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In this manuscript we provide the following material:

– Sec. 1 describes the detailed architectures of MaxViT for image classification
(Sec. 1.1), object detection and segmentation (Sec. 1.2), image aesthetics
assessment (Sec. 1.3), and image generation (Sec. 1.4).

– Sec. 2 presents complete training settings and hyperparameters for image
classification (Sec. 2.1), object detection and segmentation (Sec. 2.2), image
aesthetics assessment (Sec. 2.3), and image generation (Sec. 2.4).

– Sec. 3 demonstrates comprehensive experimental results, including image
classification on ImageNet-1K (Table 3), ImageNet-21K and JFT (Table 4),
as well as more image generation visualizations on ImageNet-1K (Figure 3).

1 Model Details

1.1 Backbone Details

MBConv MaxViT leverages the MBConv block [30,34] as the main convolution
operator. We also adopt a pre-activation structure [5,10] to promote homogeneity
between MBConv and Transformer blocks. Specifically, assume x to be the input
feature, the MBConv block without downsampling is formulated as:

x← x+ Proj(SE(DWConv(Conv(Norm(x))))), (1)

where Norm is BatchNorm [14], Conv is the expansion Conv1x1 followed by
BatchNorm and GELU [11] activation, a typical choice for Transformer-based
models. DWConv is the Depthwise Conv3x3 followed by BatchNorm and GELU.
SE is the Squeeze-Excitation layer [13], while Proj is the shrink Conv1x1 to down-
project the number of channels. Note that for the first MBConv block in every
stage, the downsampling is done by applying stride-2 Depthwise Conv3x3 while
the shortcut branch should also apply pooling and channel projection:

x← Proj(Pool2D(x)) + Proj(SE(DWConv↓(Conv(Norm(x))))). (2)

Relative Attention Relative attention has been explored in several previ-
ous studies for both NLP [31, 40] and vision [5, 15, 23, 38]. Here to simplify the
presentation, we present our model using only a single head of the multi-head
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self-attention. In the actual implementation, we always use multi-head attention
with the same head dimension. The relative attention can be defined as:

RelAttention(Q,K, V ) = softmax(QKT /
√
d+B)V, (3)

where Q,K, V ∈ R(H×W )×C are the query, key, and value matrices and d is
the hidden dimension. The attention weights are co-decided by a learned static
location-aware matrix B and the scaled input-adaptive attentionQKT /

√
d. Con-

sidering the differences in 2D coordinates, the relative position bias B is parame-
terized by a matrix B̂ ∈ R(2H−1)(2W−1). Following typical practices [5,23], when
fine-tuned at a higher resolution e.g., H ′ ×W ′, we use bilinear interpolation to
map the relative positional bias from R(2H−1)(2W−1) to R(2H′−1)(2W ′−1). This
relative attention benefits from input-adaptivity, translation equivariance, and
global interactions, which is a preferred choice over the vanilla self-attention
on 2D vision tasks. In our model, all the attention operators use this relative
attention defined in Eq. 3 by default.

Multi-Axis Attention We assume the relative attention operator in Eq. 3
follows the convention for 1D input sequences i.e., always regards the second last
dimension of an input (..., L, C) as the spatial axis where L,C represent sequence
length and channels. The proposed Multi-Axis Attention can be implemented
without modification to the self-attention operation. To start with, we first define
the Block(·) operator with parameter P as partitioning the input image/feature
x ∈ RH×W×C into non-overlapping blocks with each block having size P × P .
Note that after window partition, the block dimensions are gathered onto the
spatial dimension (i.e., -2 axis):

Block : (H,W,C)→ (
H

P
× P,

W

P
× P,C)→ (

HW

P 2
, P 2, C). (4)

We denote the Unblock(·) operation as the reverse of the above block partition
procedure. Similarly, we define the Grid(·) operation with parameter G as divid-
ing the input feature into a uniform G×G grid, with each lattice having adaptive
size H

G ×
W
G . Unlike the block operator, we need to apply an extra Transpose to

place the grid dimension in the assumed spatial axis (i.e., -2 axis):

Grid : (H,W,C)→ (G× H

G
,G× W

G
,C)→ (G2,

HW

G2
, C)→ (

HW

G2
, G2, C)︸ ︷︷ ︸

swapaxes(axis1=-2,axis2=-3)

(5)

with its inverse operation Ungrid(·) that reverses the gridded input back to the
normal 2D feature space.

