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Abstract. Despite the remarkable performance on high-quality (HQ)
data, the accuracy of deep image recognition models degrades rapidly
in the presence of low-quality (LQ) images. Both feature de-drifting and
quality agnostic models have been developed to make the features ex-
tracted from degraded images closer to those of HQ images. In these
methods, the l2-norm is usually used as a constraint. It treats each pixel
in the feature equally and may result in relatively poor reconstruction
performance in some difficult regions. To address this issue, we propose a
novel self-feature distillationmethod with uncertainty modeling for better
producing HQ-like features from low-quality observations in this paper.
Specifically, in a standard recognition model, we use the HQ features to
distill the corresponding degraded ones and conduct uncertainty mod-
eling according to the diversity of degradation sources to adaptively in-
crease the weights of feature regions that are difficult to recover in the
distillation loss. Experiments demonstrate that our method can extract
HQ-like features better even when the inputs are degraded images, which
makes the model more robust than other approaches.

Keywords: Robust image recognition, Self-feature distillation, Uncer-
tainty modeling

1 Introduction

Despite rapid advances in deep learning [5,15,16,27,37,41,43], the impact of im-
age degradation on visual recognition tasks has remained poorly understood.
The good performance of deep models tested on HQ images of public datasets
[8,29] often degrades dramatically in the presence of LQ images. Recent bench-
mark studies on the robustness of image classification [19], object detection [35],
and semantic segmentation [23] models have shown that the performance of a
standard neural network model is sensitive to image quality. For instance, vanilla
ResNet50 [16] has a mean Corruption Error (mCE) up to 76.7% on ImageNet-C
for image classification [19]; Faster-RCNN [37] with ResNet50 as the backbone
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Fig. 1. t-SNE feature distribution visualization on ImageNet-C validation set [19]. We
trained the model on all classes in ImageNet-1K [8] but randomly selected five classes
to show. We used the low-contrast degradation at severity level 3 to generate the
degraded images. The colored symbols represent the feature vectors extracted from the
corresponding images. Symbols with the same color are from the same class. Dot marks
represent HQ features, and triangle marks indicate features from degrade images. The
results of (c) show that our method can better gather the features both of degraded
and high-quality images.

network has a mean Average Precision (mAP) of 18.2/36.3 on LQ/HQ images
for object detection [35]; and DeepLabv3+ [5] only has a 6.6 mean Intersection
over Union (mIoU) on shot noise images for semantic segmentation [23].

Naive approaches toward degraded image recognition attempt to restore cor-
rupted images first. Indeed, various image restoration techniques including image
denoising, deblurring, super-resolution, dehazing, and other image enhancement
methods have been developed to improve the visual quality of degraded images.
However, there is a fundamental difference between the visual quality and the
recognition quality of an image - e.g., a photo with a masked face might have the
highest visual quality, but its quality is deemed low under the context of face
recognition. Various studies have confirmed that the improvement of visual per-
ception can not guarantee a higher accuracy of subsequent high-level vision tasks
[42,46]. Moreover, existing image restoration techniques are mostly devoted to
a single type of degradation; how to restore an image from multiple-type degra-
dation has remained an open challenge.

Current state-of-the-art in degraded image recognition tend to recognize di-
rectly from corrupted images based on statistical observations on the feature dis-
tribution in the latent space, as shown in Fig. 1. It has been found that shrink-
ing the distribution distance between degraded/LQ features and original/HQ
features is an effective way to improve the robustness of image recognition mod-
els. In recent work [46], a Feature De-drifting Module (FDM) was proposed to
correct shallow pretrained layer’s drifted feature response outputs. The basic
idea behind FDM is to transform the task of degraded image restoration into
feature-based reconstruction by deep degradation prior (DDP). Along this line
of research, QualNet [25] attempted to produce HQ-like features from any LQ
image via an invertible neural network [2]. Inspired by the success of knowledge
distillation in network compression [6,21], we propose a approach of distilling
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knowledge in the feature space, it can help the model learn the HQ-like feature
so that improving the performance on corrupted images.

