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Abstract. Imbalanced datasets with long-tailed distribution widely ex-
ist in practice, posing great challenges for deep networks on how to
handle the biased predictions between head (majority, frequent) classes
and tail (minority, rare) classes. Feature space of tail classes learned by
deep networks is usually under-represented, causing heterogeneous per-
formance among different classes. Existing methods augment tail-class
features to compensate tail classes on feature space, but these methods
fail to generalize on test phase. To mitigate this problem, we propose a
novel Sample-Adaptive Feature Augmentation (SAFA) to augment fea-
tures for tail classes resulting in ameliorating the classifier performance.
SAFA aims to extract diverse and transferable semantic directions from
head classes, and adaptively translate tail-class features along extracted
semantic directions for augmentation. SAFA leverages a recycling train-
ing scheme ensuring augmented features are sample-specific. Contrastive
loss ensures the transferable semantic directions are class-irrelevant and
mode seeking loss is adopted to produce diverse tail-class features and en-
large the feature space of tail classes. The proposed SAFA as a plug-in is
convenient and versatile to be combined with different methods during
training phase without additional computational burden at test time.
By leveraging SAFA, we obtain outstanding results on CIFAR-LT-10,
CIFAR-LT-100, Places-LT, ImageNet-LT, and iNaturalist2018.

1 Introduction

With the development of deep convolutional neural networks (CNNs) [16] trained
with large-scale datasets [32], computer vision research has been propelled for-
ward significantly in recent years. These large-scale datasets are usually well-
designed with the number of instances in each class balanced artificially, which
however is inconsistent with the real-world scenarios. It is common that the
images of some categories are easy to be collected while some others are dif-
ficult, resulting in the number of samples in each head class being far greater
than the number of samples in each tail class, as shown in Fig. 1 (a). Due to
the insufficient information of tail classes, CNNs’ feature space for tail classes is
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Fig. 1. Motivation of this work: We select three head classes and two tail classes from
CIFAR-LT-100 dataset [25] and plot t-SNE [28] visualization to compare methods
including: (a) LDAM [6], reweighting-based method without tail-class augmentation
in training phase; (b) RSG [38], augmentation-based method without sample-specific
augmentation; and (c) SAFA, our proposed augmentation-based method with sample-
specific augmentation. (a) “w/o Augmentation”: Imbalanced distributions for head-
class samples and tail-class samples cause CNNs under-represent tail classes in feature
space. (b) “w/o Sample-Specific”: CNNs enlarge feature spaces for tail classes with
augmented tail-class features. However, these augmented tail-class features are not
sample-specific and distracting from real tail-class features, making the feature space
for tail classes fail to generalize to test phase and is still under-represented. (c)“Sample-
Specific”: Sample-specific augmented features recover the distribution of limited tail-
class samples, which enlarges feature space of tail classes and generalizes better to test
phase, helping CNNs to perform more homogeneously across different classes

under-represented and the decision boundary is biased to head classes, leading
to poor classification performance on tail classes.

To address the issue of imbalance data distribution, a natural solution is aug-
menting training samples to compensate tail classes in feature space. Data aug-
mentation techniques like cropping, mirroring and mixup [16,18,44] are adopted
to alleviate data imbalance problem. However, these conventional data augmen-
tation techniques are typically performed inside each tail class without consider-
ing information in head classes. As a result, the diversity of augmented samples
is inherently limited by the insufficient training samples in tail classes so that the
augmented data can not recover the data distribution of tail classes. Considering
that head class with amounts of samples providing diverse intra-class variance,
previous works [23,9,10,33,39,43,38] adopt different methods to enlarge feature
space of tail classes by generating new features for tail classes during training
via transferring intra-class variance information from head classes to tail classes.
[33,43] utilize feature variation information, such as different poses or lighting
conditions, among samples from the same head class to generate new tail-class
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Fig. 2. The illustration of integrating our proposed SAFA into the N -th layer in deep
network to produce diverse and effective tail-class features to reshape the feature space.
Our SAFA is only used during training denoted by orange dot line, leaving no compu-
tational burden at test time denoted as black solid line