To this end, we are ready to explain the multi-axis attention module. Given
an input tensor x ∈ RH×W×C , the local Block Attention can be expressed as:

x← x+ Unblock(RelAttention(Block(LN(x))))

x← x+MLP(LN(x))
(6)
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while the global, dilated Grid Attention module is formulated as:

x← x+ Ungrid(RelAttention(Grid(LN(x))))

x← x+MLP(LN(x))
(7)

where we omit the QKV input format in the RelAttention operation for sim-
plicity. LN denotes the Layer Normalization [1], where MLP is a standard MLP
network [7, 23] consisting of two linear layers: x←W2GELU(W1x).

(a) Axial Attention (b) Multi-Axis Attention

Fig. 1: Comparison of Axial attention
and our proposed Multi-Axis attention.

Comparison to Axial attention It
should be noted that our proposed
multi-axis attention (Max-SA) mod-
ule is completely different from the
axial attention proposed in [12, 39].
As shown in Figure 1(a), Axial atten-
tion proposes to first apply column-
wise attention then row-wise, which
achieves a global receptive field with
O(N

√
N) complexity (assuming N

equals to the number of pixels). On
the contrary, our proposed Max-SA
shown in Figure 1(b) first employs lo-
cal attention, then sparse global attention, enjoying global receptive fields with
only O(N) linear complexity. Moreover, we deem the proposed Max-SA a more
natural approach for vision since the design of attended regions account for the
2D structure of images, e.g., mixing tokens in a spatially-local small window.

MaxViT Block We demonstrate in Algo. 1 an einops-style pseudocode of the
MaxViT block which contains MBConv, block attention, and grid attention.

Classification Head Instead of using the [cls] token [7], we simply apply
global average pooling to the output of the last stage (S4) to obtain the feature
representation, followed by the final classification head.

Architectural Specifications Finally, we present detailed architectural spec-
ifications for the MaxViT model family (T/S/B/L) in Table 1.

1.2 Detection and Segmentation Models

We follow the settings of the cascaded Faster-RCNN [29] and Mask-RCNN [9],
but replace the feature extraction backbone with our MaxViT backbone. We also
applied FPN [21] in the feature map generation, where the S2, S3, S4 (multi-
scale features of targeted resolution 1/8, 1/16, 1/32 in MaxViT, respectively)
are used. Then the generated feature maps are fed into the detection head. For
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Algo. 1 Pseudocode of MaxViT Block

# input: features (b, h, w, c). Assume h==w; x/output: features (b, h, w, c).
# p/g: block/grid size. Use 7 by default.

def RelSelfAttn(x): return x # A self-attn function applied on the -2 axis

# Window/grid partition function
from einops import rearrange
def block(x,p):
return rearrange(x,"b(hy)(wx)c->b(hw)(yx)c",h=x.shape[1]//p,w=x.shape[2]//p,y=p,x=p)

def unblock(x,g,p):
return rearrange(x,"b(hw)(yx)c->b(hy)(wx)c",h=g,w=g,y=p,x=p)

x = MBConv(input) # MBConv layer

x = block(x,p) # window partition
x = RelSelfAttn(x) # Apply window-attention
x = unblock(x,x.shape[1]//p,p) # reverse

x = block(x,x.shape[1]//g) # grid partition
x = swapaxes(x,-2,-3) # move grid-axis to -2
x = RelSelfAttn(x) # Apply grid-attention
x = swapaxes(x,-2,-3) # reverse swapaxes
output = unblock(x,g,x.shape[1]//g) # reverse

fair comparison, we follow the original implementation without adopting any
system-level strategies to further boost the final performance, such as the HTC
framework [3], instaboost [8], etc. used in Swin [23]. We show the results of
MaxViT-T/S/B on these two tasks to compare it against recent strong models
at similar model complexity.