Another important new insight brought by this work is to recognize the un-
certainty with the modeling of the degradation process [24]. In previous works,
the estimation of HQ-like features has been deterministic, i.e., most of these
methods adopted the common MSE loss which treats the distribution (variance)
of features as a definite constant, leading to poor generalization property when
the assumption of degradation process varies. To explicitly address such issue
with degradation modeling (e.g., for images containing multiple-type degrada-
tion), we propose to design a new branch of a standard deep neural network for
estimating the uncertainty (variance) of the feature distribution, which makes
the model learn HQ-like features better. In summary, the contributions of this
paper are listed as follows:

• We model the problem of degraded image recognition and propose a novel
self-feature distillation approach, which can be easily applied into any recog-
nition network and improve the performance of the model on the degraded
images.

• We model the uncertainty of the various degraded features and transform the
common deterministic estimation model into probabilistic uncertainty esti-
mation. Specifically, a devoted branch, named uncertainty estimation module
(UEM), is added to the network to estimate the uncertainty of the feature
distribution (variance).

• Extensive experimental results on popular benchmark datasets show that
our method performs much better in recognition task under multiple types
of degradation than several current state-of-the-art methods.

2 Related Works

2.1 Degraded Image Recognition

Many visual recognition tasks have achieved good performance on HQ data,
even better than humans. However, in some common degradation conditions,
such as noise, blur, low contrast, rain and snow, the performance of deep con-
volutional neural networks (DCNNs) will be greatly reduced. [45] revealed the
performance degradation of standard DCNNs in the case of blurred image, and
[9,10,13] showed that DCNNs are not as good as humans in the recognition tasks
on distorted images. To evaluate the robustness of DCNNs, a common corrup-
tion dataset, namely, ImageNet-C, was introduced in [19] which consists of 19
corruption types. Recently, researches on robust recognition of corrupted images
can be roughly divided into the following methods:
Naive Data Augmentation. Data augmentation is a simple and effective way
to make the model see more augmented images, to have better generalization
performance during the inference time. The first method using Reinforcement
Learning to search for the optimal data augmentation strategy is AutoAugment
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[7]. AugMix [20] utilizes Jensen-Shannon Divergence consistency loss, and a for-
mulation to mix multiple augmented images. [31] adds noise to randomly selected
patches in an input image. DeepAugment [18] introduces four new real-world dis-
tribution shift datasets. However, as described in [25], deep models are inclined
to learn an average data distribution when using a naive data augmentation
method for multiple degradation types.
Image Restoration with Recognition. Conventional methods tend to fix the
recognition network parameters but focus on restoring images from the degraded
ones to perform better. But [36] indicated that only using dehazing methods is
of little help or even harmful to improving the performance of classification
because there may still exist a distribution shift between the HQ image and
the reconstructed image. Therefore, there exists some research on recognition-
friendly restoration. Based on this conclusion, [30] and URIE [42] simultaneously
considered image enhancement and recognition. Specifically, they used the joint
loss of image restoration and classification.
Feature Reconstruction with Recognition. Some researchers approved that
the essential reason for the decline of performance is the degradation of features.
[25,44,46] turned to reconstructing degraded features. [44] proposed a Feature
Super-Resolution Generative Adversarial Network(FSR-GAN) to produce high-
resolution features from small size images and enhance the discriminatory ability
of features. Deep Degradation Prior (DDP) [46] reconstructed shallow features in
the network through a feature de-drifting module. QualNet [25] transformed the
final feature map into an image domain by an invertible network [2] to solve the
HQ-like feature. Compared to these methods, we also use HQ-degraded image
pairs to train the network but focus on reducing the intra-class differences in
the feature representation space and modeling the uncertainty of features under
various degradation situations.
Test-Time Adaptation and Self Learning. Recently, there exist some meth-
ods aimed at facilitating robustness by test-time adaptation. BN-Adaptation [39]
employed a simple recalculation of batch normalization statistics in the proce-
dure of testing for improving robustness to data shift. Robust Pseudo-Labeling
(RPL) [38] proposed an improved cross entropy loss function for test-time train-
ing to calculate the loss of predicted pseudo labels and model outputs. The
pseudo labels are generated by the model itself and are employed while train-
ing the model, so it is called self-training/learning. Clearly, the above methods
are time-consuming and need sufficient data for inference. Unlike these exist-
ing methods above, our approach achieves robustness without extra models and
data, enjoying a better generalization property.