features. However, these methods did not introduce any mechanisms to ensure
the variation information obtained from head classes is class-irrelevant. The
augmented tail-class samples may shift to other classes due to the class-relevant
information from head classes, hurting the performance of CNN classifiers. Also,
these approaches are not in an end-to-end manner. To augment tail-classes with
class-irrelevant information, noise vectors are used in [39] to encode the sam-
ple variation information. But noise vectors are too random to reflect the true
variations among images, using such noise vectors for generation can possibly
generate unstable or low-quality features. In [38], a feature augmentation mod-
ule is integrated into CNNs for end-to-end training, the variation information
extracted by removing the centers of each class and a vector transformation
module is used to enlarge the distance between feature variance and tail-class
features. All of abovementioned methods adopt a direct combination between
the intra-class variance extracted from head class and random tail-class samples
to produce abundant augmented features belonging to tail classes. Whereas,
these augmented features are not sample-specific: the incompatibility between
the tail-class sample with applied intra-class variance causes implausible aug-
mented features distracting from real features in feature space, as shown Fig.
1 (b). CNNs do enlarge (resp., reduce) feature space of tail classes (resp., head
classes) during training phase with these non-sample-specific augmented features,
but unfortunately fail to generalize the feature space on test phase that the tail
classes are still under-represented.

In this paper, to alleviate these limitations, we propose a novel semantic
Sample-Adaptive Feature Augmentation (SAFA) to generate reliable and di-
verse augmented features for tail classes during training phase to enlarge the
under-represented feature space of tail classes and improve classifiers with less
biased decision boundary. SAFA is a novel plug-in approach, which is conve-
nient to be integrated into various networks to effectively augment tail classes
without additional computational burden in testing phase, as shown in Fig. 2.
Note that we only show a simple CNN in Fig. 2, but SAFA can be used in any
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network architecture. SAFA aims to extract diverse and transferable semantic di-
rections (e.g., intra-class transformation) from head-class features and translate
tail-class samples along extracted directions adaptively to produce diverse and
effective features. SAFA is formulated by auto-encoder structure consisting of an
sample-specific encoder and a sample-adaptive generator. The encoder is used
to extract transferable class-irrelevant information from head classes, while the
sample-adaptive generator is designed to correct extracted variance information
to produce sample-specific features of tail classes. SAFA leverages a recycling
training scheme enforcing consistency of the relevant semantics before and af-
ter translation and ensuring augmented features are sample-specific. Contrastive
loss ensures the transferable semantic directions are class-irrelevant and mode
seeking loss is adopted to exploit diverse semantic directions, producing diverse
tail-class features and enlarging the feature space of tail classes. In Fig. 1 (c),
we demonstrate the effect of SAFA. SAFA is able to generate diverse and effec-
tive augmented features and recover the real distribution of tail classes, enlarging
the feature space of tail classes and generalizing promisingly in test phase. The
proposed SAFA as a plug-in is convenient and versatile to be combined with dif-
ferent architectures and loss functions during training phase without additional
computational burden at test time. With extensive experimental evaluations,
we verify the effectiveness of SAFA: SAFA obtains outstanding results on Im-
balanced CIFAR, Places-LT, ImageNet-LT, and iNaturalist2018.

2 Related Work

2.1 Long-tail Classification Methods

Re-sampling Over-sampling the tail classes [34,4,5] or under-sampling the head
classes [15,21,4] strategies are widely used to balance the data distribution for
imbalanced datasets. Although being effective, over-sampling might result in
over-fitting of tail classes while under-sampling may weaken the feature learning
of head classes due to the absence of valuable samples [42,6,7,11].
Re-weighting Reweighting-based methods aim to assign weights to training
samples on either class or sample level. A classic scheme is to reweight the classes
with the weights that are inversely proportional to their frequencies [17,40]. The
method in [11] further improves this scheme with proposed effective number.
L2RW [31] is designed to assign weights to examples sample-wisely based on
the gradient directions. Meta-class-weight [20] exploits meta-learning to esti-
mate precise class-wise weights, while [6] allocate large margins to tail classes.
Apart from above works, Focal Loss [26] and meta-weight-net [35] assign weights
to examples sample-wisely. In addition, for learning better representations, some
approaches propose to separate the training into two stages: representation learn-
ing and classifier re-balancing learning [6,20,12,22]. BBN [48] further unifies the
two stages to form a cumulative learning strategy.
Augmentation Data augmentation is widely adopted to CNNs for alleviat-
ing over-fitting. For example, rotation and horizontal flipping are employed for
maintaining the prediction invariant of CNNs [16,18,36]. In complementary to
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the traditional data augmentation, semantic data augmentation that performs
semantic altering is also effective for enhancing classifier performance[2,41]. A
hallucinator [39] was designed to generate new samples for tail classes. It uses
samples from tail classes and noise vectors to produce new hallucinated samples
for tail classes. A Delta-encoder framework [33] was proposed for generating
new samples. It is first trained to reconstruct the pre-computed feature vec-
tor of input images from head classes. Thereafter, it is used to generate new
samples by combining the tail-class samples, and the newly generated ones are
further used to train the classifier. A feature transfer learning (FTL) framework
[43] was proposed to transfer the intra-class variance from head classes to tail
classes by generating new tail-class samples. Our methods can be categorized as
augmentation-based methods, which mainly focus on augmenting tail-class sam-
ples to overcome imbalance issue. Different from other augmentation methods
that simply apply the same transformation (e.g., adding random noises) to all
tail-class samples, we distinguish different samples and design a sample-adaptive
augmentation method to produce effective and diverse augmented tail-class sam-
ples. Our method fully considers individual differences combined with intra-class
variance to generate semantically rational augmentations.

