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In this document, we provide additional material to support our main sub-
mission. In Section [T} we detail the split setting of datasets used in our paper. In
Section [2| we describe the structure of our sample-adaptive generator including
delta feature extractor FE, sample-specific delta generator D, sample-adaptive
feature generator GG, and contrastive module @. In Section [3] we report the
comparison results between our SAFA and previous sample generation methods.
In section [4] report additional experimental results on CIFAR-LT-10/CIFAR-
LT-100 by integrating SAFA into different layers. In Section [5] we show t-SNE
visualization of embeddings extracted from our ablated methods. In Section [6]
we introduce the baselines used in our paper.

1 Datasets

In this section, we conclude the statistics of datasets in Table [I] and Table
The imbalance factor, maximum(resp., minimum) number of images in classes,
and categories of CIFAR-LT-10 (resp., CIFAR-LT-100) [5] are listed in Table
In Table [2] we also report the imbalance factor, maximum (resp., minimum)
number of images in classes, categories, and the number of training images of
ImageNet-LT [8] (resp., Places-LT [16], and iNaturalist 2018 [I1]).

Dataset \ CIFAR-LT-10 | CIFAR-LT-100
Imbalance Factor p| 10 20 50 100 200|10 20 50 100 200
Max. Number 5000 5000 5000 5000 5000/500 500 500 500 500
Min. Number |500 250 100 50 25 |50 25 10 5 2
Category | 10 10 10 10 10 |100 100 100 100 100

Table 1. Statistics of CIFAR-LT-10 and CIFAR-LT-100 datasets. We present the max-
imum and minimum numbers of training images in the classes under different imbalance
factor p.
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Dataset ‘ImageNet-LT‘Places—LT‘iNaturalist 2018
Imbalance Factor p|  1280/5 | 4980/5 | 1000/2
Max. Number | 1280 | 4980 | 1000
Min. Number \ 5 |5 2
Category | 1000 | 365 | 8142
Images Numbers | 115846 | 62,500 | 435,713

Table 2. Statistics of ImageNet-LT, Places-LT and iNaturalist 2018 datasets. We
present the maximum and minimum numbers of training images in the classes, cate-
gories, and imbalance factor p.

2 Architecture

SAFA consists of a delta feature extractor F, a sample-specific delta generator
D, a sample-adaptive feature generator G, and a contrastive module (. The
delta feature extractor E (resp., sample-specific delta generator D, the sample-
adaptive feature generator @) is composed of a Conv-BN-ReLU block, in which
each block contains 1 convolutional layer with batch normalization and ReLU.
Given feature F € RE*WxH extracted from N — 1-th layer in deep network,
delta A (resp., sample-specific delta A;) € REAXWxH ' where Cy = C. The
contrastive module Q is also built upon Conv-BN-ReLU block followed an addi-
tional FC layer.

Dataset | CIFAR-LT-10|CIFAR-LT-100
Imbalance factor‘ 200 50 ‘ 200 50

Delta-encoder [9]]29.93 23.76 [63.51 54.91

Imaginary [13] |31.59 23.99 |64.95 55.08

FTL [14] 31.87 23.56 |65.12 55.24

CE-RSG [12] 29.56 20.25 |62.94 54.44

CE-SAFA (Ours)|25.11 18.86 |61.34 52.31
Table 3. Comparison results among our SAFA and other sample generation methods
on CIFAR-LT-10 and CIFAR-LT-100 with imbalance factor p = {200,50}. All of them
are based on ResNet-32 combined with cross-entropy loss (CE) for a fair comparison.
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3 Comparison with Previous Sample Generation
Methods

SAFA is also compared to existing sample generation techniques [9T3IT4IT2).
As shown in Table [3] we report top-1 error of these methods on CIFAR-LT
datasets with different imbalance factors. Our proposed SAFA outperforms ear-
lier approaches by obvious margins, demonstrating that the proposed SAFA can
overcome the shortcomings of previous generation methods and increase long-tail
classification performance.

Dataset | CIFAR-LT-10|CIFAR-LT-100
Imbalance factor | 200 50 | 200 50

1st down-sampling 23.59 17.81 |58.87 51.87
2nd down-sampling 22.47 16.43 |57.53 49.98

3rd down-sampling (GAP)|23.16 17.63 |58.12 51.31
Table 4. Comparison results of our SAFA integrated into different layers on CIFAR-
LT-10 and CIFAR-LT-100 with imbalance factor p = {200, 50}. All of them are based
on ResNet-32 combined with LDAM-DRW. Note that GAP represent global average
pooling.
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Fig. 1. Visualization comparison between our full method and ablated method without
cycle reconstruction loss £, on CIFAR-LT-100 dataset. The number in brackets denotes
top-1 error. (a): comparison results with p = 200; (b): comparison results with p = 50.
From top to down: visualization of real head-class features (A), real tail-class features
(o), and augmented tail-class features (+) on imbalanced train set, visualization of real
head-class features (A) and real tail-class features (o) on balanced test set
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Fig. 2. Visualization comparison between our full method and ablated method without
contrastive loss L. on CIFAR-LT-100 dataset. The number in brackets denotes top-1
error. (a): comparison results with p = 200, (b): comparison results with p = 50. From
top to down: visualization of real head-class features (A), real tail-class features (o),
and augmented tail-class features (+) on imbalanced train set, visualization of real
head-class features (A) and real tail-class features (o) on balanced test set

4 SAFA Works in Different Layers

In this section, we used SAFA in front of several ResNet-32 layers to explore
which level of feature is best for creating new samples from our SAFA. The
top-1 error of comparison results in Table [] demonstrates that when SAFA is
employed before the second-to-last down-sampling layer, the best results are
obtained.