2.2 Uncertainty in Deep Learning

Uncertainty has been introduced into the regression task of machine learning for
a long time [3,14]. Recently, modeling uncertainty in deep learning for various
visual tasks has been proved to improve deep networks’ performance and robust-
ness effectively [4,12,17,24,28,40,48]. Two types of uncertainty models have been
studied in the literature: one is called epistemic or model uncertainty, which
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represents the uncertainty of model prediction; the other is aleatoric or data un-
certainty, which characterizes the noise inherent in observation data. We focus
on the latter (aleatoric/data uncertainty) in this work and model the uncertainty
of the feature distribution for a variety of degraded images.(see Sec. 3.2).

3 Proposed Method

In this section, we first describe the background of robust recognition in Sec. 3.1,
then introduce our uncertainty-based self-feature distillation paradigm, and dis-
cuss the modeling uncertainty in HQ-like feature estimation in Sec. 3.2. Finally,
we present the proposed method and the training process in Sec. 3.3.

3.1 Problem Formulation

Generally speaking, the goal of an image recognition task is to obtain its label y
from an HQ/ideal image x. However, in real-world applications, due to various
sources of degradation (e.g., noise interference, motion blur, and compression
artifacts), we can only get the LQ/degraded image x̃ instead of the HQ one.
Therefore, the problem of robust or degraded image recognition is to recognize
the correct class label y from the LQ observation x̃.

Several prior works [25,44,46] have shown that degraded features result in
significant recognition performance degradation. We also did a simple visual-
ization of features extracted from HQ and degraded images. Fig.1(a) shows the
t-SNE [33] feature embedding visualization on ImageNet-C validation set. It sug-
gests that the feature distributions of the same class (marked by the same color)
stay close in the case of HQ images (marked by dots); but become separated
from each other in the presence of degradation (marked by triangles). More-
over, the separation patterns will vary from dataset to dataset. For the reason
of tractability, we do not consider the issue of domain shift [32] in this paper.

This above observation inspires us to pursue a model capable of performing
well under multiple types of degradation by jointly restoring the features z and
estimating the label y simultaneously. Let z, z̃ denote the corresponding HQ and
LQ features of x, x̃ respectively, we can model the estimation of y and z as a
maximum a posteriori probability (MAP) estimation framework

argmax p(z, y | x̃) = argmax p(y | z, x̃)p(z | x̃), (1)

where we have used the Bayesian formula to translate the original problem
into two subproblems: image recognition p(y | z, x̃) and feature reconstruction
p(z | x̃).

We propose to use a deep learning method to solve this problem. The robust
classifier (parameterized byΘ1) can be represented as f(·;Θ1), which is expected
to map the input degraded image x̃ to the correct class y. g(·;Θ2) denotes the
backbone network (parameterized by Θ2) in the classifier which can reconstruct
the HQ-like feature denoted by ẑ from x̃, i.e, ẑ = g(x̃;Θ2).
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For the term p(y | z, x̃) in Eq. (1), since the HQ/ideal feature z is unavail-
able during test time, we use the HQ-like feature ẑ which is restored from
the degraded images x̃ to approximate, i.e., p(y | z, x̃) ≈ p(y | ẑ, x̃). Note that
ẑ = g(x̃;Θ2), so we have p(y | ẑ, x̃) = p(y | x̃). Taking the logarithm of Eq. (1)
and rewrite the formulation, we have

log[p(z, y | x̃)] ≈ log[p(y | x̃)] + log[p(z | x̃)]. (2)

In this way, using deep learning to maximize the likelihood term log[p(z, y|x̃)
becomes the following objective function

(Θ1,Θ2) = argmin
Θ1,Θ2

L1(y, f(x̃;Θ1)) + L2(z, g(x̃;Θ2)), (3)

where L1 is the loss function of classification, commonly using cross entropy loss.
And L2 loss aims at gathering features extracted from HQ and LQ images. In our
experiments, we train the whole classifier by using multitask learning strategy
[25,34]. To better optimize the joint loss function in Eq. (3) through deep neural
networks, we present a novel self-feature distillation method with uncertainty
learning next.