2.2 Semantic Transformations in Deep Feature Space

Our work is motivated by the fact that high-level representations learned by
deep convolutional networks can potentially capture abstractions with seman-
tics [3]. In fact, translating deep features along certain directions is shown to be
corresponding to performing meaningful semantic transformations on the input
images. For example, deep feature interpolation [8,49] leverages simple interpo-
lations of deep features from pre-trained neural networks to achieve semantic
image transformations. Variational Auto-Encoder (VAE) [24] and Generative
Adversarial Network (GAN) based methods [14] establish a latent representa-
tion corresponding to the abstractions of images, which can be manipulated
to edit the semantics of images. Generally, these methods reveal that certain
directions in the deep feature space correspond to meaningful semantic trans-
formations, and can be leveraged to perform semantic data augmentation. In
this work, we focus on learn adaptive semantic transformations for tail-class by
leveraging diverse class-invariant features from head classes.

3 Methodology

Given an imbalanced training dataset S = {xi, yi|ni=1}, where yi ∈ {1, · · · , C}
is the label of i-th sample xi, where C is the number of classes, and nc denotes
the number of samples belongs to the c-th class. We assume that the classes
are sorted by cardinality in a decreasing order, i.e., ni+1 ≤ ni. The data obeys
the long tail distribution, i.e., most samples belong to only a few head classes
denoted as {xi

h} and data of the other tail classes represented as {xi
t} only has

a few samples. Feeding head-class samples {xi
h} (resp., tail-class samples {xi

t})
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Fig. 3. The framework of SAFA, including a delta extraction module E, a sample-
specific delta generator D, and a sample-adaptive generator G, and a contrastive mod-
ule Q. E is used to extract class-irrelevant delta ∆ij from head-class pairs {F i

h,F
j
h},

D is applied to combined extracted ∆ij with tail-class feature F i
t to produce sample-

specific delta ∆ij
t , which coupled with F i

t is fed into sample-adaptive generator G to
generated sample-specific tail-class feature F̃ j

t

into CNNs, the corresponding feature maps from specific layer of backbone are
denoted as {F i

h} (resp., {F i
t }).

3.1 SAFA: Sample-Specific Feature Augmentation

In this section, we introduce how to integrate SAFA into CNNs for producing
diverse tail-class features to effectively enlarge tail-class feature space during
training phase and generalize to test phase. Our SAFA is inspired by [33], in
which intra-class transformation (i.e., the difference between two samples within
the same category) is called “delta”. Deltas are extracted from paired samples
of the same class, in which delta is the additional information required to recon-
struct one sample of the pairs from another sample. In [33], deltas are directly
combined with random target-class samples to generate new features for target
classes. However, the effect of delta may depend on the combined target-class
samples [1], that is, an effective delta for one sample may be unsuitable for an-
other sample. On one hand, the extracted deltas are different in semantic scale,
e.g., different degrees (90 or 180) pose rotation. On the other hand, the difficulties
of translating samples from tail classes with different-scale semantic directions
are different, e.g., translating a dog with left face to a dog with left face may
be easier than another dog with frontal face. Naive augmentation may lead to
corrupted features or features without class-preserving characteristic, which are
distracting from real tail-class features, as shown in Fig. 1 (b).
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To extract effective and transferable deltas, and adaptively apply these deltas
to tail-class samples to produce effective augmented features, we propose SAFA
as illustrated in Fig. 3. SAFA consists of a delta feature extractor E, a sample-
specific delta generator D, a sample-adaptive feature generator G and a con-
trastive module Q. All these modules are built up with Conv-BN-ReLU-Conv
layers (Q has an additional FC layer). During training, given a random pair of
feature maps {F i

