperforms all baselines under this setting,
and is consistently better than other baselines after around 50 epochs as shown
in Fig. 8. Moreover, in this example, we observe that our method achieves more
accuracy improvement compared to that in MNIST or CIFAR-100.

Table 3. Accuracies (%) on ImageNet-100 under different expert skills ε

ε = 580 ε = 600 ε = 620 ε = 650 ε = 680

w/ AnT-1’s 38.36 34.25 28.24 22.71 15.81
w/ AnT-2’s 34.72 30.75 24.50 17.91 12.70
w/ AnT-3’s 56.35 52.62 47.16 40.41 34.86
Mjv 53.83 46.67 41.13 35.90 29.83
TraceReg 58.51 55.13 48.90 43.07 36.54
MBEM 45.18 39.12 32.90 26.14 20.06
WDN 56.03 51.86 46.90 37.94 31.65
Ours 73.34 70.59 68.91 62.72 54.93

w/ true label 74.26 74.26 74.26 74.26 74.26

5 Conclusions and Future Work

Limitations and Future Work. Here we discuss the limitations of our method
and potential future work. First, even with the matrix decomposition method,
the number of our neural network outputs is still on the order of O(RM). Al-
though we can choose M ∼ O(K), the complexity remains linear in R. This is
not a problem when R is small (e.g., R = 3 in our experiments), while complexity
may be a concern when there are many annotators. However, MBEM [14] has
demonstrated its validity in this situation. Future work could explore extensions
to our proposed method for the large R case.
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Fig. 8. ImageNet-100 test cases. Left: Test accuracy is plotted versus different an-
notator skills. Right: During the training phase of one experiment with ε = 20, the
validation accuracy is plotted as a function of the number of epochs.

In addition to scalability, another direction worth exploration is dealing with
missing annotator labels, as MBEM [14] and TraceReg [23] do. Namely, an anno-
tator might not provide labels for all data samples, and sometimes some labels
might be missing. The MBEM [14] and TraceReg [23] frameworks implicitly
handle this situation. However, it is less clear how our method could efficiently
address such scenarios. One possible approach would be using a mask operation

in Eq. (3). Namely, we could add a vector s
(r)
n ∈ RK ahead of P

(r)
n on the right

hand side of the equation. If the r-th annotator does not provide a label for

the n-th data, then the elements of s
(r)
n are set to all zeros, otherwise, all ones.

However, this method might be inefficient if each annotator only provides labels
for a small subset of all images (i.e., annotators’ labels are sparse). A related
avenue is to explore if we could use such sparsity to address the scalability issue.

Conclusions. In this paper, we propose a novel method to learn a classifier
given a noisy training dataset, in which each data point has several labels from
multiple annotators. Our key idea is to make the weight vectors and the confusion
matrices data-dependent. Moreover, we realize two regularization methods for
the confusion matrix to guide the training process: one is to include a quadratic
term inside the loss function, and the other is to confine the confusion matrix as a
convex combination of permutation matrices. Our visualization on the TwoMoon
dataset verifies that the learned parameters are indeed sample-wise, and our
numerical results on MNIST, CIFAR-100 and ImageNet-100 demonstrate that
our method outperforms various state-of-the-art methods.
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