3.2 Self-Feature Distillation with Uncertainty Modeling

Based on the above discussions, the objective of the second term in Eq. (3) is
to obtain the HQ-like feature ẑ from the degraded image x̃. To achieve this
goal, we propose a self-feature distillation framework for estimating HQ-like
features. Specifically, as shown in Fig. 3, we employ a pre-trained model on
HQ data as the baseline network. During training, both of the HQ images and
the simulated degraded images are input into the backbone network to extract
features, respectively. Through the feature distillation, their features (z and ẑ)
are expected to be close and have a more robust classification performance.

Due to multiple types of degradation and ill-posed nature of feature restora-
tion problems, it is difficult to learn the HQ-like feature, especially in the texture
or edge regions (see in Figs. 2(e) and 2(f)). The current state-of-the-art method
QualNet [25] chose to transform features into the image domain by an invertible
neural network [2]. We opt to tackle this problem from a different perspective:
due to the diversity of degradation, data uncertainty often inevitably leads to
feature uncertainty.

Assuming that each feature map extracted from the corresponding image ob-
serves a Gaussian distribution with mean ẑi and standard deviation θi, to better
quantify aleatoric/data uncertainty in feature reconstruction, we can formulate
the observation model with the estimated HQ-like feature ẑi and the target HQ
feature zi as a Gaussian likelihood function

zi = ẑi + ϵθi, (4)

where ϵ denotes the normal distribution with zero-mean and unit-variance.
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(a) HQ (b) LQ (c) DDP (d) Ours (e) Diff.DDP (f) Diff.Ours

Fig. 2. (a), (b): The HQ and LQ feature (size: 112× 112) extracted from clean and
Gaussian blur image respectively. (c), (d): The HQ-like feature reconstructed by DDP
[46] and our method. (e), (f): The normalized absolute difference map between HQ and
HQ-like feature. Best viewed in color.

Conventional feature distillation methods commonly use MSE loss for deter-
ministic estimation. Obviously, the MSE loss can be interpreted as a Gaussian
likelihood function with a constant variance in Eq. (4), assuming that the vari-
ance of the difference signals between the HQ-feature zi and restored HQ-like
feature ẑi are constant. However, as shown in Fig. 2(e) and Fig. 2(f), we can see
the spatial variation of the difference map, implying that the variances in the
texture and edge areas vary across the feature map. Therefore, the stationary
assumption of the variances of the Gaussian likelihood function for each pixel in
the feature map is invalid.

Instead of assuming a constant variance, we proposed to estimate the restored
HQ-like feature ẑi and their uncertainty (i.e., the variances θi) simultaneously.
For a given LQ image x̃i, to restore the corresponding HQ feature zi, a Gaussian
distribution is assumed for representing the likelihood function by

p(zi | x̃i,θi) =
1√
2πθi

exp(−||zi − g(x̃i;Θ2)||2

2θi
2 ), (5)

where g(x̃i;Θ2) = ẑi denotes the HQ-like feature (mean) and θi is the uncer-
tainty (variance). Both of them are learned by DCNNs respectively.

Based on the observation that the uncertainty θ is generally sparse in the
feature map, as shown in Fig. 2(e) and Fig. 2(f), we propose to impose Jeffrey’s
prior [11]: p(w) ∝ 1

w on uncertainty estimation θi, which can be expressed as

p(zi,θi | x̃i) = p(zi | x̃i,θi)p(θi)

=
1√
2πθi

exp(−||zi − g(x̃i;Θ2)||2

2θi
2 )

1

θi
.