1.3 Image Aesthetics Model

This task requires incorporating both local and global information of an image to
accurately predict human perceptual preference. To this end, the model needs to
have the capacity to learn pixel-level quality aspects such as sharpness, noisiness
and contrast as well as semantic-level aspects such as composition and depth-
of-field. We follow [33] and use the normalized Earth Mover’s Distance as our
training loss. Given the ground truth and predicted probability mass functions
p and p̂ representing the histogram of scores, the normalized Earth Mover’s
Distance can be expressed as:

EMD(p, p̂) =

(
1

N

N∑
k=1

|CDFp(k)− CDFp̂(k)|r
)1/r

(8)

where CDFp(k) is the cumulative distribution function as
∑k

i=1 pi, and N = 10
represents the number score bins. In our experiments we set r = 2. We remove
the classification head used in MaxViT, and instead append a fully-connected
layer with 10 neurons followed by softmax.
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Table 1: Detailed architectural specifications for MaxViT families.
dsp. rate
(out size)

MaxViT-T MaxViT-S

stem
2×

(112×112)
3×3, 64, stride 2
3×3, 64, stride 1

3×3, 64, stride 2
3×3, 64, stride 1

S1
4×

(56× 56)

MBConv, 64, E 4, R 4
Rel-MSA, P 7×7, H 2
Rel-MSA, G 7×7, H 2

× 2

MBConv, 96, E 4, R 4
Rel-MSA, P 7×7, H 3
Rel-MSA, G 7×7, H 3

× 2

S2
8×

(28× 28)

MBConv, 128, E 4, R 4
Rel-MSA, P 7×7, H 4
Rel-MSA, G 7×7, H 4

× 2

MBConv, 192, E 4, R 4
Rel-MSA, P 7×7, H 6
Rel-MSA, G 7×7, H 6

× 2

S3
16×

(14× 14)

MBConv, 256, E 4, R 4
Rel-MSA, P 7×7, H 8
Rel-MSA, G 7×7, H 8

× 5

MBConv, 384, E 4, R 4
Rel-MSA, P 7×7, H 12
Rel-MSA, G 7×7, H 12

× 5

S4
32×

(7× 7)

MBConv, 512, E 4, R 4
Rel-MSA, P 7×7, H 16
Rel-MSA, G 7×7, H 16

× 2

MBConv, 768, E 4, R 4
Rel-MSA, P 7×7, H 24
Rel-MSA, G 7×7, H 24

× 2

dsp. rate
(out size)

MaxViT-B MaxViT-L

stem
2×

(112×112)
3×3, 64, stride 2
3×3, 64, stride 1

3×3, 128, stride 2
3×3, 128, stride 1

S1
4×

(56× 56)

MBConv, 96, E 4, R 4
Rel-MSA, P 7×7, H 3
Rel-MSA, G 7×7, H 3

× 2

MBConv, 128, E 4, R 4
Rel-MSA, P 7×7, H 4
Rel-MSA, G 7×7, H 4

× 2

S2
8×

(28× 28)

MBConv, 192, E 4, R 4
Rel-MSA, P 7×7, H 6
Rel-MSA, G 7×7, H 6

× 6

MBConv, 256, E 4, R 4
Rel-MSA, P 7×7, H 8
Rel-MSA, G 7×7, H 8

× 6

S3
16×

(14× 14)

MBConv, 384, E 4, R 4
Rel-MSA, P 7×7, H 12
Rel-MSA, G 7×7, H 12

×14

MBConv, 512, E 4, R 4
Rel-MSA, P 7×7, H 16
Rel-MSA, G 7×7, H 16

× 14

S4
32×

(7× 7)

MBConv, 768, E 4, R 4
Rel-MSA, P 7×7, H 24
Rel-MSA, G 7×7, H 24

× 2

MBConv, 1024, E 4, R 4
Rel-MSA, P 7×7, H 32
Rel-MSA, G 7×7, H 32

× 2

1.4 GAN Model

The above image recognition tasks can validate the power of our proposed
MaxViT block used in downsampling (contracting) models. For this GAN exper-
iment, we would like to demonstrate its effectiveness in upsampling (expanding)
architectures. The MaxViT-GAN model for image generation is illustrated in
Figure 2. For unconditional image generation, MaxViT-GAN first takes a latent
code z ∼ N (0, I) as input, then progressively generates an image of target reso-
lution through a hierarchically upsampling structure. We start by linearly pro-
jecting the input to a feature with spatial dimension 8×8. During the generation,
the feature will go through five stages consisting of identical GAN blocks with
gradually increased spatial resolution, similar to the design of our main model.
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Similar to [44], we apply a cross-attention layer before the MaxViT block as a
memory-efficient form of self-modulation in every stage, which has been shown
to stabilize GAN training and also improve mode coverage [4, 44]. We use pixel
shuffle [32] for upsampling in the end of each stage.
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Fig. 2: Generator architecture using the MaxViT block for the GAN
experiment. In every stage, we first use the cross-attention module to let the
features attend to the latent embedding projected from the input code, which
are then fed into the proposed MaxViT block consisting of grid attention, block
attention, and MBConv layer. Note that unlike the main model in Sec. 1.1, the
order of applying the three layers are reversed: from global to local.