5 Analysis of Ablated Methods

In this section, we further analyze the impacts of each loss term in Eqn. (1)
in main paper, and provide t-SNE comparison visualization among different
ablated methods by removing specific loss item on CIFAR-LT-100 dataset with
imbalance factor p = {200,50}. We refer to our SAFA optimized with total loss
as “Full Method”, while ablated method by removing £, (resp., L., LI ., and
Lt ) as “w/o L,” (resp., “w/o L.”, “w/o LM 7 and “L!,.").

Impact of Cycle Reconstruction Loss By removing cycle reconstruction
loss L, from total optimization functions, the visualization comparison between
the ablated method “w/o £,” and “Full Method” are shown in Fig. [} It can
be seen that the augmented tail-class features from ablated method “w/o L,”
are scattered in large feature space, even far from the real tail-class feature.
Obviously, for ablated method “w/o L£,”, the distribution gap between real tail-
class features and the augmented tail-class features exists, failing to improve
generalization on test set. It indicates that the cycle reconstruction loss is the
basis of our sample-specific augmentation.

Impact of Contrastive Loss To investigate the impact of our contrastive loss
L., we show comparison results between ablated method “w/o £.” and “Full
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Fig. 3. Visualization comparison between our full method and ablated method without
head mode seeking loss £, on CIFAR-LT-100 dataset. The number in brackets denotes
top-1 error.(a): comparison results with p = 200, (b): comparison results with p = 50.
From top to down: visualization of real head-class features (A), real tail-class features
(o), and augmented tail-class features (+) on imbalanced train set, visualization of real
head-class features (A) and real tail-class features (o) on balanced test set

Method” in Figure 2] By comparison, the overlap among augmented features
from different tail class in ablated method “w/o L£.” indicates that removing
contrastive loss may lead class information from head class to augmented tail
class, results in class confusion among augmented features.

Impact of Head Mode Seeking Loss As is analyzed in Section 4.3 in main
paper, applying the head mode seeking loss in extremely imbalanced setting
(p = 200) can improve the diversity of generated tail-class features. In Figure
(a) where imbalance factor p = 200, the tail-class features generated from “w/o
Lh 7 gather in a density feature space near to real tail-class feature, and the
diversity of generated features is limited, while the diversity of generated features
in Figure 3] (b) is less compromised in relative balanced setting (p = 50).
Impact of Tail Mode Seeking Loss To investigate the impact of tail mode
seeking loss L£!, ., we conduct experiment on CIFAR-LT-100 with imbalance fac-
tor p ranging from {200,50}, and show visualization results in Figure [4| By
comparison, we can see that the diversity of tail-class features generated from
ablated method “w/o L! .7 in p = 50 setting is obviously compromised.

6 Baselines

In this section, we briefly introduce our selected baselines in this paper.
Cross-entropy Training is the baseline method in long-tailed visual recogni-
tion, which trains CNNs with standard softmax with cross-entropy loss, which
is denoted as “CE loss” in this paper.

Class-Level Re-Weighting Methods This type of method assigns weights to
training examples in class level, which includes Class-Balanced Cross-Entropy
loss [2] referred as “CB-CE loss”, and LDAM-DRW [I]. Class-balanced loss pro-
poses effective number to measure the sample size of each class and the class-level
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Fig. 4. Visualization comparison between our full method and ablated method without
tail mode seeking loss £f,; on CIFAR-LT-100 dataset. The number in brackets denotes
top-1 error. (a): comparison results with p = 200, (b): comparison results with p = 50.
From top to down: visualization of real head-class features (A), real tail-class features
(o), and augmented tail-class features (+) on imbalanced train set, visualization of real
head-class features (A) and real tail-class features (o) on balanced test set

weights. Class-balanced focal loss denoted as “CB Focal loss” [2] and “CB-CE” [2]
refer to applying class-balanced loss on focal loss and cross-entropy loss, respec-
tively. LDAM-DRW allocates label-aware margins to the examples based on the
label distribution, and adopts deferred re-weighting strategy for better perfor-
mance on tail classes.

Sample-Level Re-Weighting Methods Re-weighting method assign weights
to samples according to the instance characteristic [7T0J6]. For example, focal
loss [6] determine the weights for samples based on the sample difficulty. L2RW
[7] is designed to assign weights to examples sample-wisely based on the gradient.
Meta-weight [10] assign weights to examples sample-wisely.

Two-stage Methods This type of methods [4ITII7I3] adopt two-stage learning
to learn representation firstly, and then finetune the classifier learning. CB fine-
tuning[3] finetune classifier on the basis of fixed backbone. Differently, BBN
[I7] unifies the two-stage learning with a curriculum learning strategy. LDAM-
DRW-SSP [4] applies reweighting technique into the second-stage for classifier
learning. LDAM-DRS [1] leverages resampling method to reshape the decision
boundary of classifier in the second stage.

Augmentation-based Methods These methods [I5/9/12] adopt various aug-
mentation techniques to augment tail class to balance dataset. In fact, knowledge
from head class is transferred to tail classes in Delta~encoder [9] and RSG[12]. As
mentioned in Sec 1 in main paper, Delta-encoder [9] takes two-stage method to
extract intra-class variance from head class, and then apply those variance to tail
classes without end-to-end training. RSG [I2] relies on estimation of class cen-
ters to provide variance which are combined with tail-class samples to produce
augmented samples.
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