(6)

Then the log-likelihood function with Jeffrey’s prior can be formulated as follows

log p(zi,θi | x̃i) = −||zi − g(x̃i;Θ2)||2

2θi
2 − log θi

2. (7)

To implement the above idea, we add a new branch (UEM), as highlighted
by the blue color in Fig. 3(a), at the end of the backbone network to estimate
the uncertainty. It follows that the problem of maximum-likelihood estimation
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(a) The proposed self-feature distillation with uncertainty learning
method.
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Fig. 3. System overview. (a) Both of the HQ features z and the estimated HQ-like fea-
tures ẑ are extracted from backbone network. The HQ-like features are input into the
uncertainty estimation branch to estimate the uncertainty (variance) θ of the feature
distribution in a variety of degradation. (b) The architecture of our uncertainty esti-
mation module. The numbers in parentheses represent the kernel size, stride, padding,
and output channels respectively. Note that our UEM represents a clever use of ResNet
[16] for variance/uncertainty estimation.

in Eq. (7) can be translated into the following uncertainty learning-based feature
distillation (ULFD) loss function,

LULFD =
1

N

N∑
i=1

(
||zi − g(x̃i;Θ2)||2

2θi
2 + log θi

2), (8)

where N is the number of samples in a minibatch of training dataset. As both the
HQ image and the corresponding degraded image are input into the backbone
network, we can obtain the HQ feature zi and restored HQ-like features ẑi =
g(x̃i;Θ2) with estimated uncertainty θi through the uncertainty loss function.

Apparently, the learned variances θi can be regarded as a confidence score
measuring the closeness between the restored HQ-like feature ẑi and HQ feature
zi. For those ẑi far away from zi, the network will estimate larger variances to

reduce the error term ||zi−ẑi||2
θ2
i

, instead of overfitting to those erroneous regions.

When ẑi is easy to learn, the second term log θi
2 plays a major role in loss

function, and the network tends to make θi smaller. It plays a role similar to the
attention mechanism, enabling the network to focus on the hard samples [22] in
the training set.

3.3 Architecture and Training Strategy

The overall flowchart of our method is shown in Fig. 3(a). Note that we attempt
to reconstruct the deep semantic feature rather than the features in the shallow
layer (DDP [46]) because it has proved to be more helpful in improving the
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accuracy of the classifier (see Sec. 4.5 for details). Therefore, we use a well-
pretrained standard deep neural network on high-quality images as the baseline
model and add an uncertainty estimation module (UEM) at the end of the
backbone network to estimate the variance.

The detailed design of the UEM is shown in Fig. 3(b). Since the final feature
map has a lower resolution, we first introduce a transposed convolution layer to
expand the spatial resolution, which is similar to the role of a decoder. Then
six residual blocks are used to learn the uncertainty (variance). Similar to the
bottleneck architecture mentioned in [16], we use 1×1 convolution in the residual
block to reduce the parameters and the dimension of the final feature maps.
Finally, an average pooling layer is used to keep the output dimension consistent
with the original feature dimension. To stabilize the training, we estimate σi =
log θi

2 in this branch. So the uncertainty learning-based feature distillation loss
function in Eq. (8) can be reformulated as

LULFD =
1

N

N∑
i=1

(exp(−σi)||zi − g(x̃i;Θ2)||2 + 2σi). (9)

To sum it up, We train our network by a multitask learning strategy [25]
with the joint loss function of uncertainty and recognition in Sec. 3.1 and Sec.
3.2 as

L =
1

N

N∑
i=1

LCE(yi, f(xi;Θ1)) + LCE(yi, f(x̃i;Θ1))

+ λ · 1

N

N∑
i=1

[exp(−σi)||zi − g(x̃i;Θ2)||2 + 2σi],

(10)

where LCE represents the Cross-Entropy loss and λ is the hyperparameter.

