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A Additional Analyses for IWSA

As shown in Fig. 1, IWSA is composed of a window-based self-attention (WSA)
and a local interactive module (LIM). WSA splits the global self-attention into
many limited windows and yields a collection of discrete value matrices. LIM
build connections between these value matrices through a fusion function F . In
practice, this function is replaced with a 3×3 depth-wise convolution. Addition-
ally, WSA can be viewed as a 7 × 7 depth-wise convolution with an adaptive
weight. Thus, F brings information exchange through a kind of interleaving ef-
fect (illustrated by yellow squares in Fig. 1). This parallel stagger makes IWSA
realize a global receptive field in a single layer.

In Table 1, we compare the LIM and the LEM on the ADE20K [17] us-
ing Semantic FPN [6] framework. All settings are recorded in the Section C.
ScalableViT-S with the LIM achieves +3.8 mIoU than the LEM under the same
overhead because IWSA can model the long-range dependency in single layer.
This result also proves that the global receptive field plays a more critical role
on the downstream vision task. Moreover, the LIM can be expanded to other
window-based self-attention with different window division styles.

Table 1: LIM vs. LEM on ADE20K using Semantic FPN. #Param. refers to
total parameters of Semantic FPN based on ScalableViT-S backbone. FLOPs
are measured at resolution 512× 2048.

Model #Param. FLOPs Top-1 mIoU(%)

ScalableViT-S w. LEM 30M 174G 83.0 41.1
ScalableViT-S w. LIM 30M 174G 83.1 44.9

B Comparing visualizations from other blocks

We visualize the feature maps after the 2nd, 4th, and 24th blocks in Figure 2. In
the 2nd and 4th blocks, the WSA focuses on local regions, especially the ears and
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Fig. 1: Interactive Window-based Self-Attention (IWSA). Besides the proposed
LIM, other parts compose the WSA. The LIM extracts a set of discrete value
matrices {V1, V2, V3, V4} from WSA and merges them via a fusion function F .
The output Y is added on Z for an output Z ′ with information interaction.

nose. In the latter 24th block, the WSA attends to contextual information but
losses some semantic cues. Since feature aggregation from a large downsampling
ratio (16) causes the foreground and background to be poorly separated. By
contrast, the SSA can retain a trail of details although the feature map of the
later block are not as continuous as the earlier ones.

C More Implementary Details

Classification. The classification settings mainly follow DeiT [12]. All variants
are trained under a resolution of 224 × 224. During training from scratch, we
employ the AdamW optimizer [9] with a weight decay of 0.05 and a momentum
of 0.9 to train models for 300 epochs. The learning rate is set to 0.001 initially
and varies with the cosine scheduler, where a 5-epochs linear warm-up is used to
stabilize training. The global batchsize is set to 1024 on 8 V100 GPUs. Moreover,
we apply data augmentations and regularizations, including random cropping,
random horizontal flipping [10], mixup [15], CutMix [14], random erasing [16],
label-smoothing [11], stochastic depth [5], and repeated augmentation [4]. For
stochastic depth augmentation, we set the drop rate to 0.2, 0.5, and 0.5 for
ScalableViT-S, ScalableViT-B, and ScalableViT-L, respectively. During testing
on the validation set, the shorter side of an input image is first resized to 256,
and a center crop of 224 × 224 is used to evaluate the classification accuracy.

Object Detection. We adopt RetinaNet [7] and Mask R-CNN [3] detection
frameworks on COCO [8] that contains 118K training images and 5K validation
images. Before training, we initialize the backbone with the weight pre-trained on
ImageNet-1K, FPN with Xavier [2] scheme, and other new layers with Normal
scheme (std = 0.01). All models utilize AdamW [9] optimizer, 500-iteration
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Table 2: Settings of the initial learning rate and weight decay.

Model #lr scheduler learning rate weight decay

Object Detection

RetinaNet(1×) Multi-step 1× 10−4 1× 10−4

RetinaNet(3×) Multi-step 1× 10−4 5× 10−2

Mask R-CNN(1×) Multi-step 2× 10−4 1× 10−4

Mask R-CNN(3×) Multi-step 1× 10−4 5× 10−2

Semantic Segmentation

Semantic FPN Polynomial 1× 10−4 1× 10−4

UperNet Polynomial 6× 10−5 1× 10−2

warm-up, 1× (12 epochs), and 3× (36 epochs) schedule with a global batch
size of 16 on 8 GPUs. Settings of initial learning rate and weight decay are
shown in Table 2. For 1× schedule, the short side of training images is resized to
800 pixels, and the long side is never more than 1333 pixels. The learning rate is
declined at the 8th and 11th epoch with a decay rate of 0.1. For the 3× schedule,
we adopt the multi-scale training, which randomly resizes the short side of the
input images within the range of [480, 800] while keeping the longer side at most
1333. The learning rate is declined at the 27th and 33rd with a decay rate of
0.1. When testing, the image size is set as the same as the 1× schedule.

Semantic Segmentation. Semantic segmentation experiments are conducted
on the challenging ADE20K [17], with 20K images for training and 2K images
for validation. We use the typical Semantic FPN [6] and UperNet [13] as segmen-
tation frameworks to evaluate our models. Following the common practice, we
use the MMSegmentation [1] to implement all related experiments. We employ
the AdamW [9] to optimize two models. The initial learning rate and weight
decay are shown in Table 2. For the Semantic FPN, we train 80K iterations with
a batch size 16 on 4 GPUs. The polynomial policy schedules the learning rate
with a power of 0.9. For the UperNet, we train 160K iterations with a batch size
16 on 8 GPUs. The polynomial policy schedules the learning rate with a power
of 1.0. During training, we first resize the short side of input images to 512 pix-
els, and the long side is never more than 2048 pixels, then randomly crop to
512×512. During testing, we resize input images the same as the training phase
but without cropping. We also use the test time augmentation for UperNet, in-
cluding multi-scale test ([0.5, 0.75, 1.0, 1.25, 1.5, 1.75]× resolution) and flip, for
better results.
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Fig. 2: Visualization for feature maps of other blocks. (b), (c), and (d) are output
features of the 2nd, 4th, and 24th blocks, respectively.
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