h,F
j
h} from the same head class (i.e., yih = yjh), the delta extrac-

tion module E is used to extract class-irrelevant delta ∆ij , which combined with
random tail-class feature maps F i

t fed into the sample-specific delta generator
D to generate sample-specific delta ∆ij

t . After that, ∆ij
t combined with F i

t for
the sample-adaptive generation module G to produce sample-specific tail-class
features F̃ j

t . Finally, real feature maps F are coupled with augmented tail-class
feature maps F̃t are fed into deeper layers of the network.

To ensure the transferability of extracted delta, a modified recycle recon-
struction loss [19] is adopted to ensure that delta encoder and sample-adaptive
generator are inverses of each other. As shown in Fig. 4, extracted delta∆ij from
{F i

h,F
j
h} are reconstructed from fake tail-class pair {F̃ j

t ,F
j
t } as ∆̂ij . Further,

∆̂ij is combined with F i
h to reconstruct F j

h by F̂ j
h . In this way, delta information

and sample information are reconstructed bidirectionally, effectively improving
the transferability of extracted delta information and enforcing the generated
features to be sample-specific. To ensure the class-preserving characteristic of
augmented tail-class samples, we introduce contrastive learning in Q to push
away paired samples from different classes while pairs from the same class are
dragged in. To further improve the diversity of augmented samples and enlarge
the feature space of tail classes, a modified mode seeking loss [29] is integrated
into SAFA by maximizing the ratio of the distance between augmented tail-class
samples with respect to the distance between extracted deltas.

The overall objective function of SAFA can be given as follows,

Loverall = Lcls + λ1Lr + λ2Lt
ms + λ3Lh

ms + λ4Lc (1)

where Lcls denotes any classification loss, such as softmax with cross-entropy
loss, focal loss [26], LDAM [6]; λ1 (resp., λ2, λ3, λ4 ) denote coefficient; Lr,
Lms and Lc are cycle reconstruction loss, mode seeking loss and contrastive loss
respectively, which will be introduced in the next subsection.

3.2 Module Details and Objective Functions

Class-irrelevant delta extraction The delta feature extraction module E
aims to capture diverse and transferable delta information. Given a pair of fea-
ture {F i

h,F
j
h} ∈ RC×W×H from the same head class, where C (resp., W , H)

denotes the channel (resp., width, height) dimension. The delta feature extrac-
tion module E is used to extract delta feature ∆ij :

∆ij = E(F i
h − F j

h), (2)

where ∆ij ∈ RC∆×W×H , and C∆ represents the dimension of delta features.
Such extracted delta feature ∆ij captures the variance (i.e., rich transformation
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Fig. 4. The illustration of cycle delta reconstruction and feature reconstruction

information) between F i
h and F j

h . By feeding various pairs of features from the
same head class into delta feature extraction module E, we can obtain amounts
of diverse delta features ∆, which can be applied to tail-class features to enlarge
the feature space of tail class.

Sample-adaptive generation The sample-adaptive delta generatorD and fea-
ture generator G are designed to produce sample-specific delta and features. The
delta ∆ij extracted from different paired head-class features {F i

h,F
j
h} may vary

due to complicated scene geometry and light sources, which may lead to differ-
ent compatibility with different tail-class samples. Thus, it is crucial to attend
relevant information from delta ∆ij according to tail-class feature F i

t to produce
sample-specific delta feature ∆ij

t more compatible to tail-class feature F i
t . D is

designed to attend relevant variance information from extracted delta ∆ij ac-
cording to specific tail-class feature F i

t to produce sample-adaptive delta feature
∆ij

t ∈ RC∆×W×H , where∆ij
t = D

(
concat

(
∆ij ,F i

t

))
. Then, we combine it with

F i
t into the generator G to produce augmented tail-class feature F̃ j

t belonging
to class yjt :

F̃ j
t = G(∆i

t + F i
t ). (3)