4 Experiments

Simulations and dataset. In our experiments, we have simulated the corrup-
tion described in the common dataset ImageNet-C [19] to generate the degraded
images and evaluated the model’s robustness. ImageNet-C contains 15 corruption
types (Gaussian/shot/impulse noise, glass/motion/defocus/zoom blur, contrast,
elastic, JPEG, pixelate, frost, fog, snow, and brightness) in 4 categories for train-
ing and 4 corruption types (speckle noise, Gaussian blur, spatter, and saturate)
as holdout corruptions. Every corruption consists of 5 severity levels. To measure
the performance of the network under these degradation conditions, the mean
Corruption Error (mCE) [19] is a commonly used metric. All the mCE results
in our experiments were normalized.
Training setting. Every training image pair in most of our experiments con-
tains an original clean and a corresponding degraded image generated by a uni-
formly sampled type from the 15 corruption types mentioned above. We trained
several architectures such as ResNet50 [16] and ResNeXt101[47] with ImageNet-
1K [8], because they are commonly used in recognition tasks. We employed Adam
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[26] as the optimizer with initial learning rate 0.001, and it was divided by 10
after 5k, 12.5k, 25k iterations. Our model was trained for 40k iterations (about
10 epochs) with batch size of 256 per iteration. The hyperparameter λ in Eq.
(10) was set to 0.1 according to the ablation study described in Sec. 4.5.

4.1 Comparison with Sate-of-the-art Methods

To demonstrate the effectiveness of our method on the degraded image domain
generalization, we have compared our method with the state-of-the-art methods
on ImageNet-C, such as DDP [46], URIE [42], KD VID [1], and QualNet[25].
The experimental setup was consistent with those described in the relevant pa-
pers. Through careful experiments, we reproduced the results similar to those
in their paper. In the proposed self-feature distillation network, the uncertainty
estimation module (UEM) is used to improve the robustness of the model in a
variety of degradation. To demonstrate the effectiveness of our UEM, we modify
the network into a deterministic model by removing the UEM branch and use
the common MSE loss for training.

Table 1 shows that our approach performs better than these related works
on the ImageNet-C test set. HQ, seen, unseen represent the top-1 classifica-
tion accuracy on HQ images, 15 types of corrupted images which are seen in
the training set, and 4 unknown types of corrupted images during training, re-
spectively. Ours w/o UEM means the deterministic version of our method. We
use two types of classification neural networks, ResNet50 [16] and ResNeXt101-
32x8d [47]. Table 2 shows the detailed performance for model robustness in four
degradation cases which are unknown in training. It is worth noting that our
method has less performance degradation on clean images and is more robust
than other methods, from which we can verify the superiority of our method.

We have also compared feature distribution visualization results between our
method and the SOTA method QualNet. Specifically, we randomly selected five
classes of images in ImageNet-1K [8] validation set and used the low contrast
degradation method in [19] with severity level 3 to generate corresponding cor-
rupted ones. Both of them were input into the well-trained classifier in turn, and
their logits were extracted for t-SNE visualization. Figs. 1(b) and 1(c) show that
our method can better gather the features of both LQ and HQ images, and thus
can improve the robustness of the classifier on degraded images.

4.2 Robustness of Using Naive Augmented Data

Naive data augmentation is a technique that synthesizes augmented images from
the original ones and then trains the network with the original and augmented
images, which are expected to improve the recognition accuracy and model ro-
bustness. The main difference between our proposed framework and the naive
augmentation training is that we add self-feature distillation operation and un-
certainty estimation branch. Therefore, our method can be easily adopted in
naive data augmentation training.
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Table 1. The top-1 accuracy on HQ ImageNet-1K[8] validation set, 15 types seen
corrupted and 4 types unseen corrupted images in ImageNet-C[19] validation set. Each
corruption type contains 5 severity levels. The mean Corruption Error(mCE) is the
normalized average error rate at all severity levels of the 15 known corruptions (less is
better). “Ours w/o UEM” means the UEM branch is removed and trained using MSE
loss. The best results are in bold.

Methods Architecture HQ ↑ Seen ↑ Unseen ↑ mCE ↓
Vanilla [16]

ResNet50

76.82% 39.17% 47.11% 76.5%
DDP [46] 72.15% 48.21% 50.73% 62.78%
URIE [42] 73.80% 55.10% 56.50% 55.70%
KD VID [1] 74.85% - - 51.29%
QualNet50 [25] 75.43% 61.08% 58.10% 50.34%
Ours w/o UEM 75.81% 61.65% 60.23% 49.50%
Ours 76.23% 63.44% 62.90% 46.37%

Vanilla [47]

ResNeXt101

79.68% 47.08% 55.53% 69.76%
QualNet101 [25] 77.81% 65.47% 63.28% 42.61%
Ours w/o UEM 78.35% 66.81% 65.30% 41.23%
Ours 79.04% 69.16% 67.83% 39.50%

Table 2. Top-1 accuracy on 4 unseen corruptions in ImageNet-C [19] validation set.
The best results are in bold.