2 Experimental Settings

2.1 ImageNet Classification

We provide ImageNet-1K experimental settings of MaxViT models for both pre-
training and fine-tuning in Table 2. All the MaxViT variants used similar hy-
perparameters except that we mainly customize the stochastic depth rate to
regularize each model separately.

2.2 Coco Detection and Segmentation

We evaluated MaxViT on the COCO2017 [22] object bounding box detection
and instance segmentation tasks. The dataset contains 118K training and 5K
validation samples. All the MaxViT backbones used are pretrained on ImageNet-
1k at resolution 224 × 224. These pretrained checkpoints are then used as the
warm-up weights for fine-tuning the detection and segmentation tasks. For both
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Table 2: Detailed hyperparameters used in ImageNet-1K experiments.
Multiple values separated by ‘/’ are for each model size respectively.

Hyperparameter
ImageNet-1K ImageNet-21K JFT-300M

Pre-training Fine-tuning Pre-training Fine-tuning Pre-training Fine-tuning

(MaxViT-T/S/B/L) (MaxViT-B/L/XL) (MaxViT-B/L/XL)

Stochastic depth 0.2/0.3/0.4/0.6 0.3/0.4/0.6 0.4/0.5/0.9 0.0/0.0/0.0 0.1/0.2/0.2

Center crop True False True False True False

RandAugment 2, 15 2, 15 2, 5 2, 15 2, 5 2, 15

Mixup alpha 0.8 0.8 None None None None

Loss type Softmax Softmax Sigmoid Softmax Sigmoid Softmax

Label smoothing 0.1 0.1 0.0001 0.1 0 0.1

Train epochs 300 30 90 30 14 30

Train batch size 4096 512 4096 512 4096 512

Optimizer type AdamW AdamW AdamW AdamW AdamW AdamW

Peak learning rate 3e-3 5e-5 1e-3 5e-5 1e-3 5e-5

Min learning rate 1e-5 5e-5 1e-5 5e-5 1e-5 5e-5

Warm-up 10K steps None 5 epochs None 20K steps None

LR decay schedule Cosine None Linear None Linear None

Weight decay rate 0.05 1e-8 0.01 1e-8 0.01 1e-8

Gradient clip 1.0 1.0 1.0 1.0 1.0 1.0

EMA decay rate None 0.9999 None 0.9999 None 0.9999

tasks, the input images are resized to 896× 896. The training is conducted with
a batch size of 256, using the AdamW [25] optimizer with learning rate of 1e-3,
3e-3, 3e-3, and stochastic depth of 0.8, 0.3, 0.3 for MaxViT-T/S/B, respectively.

2.3 Image Aesthetics Assessment

We trained and evaluated the MaxViT model on the AVA benchmark [27]. This
dataset consists of 255K images rated by armature photographers through pho-
tography contests. Each image is rated by an average of 200 human raters,
assigning a score from 1 to 10 to images. The higher the score, the better the
visual aesthetic quality of the image. Each image in the dataset has a histogram
of scores associated with it, which we use as the ground truth label. Similar
to [18, 33], we split the dataset into train and test sets, such that 20% of the
data is used for testing. We train MaxViT for three different input resolutions:
224× 224, 384× 384 and 512× 512. We initialized the model with ImageNet-1K
224×224 pre-trained weights. The weight and bias momentums are set to 0.9,
and a dropout rate of 0.75 is applied on the last layer of the baseline network.
We use an initial learning rate of 1e-3, exponentially decayed with decay factor
0.9 every 10 epochs. We set the stochastic depth rate to 0.5.