Cycle reconstruction loss To enforce delta extractor E to extract effective
class-irrelevant delta feature and ensure the augmented features are faithful to
input tail-class features (i.e., to be sample-specific), we apply cycle reconstruc-
tion loss [19] in SAFA. We use objective functions that encourage reconstruc-
tion in feature direction: paired head-class feature {F i

h,F
j
h} → ∆ij → recon-

structed head-class feature F̂ j
h , and delta direction: ∆ij → augmented tail-class

feature F̃ j
t → ∆̂ij . For delta direction, with augmented paired tail-class features

{F̃ j
t ,F

i
t }, we can extract reconstructed class-irrelevant delta ∆̂ij = E(F̃ j

t −F i
t )

and optimize:

L∆
r = ||∆̂ij −∆ij ||2. (4)

Note that ∆̂ij and ∆ij are extracted from tail class and head class respectively,
which means L∆

r can force ∆ij to be class-irrelevant. For feature reconstruction
direction, reconstructed delta feature ∆̂ij combined with head-class feature F i

h

is fed into sample-adaptive generation module G to produce reconstructed head-
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class feature F̂ j
h = G(D(concat(∆̂ij ,F i

h)) + F i
h), then we have:

LF
r = ||F̂ j

h − F j
h ||2. (5)

The recycle reconstruction loss Lr = L∆
r + LF

r can enforce delta extraction
module E, sample-adaptive generation module D and G to work consistently
for extracting transferable delta and adaptively combining delta with tail-class
feature to produce sample-specific tail-class feature.
Contrastive loss To ensure the category-preserving characteristics of aug-
mented tail-class features, we adopt a contrastive module Q and calculate the
contrastive loss to ensure that the delta feature ∆ij not leaking head class infor-
mation to augmented tail-class feature (i.e., ∆ij is class-irrelevant). In a mini-
batch Fa consisting of real head-class features Fh, real tail-class features Ft, and
augmented tail-class features F̃t, we shuffle all samples with batch size s, and we
form s/2 pairs by random sampling for training the contrastive module Q. Using
yc ∈ {0, 1} as ground-truth to show whether the paired features come from the
same class.

Lc = −⟨(yc log β + (1− yc) log (1− β))⟩ s
2

(6)

where β = Q(F i
a,F

j
a ) represent the probability distribution to show whether

{F i
a,F

j
a} belong to the same class, and ⟨·⟩ s

2
denotes that Lc is calculated over

s/2 paired features on average.
Mode seeking loss To further produce diverse augmented tail-class features
and enlarge feature space of tail classes, we employ mode seeking loss [29] to
increase the distance between paired augmented tail-class features generated
from the same ∆ij feature, and also extend the distance between a pair of aug-
mented tail-class feature generated from the same tail-class feature, respectively.
In detail, given delta feature ∆ij extracted from {F i

h,F
j
h} and paired features

{F i
t ,F

j
t } from the same tail class, we can produce paired augmented feature

{F̃ i
t ,

˜
F j
t } following Eqn. (3), the mode seeking loss can be written as:

Lt
ms =

〈
||F i

t − F j
t ||1

||F̃ i
t − F̃ j

t ||1

〉
s
2

,Lh
ms =

〈
||F i

h − F j
h ||1

||F̃ i
t − F̃ j

t ||1

〉
s
2

. (7)

4 Experiment

We conduct experiment on CIFAR-LT-10/CIFAR-LT-100 [25], ImageNet-LT [27],
Places-LT [47], and iNaturalist 2018 [37]. For those comparison experiments con-
ducted in the same settings, we directly quote their results from original papers.
Next, we briefly introduce these datasets and basic experiment settings. The
details of datasets and implementation are reported in Supplementary.

4.1 Implementation Details and Datasets

In following experiments, our SAFA is employed before the second-to-last down-
sampling layer, since we got the best results. In addition, we report additional
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experimental results on CIFAR-LT-10/CIFAR-LT-100 by integrating SAFA into
different layers in Supplementary. The hyperparameter λ1 (resp., λ2,λ3,and λ4)
is set as 100 (resp.,, 1e-2, 1e2, 1e-1), and by observing validation accuracy on
CIFAR-LT-100 dataset. We provide in-depth analysis of each loss item in Sec 4.3
and Supplementary.