Methods Architecture
Top-1 Accuracy ↑

Speckle-Noise Gaussian-Blur Spatter Saturate

Vanilla [16]

ResNet50

35.49% 49.16% 41.87% 61.92%
QualNet50 [25] 63.50% 52.59% 54.56% 61.75%
Ours w/o UEM 65.25% 55.39% 56.33% 63.95%
Ours 66.44% 58.59% 58.65% 67.92%

Vanilla [47]

ResNeXt101

47.92% 57.94% 48.72% 67.52%
QualNeXt101 [25] 64.21% 57.24% 62.48% 69.19%
Ours w/o UEM 68.70% 61.25% 60.37% 70.86%
Ours 71.23% 64.87% 63.04% 72.18%

In this experiment, the input image pair contains an original clean image and
the corresponding augmented one generated by three popular data augmenta-
tion methods - i.e., Augmix [20], DeepAugment [18] and DeepAugment+Augmix
[18], instead of the simulated degraded images of 15 corruption types. Table 3
shows the results of combining our framework with augmented data compared to
the naive methods. Through adding self-feature distillation with uncertainty es-
timation, and jointly training the whole network, the model can indeed increase
the clean accuracy and robustness.

4.3 Comparison with Test-Time Adaptation Methods

As the test-time adaptation methods described in Sec. 2.1 require many test
images, it is unrealistic in practical applications. To explore the impact of insuf-
ficient samples in the test set on those methods, we constructed a tiny subset
by randomly selecting 500 images from 50000 images in ImageNet validation set
for testing. For BNAdapt [31], the batch size of the test set changed from 256
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Table 3. Top-1 accuracy on HQ images and mCE on ImageNet-C validation set for
other data augmentation methods. All methods are based on ResNet50 architecture.
For Augmix [20], DeepAugment [18] and DeepAugment+Augmix [18], we choose to
retrain the network to make a fair comparison. ”+Ours” means we use the corresponded
augmented images in our framework to train the model.

Methods
Top-1 Accuracy

on HQ ↑ mCE ↓

DeepAugment[18] 74.60% 60.31%
DeepAugment+Ours 74.83% 59.04%

Augmix[20] 75.38% 65.30%
Augmix+Ours 75.40% 64.37%

DeepAugment+Augmix[18] 73.64% 53.50%
DeepAugment+Augmix+Ours 73.81% 52.47%

to 32. We trained the ResNet50 model with augmented images described in Sec.
4.2 for a fair comparison.

Table 4 demonstrates the average top-1 accuracy performance of test-time
adaptation methods plummet when the number of test samples decreases. Clearly,
test-time adaptation is time-consuming and needs to be trained separately on
each corrupted type in ImageNet-C validation set. In contrast, our method nei-
ther needs to use the test set for training nor introduces any extra computational
cost during inference. From the experimental results, we have also found that
when the severity of degradation increases, the recognition accuracy of the self-
learning method will be worse and worse due to the unreliable pseudo labels.

4.4 Contributions of Uncertainty Learning

To illustrate how uncertainty learning works for each image x̃, we averaged
the learned feature uncertainty (variance) map θ in the spatial and channel

dimensions (i.e., θx̃ = 1
CHW

∑C
c=1

∑H
h=1

∑W
w=1 θc,h,w), which can represent the

uncertainty of this sample. We calculated the uncertainty of each sample in
five severity levels in ImageNet-C [19]. As shown in Fig. 4(a), the estimated
uncertainty θx̃ is closely related to the severity levels of corruption. The more
serious the image degradation is, the more samples are difficult to recognize,

Table 4. Comparing our method with test-time adaptation methods when the number
of samples in the test set changes. Original set and Subset represent the average top-1
accuracy on original ImageNet-C validation set and the constructed subset, respec-
tively.