2.4 Image Generation

We use a ResNet-based discriminator following [17]. To train the model, we also
used the standard non-saturating logistic GAN loss with R1 gradient penalty [26]
applied to the discriminator with the gradient penalty weight set to 10. We
employ the Adam [19] optimizer with a learning rate of 1e-4 for both generator
and discriminator. The model is trained on TPU for one million steps with batch
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size 256. Notably, we do not employ extra GAN training tricks such as pixel
norm, noise injection, progressive growing, etc. on which recent state-of-the-art
models are heavily relied to attain good results [16, 17]. The overall objectives
of the GAN training are defined as:

LG = −Ez∼Pz [log(D(G(z))], (9)

LD = −Ex∼Px
[log(D(x))]− Ez∼Pz

[log(1−D(G(z)))] + γEx∼Px
[∥∇xD(x)∥22],

(10)

where γ denotes the R1 gradient penalty weight.

3 Complete Experimental Results

We provide complete experiment comparisons for ImageNet-1K, Image-21K, and
JFT datasets in Table 3 and Table 4, respectively. We also provide more visual
results for unconditional image generation on ImageNet-1K in Figure 3.
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Fig. 3: Unconditional generation results on ImageNet-1k 128× 128.
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Table 3: Complete performance comparison under ImageNet-1K only setting.

Model
Eval
size

Params FLOPs
throughput
(img/s)

ImageNet
top-1 acc.

ConvNets

•EffNet-B3 [34] 300 12M 1.8G 732.1 81.6
•EffNet-B4 [34] 380 19M 4.2G 349.4 82.9
•EffNet-B5 [34] 456 30M 9.9G 169.1 83.6
•EffNet-B6 [34] 528 43M 19.0G 96.9 84.0
•EffNet-B7 [34] 600 66M 37.0G 55.1 84.3
•RegNetY-8GF [28] 224 39M 8.0G 591.6 81.7
•RegNetY-16GF [28] 224 84M 16.0G 334.7 82.9
•NFNet-F0 [2] 256 72M 12.4G 533,.3 83.6
•NFNet-F1 [2] 320 132M 35.5G 228.5 84.7
•NFNet-F2 [2] 352 194M 62.6G 129.0 85.1
•NFNet-F3 [2] 416 255M 114.7G 78.8 85.7
•NFNet-F4 [2] 512 316M 215.2G 51.7 85.9
•NFNet-F5 [2] 544 377M 289.8G - 86.0
•EffNetV2-S [35] 384 24M 8.8G 666.6 83.9
•EffNetV2-M [35] 380 55M 24.0G 280.7 85.1
•EffNetV2-L [35] 480 121M 53.0G 163.2 85.7
•ConvNeXt-T [24] 224 29M 4.5G 774.7 82.1
•ConvNeXt-S [24] 224 50M 8.7G 447.1 83.1
•ConvNeXt-B [24] 224 89M 15.4G 292.1 83.8
•ConvNeXt-L [24] 384 198M 101.0G 50.4 85.5

ViTs

◦ViT-B/32 [7] 384 86M 55.4G 85.9 77.9
◦ViT-B/16 [7] 384 307M 190.7G 27.3 76.5
◦DeiT-S [36] 224 22M 4.6G 940.4 79.8
◦DeiT-B [36] 224 86M 17.5G 292.3 81.8
◦DeiT-B [36] 384 86M 55.4G 85.9 83.1
◦CaiT-S36 [37] 224 68M 13.9G - 83.3
◦CaiT-M24 [37] 224 186M 36.0G - 83.4
◦CaiT-M24 [37] 384 186M 116.1G - 84.5
◦DeepViT-S [45] 224 27M 6.2G - 82.3
◦DeepViT-L [45] 224 55M 12.5G - 83.1
◦T2T-ViT-14 [43] 224 22M 6.1G - 81.7
◦T2T-ViT-19 [43] 224 39M 9.8G - 82.2
◦T2T-ViT-24 [43] 224 64M 15.0G - 82.6
◦Swin-T [23] 224 29M 4.5G 755.2 81.3
◦Swin-S [23] 224 50M 8.7G 436.9 83.0
◦Swin-B [23] 384 88M 47.0G 84.7 84.5
◦CSwin-B [6] 224 78M 15.0G 250 84.2
◦CSwin-B [6] 384 78M 47.0G - 85.4
◦Focal-S [42] 224 51M 9.1G - 83.5
◦Focal-B [42] 224 90M 16.0G - 83.8