During training, given a thresh epoch Tth, which decides when to activate
SAFA module to produce new tail-class features. Before Tth, the network without
SAFA is only optimized with Lcls. After Tth, SAFA is activated to be optimized
with L in Eqn. (1) and produce augmented tail-class features. In each mini-
batch, we sample same-class pairs from dataset, and they are split into two parts
according to a manually set constant head-class ratio γ = nh/(nh + nt), where
nh and nt denote the number of head classes and the number of tail classes,
respectively. Following [38], we set head-class ratio γ = 0.2 for all datasets.

CIFAR-LT: For CIFAR-LT-10 (resp., CIFAR-LT-100) with 10 (resp., 100)
classes, following [11], we create 5 training sets by changing the imbalance factor
ρ in the range of {200, 100, 50, 20, 10}, where ρ is the image amount ratio between
the largest and smallest classes. We use the original balanced test sets for our
test sets. Following [38], the main results on CIFAR-LT-10/CIFAR-LT-100 are
trained on ResNet-32 [16] for 200 epochs with batch size of 128. The learning
rate was set to 0.1 at the beginning, then declined by 0.01 at the 160-th epoch
and again at the 180-th epoch. Our SAFA is activated at Tth = 159.

ImageNet-LT: ImageNet-LT is built in [27] based on ImageNet dataset [32]
with 1000 classes, its imbalance factor ρ is 1280/5. Our experiments about
ImageNet-LT are conducted with ResNeXt-50-32x4d [16], which was trained
with a batch size of 256 for 100 epochs, as described in [22]. The initial learning
rate was set to 0.1, and it gradually declined by 0.1 at the 60-th, 80-th, and 95-th
epochs, respectively. According to [38], test set classes are further divided into
three groups: many-shot (over 100 samples), medium-shot (between 20 and 100
samples), and few-shot (less than 20 samples) to better examine performance
differences across classes with different numbers of samples seen during training.
Our SAFA is integrated into ResNeXt-50-32x4d at Tth = 59.

Places-LT: Places-LT is a subset of the large-scale scene classification dataset
[47]. The dataset comprises 365 categories with class cardinality ranging from
5 to 4980. Following [27], we finetune ResNet-152, which is pre-trained on the
entire ImageNet dataset [32]. The network was trained with a batch size of
256. The starting learning rate was set to 0.01, and it declined by 0.1 every ten
epochs until the training was terminated after 30 epochs. Our SAFA is employed
at Tth = 9. Similar to the ImageNet-LT evaluation, the top-1 accuracy of many-
shot, medium-shot, and few-shot in this study are reported.

iNaturalist 2018: The iNaturalist 2018 [37] dataset is a large-scale dataset
with images collected from 8142 classes in real-world, which have an extremely
imbalanced class distribution with an imbalance factor of 1000/2. With a batch
size of 256, we train ResNet-50 from scratch across 90 epochs. The learning rate
was initially set to 0.1 and then degraded by 0.1 at the 50-th, 70-th, and 85-th
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Dataset CIFAR-10 CIFAR-100

Imbalance factor 200 100 50 20 10 200 100 50 20 10

CE loss 34.13 29.86 25.06 17.56 13.82 64.44 61.23 55.21 48.06 42.43
CB-CE[11] 31.23 27.32 21.87 15.44 13.10 64.44 61.23 55.21 48.06 42.43
CB fine-tuning[12] 33.76 28.66 22.56 16.78 16.83 61.34 58.50 53.78 47.70 42.43
L2RW[31] 33.75 27.77 23.55 18.65 17.88 67.00 61.10 56.83 49.25 47.88
Meta-weight[35] 32.80 26.43 20.90 15.55 12.45 63.38 58.39 54.34 46.96 41.09
CB-RSG [38] 30.96 25.68 20.25 15.26 12.24 62.69 57.94 54.40 46.23 42.31
CB-SAFA 27.18 23.68 19.79 14.01 12.07 60.34 54.13 52.04 44.56 39.77

Focal loss [26] 34.71 29.62 23.29 17.24 13.34 64.38 61.59 55.68 48.05 44.22
CB Focal loss[11] 31.85 25.43 20.78 16.22 12.52 63.77 60.40 54.79 47.41 42.01
Focal loss-RSG[38] 30.12 26.11 21.58 14.98 12.51 62.81 57.61 54.85 46.31 42.53
Focal loss-SAFA 25.68 21.58 18.58 13.96 12.21 61.52 54.32 52.23 44.08 40.58