Methods Original set Subset

Vanilla[16] 39.2% 42.3%
DeepAugment+Augmix[18] 58.1% 61.4%
DeepAugment+Augmix+BNAdapt[31] 65.7% 60.2%
DeepAugment+Augmix+RPL[38] 67% 62.1%
DeepAugment+Augmix+Ours 59.3% 62.7%
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(a) spatter(62.59%)
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(b) motion-blur(68.08%)

Fig. 4. The predicted uncertainty value θx̃ of each degraded image in different severity
levels of spatter and motion-blur degradation. The ordinate represents the number of
samples corresponding to the value of uncertainty. For better view, we only selected
severity levels of 1, 3 and 5. The number in parentheses indicates the top-1 accuracy
on the corresponding degradation. Best viewed in color.

and the larger the corresponding θx̃ value is. This is also similarly observed in
DUL[4]. Comparing Figs. 4(a) and 4(b), we can observe that the recognition
accuracy of the model for spatter degradation is lower than that of motion blur,
and the corresponding number of samples with large uncertainty value (hard
samples) is more. These experimental results support, as described in Sec. 3.2,
that the uncertainty measures the difficulty of HQ-like features reconstruction
for recognition. It makes the classifier pay close attention to the hard samples so
that it can improve the performance on corrupted data with high severity level.

4.5 Ablation Study

In this section, we first discuss the choice of shallow features or deep semantic
features for reconstruction. Through comparative experiments, we find that the
top-1 accuracy on corrupted data by shallow feature reconstruction is 4.5 % lower
than that of deep semantic features. Therefore, we choose to restore deep seman-
tic features in our method. Then we conducted several ablation studies to in-
vestigated which modules significantly contribute to performance improvement.
In our experiments, We roughly divide our method in two modules: self-feature
distillation, uncertainty estimation and verify their impact separately.

Without adding any modules means, we use degraded images to fine-tune
the model and only optimize it through cross entropy loss. Just adding the self-
feature distillation module denotes the deterministic version as described in Sec.
4.1. Adding both self-feature distillation and uncertainty estimation modules
represents the proposed method in Fig. 3(a) where we simultaneously learn HQ-
like features (mean) and its uncertainty(variance) through joint loss function in
Eq. (10). All models are trained and tested under the ResNet50 architecture. We
use 15 types of corruptions in [19] for training. The results are shown in Tab. 5.



14 Z. Yang et al.

Table 5. Ablation study on our proposed module.“Clean” and “mCE” indicate the top-
1 clean accuracy (%) and mean Corruption Error on 15 corruption types, respectively.

Self-feature distillation ✓ ✓
Uncertainty modeling ✓

Clean↑ 75.11% 75.81% 76.23%
mCE↓ 51.31% 49.50% 46.37%

c

Table 6. The hyperparameter λ and different type of uncertainty in our method.

(a) Top-1 accuracy on ImageNet-C validation set
of different λ.

λ 0 0.01 0.1 1

Top-1 Acc.↑ 58.43% 62.37% 63.44% 62.78%

(b) The choice of estimating sample-
wise or spatial-wise uncertainty.

sample-wise mCE: 46.93%

spatial (Ours) mCE: 46.37%

We have also studied the impact on the recognition accuracy of the hyperpa-
rameter value λ. We empirically select four values for training, respectively. The
results are shown in Table 6(a). Based on the above results, we finally choose
λ = 0.1. We also compared the mCE value of estimating a sample-wise (with
dimensions of B× 1× 1× 1) and spatial-wise (ours) uncertainty. The results are
shown in Table 6(b) (lower is better). We can see that the performance of the
sample-wise uncertainty is slightly weaker than the spatial uncertainty that we
adopted. This is because the sample-wise uncertainty cannot focus on the diffi-
cult regions in the feature, resulting in slightly inferior feature detail recovery.

5 Conclusion

This paper has presented a new paradigm dedicated to making recognition mod-
els perform better in the presence of various corruptions. Through self-feature
distillation with uncertainty learning, our method is capable of gathering both
clean and distorted features, so that the model improves the recognition robust-
ness effectively. The advantages of our method have been verified throughout
experiments in various settings. We hope that our method can be extended to
other recognition applications with low-quality/degraded images.
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