Hybrid

⋄CvT-13 [41] 224 20M 4.5G - 81.6
⋄CvT-21 [41] 224 32M 7.1G - 82.5
⋄CvT-21 [41] 384 32M 24.9G - 83.3
⋄CoAtNet-0 [5] 224 25M 4.2G 534.5 81.6
⋄CoAtNet-1 [5] 224 42M 8.4G 336.5 83.3
⋄CoAtNet-2 [5] 224 75M 15.7G 247.6 84.1
⋄CoAtNet-3 [5] 384 168M 107.4G 48.5 85.8
⋄CoAtNet-3 [5] 512 168M 203.1G 22.4 86.0

⋄MaxViT-T 224 31M 5.6G 349.6 83.62
⋄MaxViT-S 224 69M 11.7G 242.5 84.45
⋄MaxViT-B 224 120M 23.4G 133.6 84.95
⋄MaxViT-L 224 212M 43.9G 99.4 85.17

⋄MaxViT-T 384 31M 17.7G 121.9 83.62
⋄MaxViT-S 384 69M 36.1G 82.7 85.24
⋄MaxViT-B 384 120M 74.2G 45.8 85.74
⋄MaxViT-L 384 212M 133.1G 34.3 86.34

⋄MaxViT-T 512 31M 33.7G 63.8 85.72
⋄MaxViT-S 512 69M 67.6G 43.3 86.19
⋄MaxViT-B 512 120M 138.5G 24.0 86.66
⋄MaxViT-L 512 212M 245.4G 17.8 86.70
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Table 4: Complete performance comparison for ImageNet-21K and JFT pre-
trained models.

Model
Eval
size

Params FLOPs
IN-1K top-1 acc.

21K→1K JFT→1K

ConvNets

•BiT-R-101x3 [20] 384 388M 204.6G 84.4
•BiT-R-152x4 [20] 480 937M 840.5G 85.4
•EffNetV2-S [35] 384 24M 8.8G 85.0
•EffNetV2-M [35] 480 55M 24.0G 86.1
•EffNetV2-L [35] 480 121M 53.0G 86.8
•EffNetV2-XL [35] 512 208M 94.0G 87.3
•NFNet-F4+ [2] 512 527M 367G - 89.20
•ConvNeXt-B [24] 384 89M 45.1G 86.8
•ConvNeXt-L [24] 384 198M 101.0G 87.5
•ConvNeXt-XL [24] 384 350M 179.0G 87.8

ViTs

◦ViT-B/16 [7] 384 87M 55.5G 84.0
◦ViT-L/16 [7] 384 305M 191.1G 85.2
◦ViT-L/16 [7] 512 305M 364G - 87.76
◦ViT-H/14 [7] 518 632M 1021G - 88.55
◦HaloNet-H4 [38] 384 85M - 85.6
◦HaloNet-H4 [38] 512 85M - 85.8
◦Swin-B [23] 384 88M 47.0G 86.4
◦Swin-L [23] 384 197M 103.9G 87.3
◦SwinV2-B [23] 384 88M - 87.1
◦SwinV2-L [23] 384 197M - 87.7
◦CSwin-B [6] 384 78M 47.0G 87.0
◦CSwin-L [6] 384 173M 96.8G 87.5

Hybrid

⋄CvT-13 [41] 384 20M 16.0G 83.3
⋄CvT-21 [41] 384 32M 25.0G 84.9
⋄CvT-W24 [41] 384 277M 193.2G 87.7
⋄ResNet+ViT-L/16 [7] 384 330M - - 87.12
⋄CoAtNet-2 [5] 384 75M 49.8G 87.1
⋄CoAtNet-3 [5] 384 168M 107.4G 87.6
⋄CoAtNet-4 [5] 384 275M 189.5G 87.9
⋄CoAtNet-2 [5] 512 75M 96.7G 87.3
⋄CoAtNet-3 [5] 512 168M 203.1G 87.9 88.81
⋄CoAtNet-4 [5] 512 275M 360.9G 88.1 89.11
⋄CoAtNet-5 [5] 512 688M 812G - 89.77

⋄MaxViT-B 384 119M 74.2G 88.24 88.69
⋄MaxViT-L 384 212M 128.7G 88.32 89.12
⋄MaxViT-XL 384 475M 293.7G 88.51 89.36

⋄MaxViT-B 512 119M 138.3G 88.38 88.82
⋄MaxViT-L 512 212M 245.2G 88.46 89.41
⋄MaxViT-XL 512 475M 535.2G 88.70 89.53
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