LDAM loss[6] 33.25 26.45 21.17 16.11 12.68 63.47 59.40 53.84 48.41 42.71
LDAM-DRW[6] 25.26 21.88 18.73 15.10 11.63 61.55 57.11 52.03 47.01 41.22
LDAM-DRW-RSG[38] 26.04 21.74 17.32 13.71 11.55 60.85 55.45 51.50 45.76 42.03
LDAM-DRW-SAFA 22.47 19.52 16.43 13.62 11.06 57.53 53.96 49.98 44.12 40.89

Table 1. Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 and CIFAR-LT-100 with
imbalance ratio ρ ranging from {200, 100, 50, 20, 10}

epochs, respectively. Our SAFA is utilized at Tth = 69, and we report top-1 err
as final evaluation.

4.2 Comparison with Previous Methods

Considering that our SAFA worked as a plug-in can be integrated different net-
works and combined with different loss functions, here, we conduct comparison
experiment on typical long-tailed methods [11,26,6] and several state-of-the-art
methods [38,45,20]. For the sake of brevity, we will refer to the baseline trained
using cross-entropy (resp., Class-Balanced Cross-Entropy losss [11]) as “CE loss”
(resp., “CB-CE loss”), and refer to “A-SAFA” as a combination of our SAFA
and the method “A” .
Results on CIFAR-LT: Comparison result on CIFAR-LT-10 and CIFAR-LT-
100 with imbalance factor ρ ranging from {200, 100, 50, 20, 10} are shown in
Table 1, which are categorised into three groups according to the adopted basic
losses (i.e., CE, focal [26], and LDAM [6]). We evaluate our method with the
three basic losses. The results reveal that our method can consistently improve
the performance of the basic losses significantly. Particularly, our method no-
tably surpasses mixup that conducts augmentation on the inputs and RSG [38]
that augments tail class by leveraging knowledge from tail class, manifesting
that our augmentation method is more effective in long-tailed scenarios. Fur-
thermore, SAFA outperforms the re-weighting strategies. This illustrates that
our augmentation method can indeed improve classifier performance. SAFA can
still obtain stable performance gains when the dataset is less imbalanced (im-
plying imbalance factor ρ=10), demonstrating that SAFA will not harm the
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Method Many Medium Few All

CE loss 65.9 37.5 7.7 44.4
Focal Loss [26] 63.3 37.4 7.7 43.2
OLTR [27] 52.1 39.7 20.3 41.2
Joint [22] 65.9 37.5 7.7 44.4
NCM [22] 56.6 45.3 28.1 47.3
cRT [22] 61.8 46.2 27.4 49.6
τ -normalized [22] 59.1 46.9 30.7 49.4
LWS [22] 60.2 47.2 30.3 49.9
LDAM-DRS [6] 63.7 47.6 30.0 51.4
LDAM-DRS-RSG [38] 63.2 48.2 32.3 51.8

LDAM-DRS-SAFA (ours) 63.8 49.9 33.4 53.1

Table 2. Top-1 accuracy of ResNeXt-50 on ImageNet-LT

Method Many Medium Few All

Lifted Loss [30] 41.1 35.4 24.0 35.2
Focal Loss [26] 41.1 34.8 22.4 34.6
Range Loss [46] 41.1 35.4 23.2 35.1
FSLwF [13] 43.9 29.9 29.5 34.9
BBN[48] 42.5 40.3 30.6 38.7
OLTR [27] 44.7 37.0 25.3 35.9
τ -normalized [22] 37.8 40.7 31.8 37.9
LDAM-DRS [6] 43.3 38.3 30.7 38.6
DisAlign [45] 40.4 42.4 30.1 39.3
LDAM-DRS-RSG [38] 41.9 41.4 32.0 39.3

LDAM-DRS-SAFA (Ours) 42.1 42.7 33.4 41.5

Table 3. Top-1 accuracy of ResNet-152 on
Places-LT.

Method Error Rate

CB Focal Loss[11] 38.88
CE-DRW [6] 36.27
CE-DRS [6] 36.44
BBN [48] 33.71
τ -normalized [22] 34.40
LDAM-DRW [6] 34.00
LDAM-DRS [6] 32.73
LDAM-DRW-SSP [20] 33.70
DisAlign [45] 32.20
LDAM-DRW-RSG [38] 33.22
LDAM-DRS-RSG [38] 32.10

LDAM-DRS-SAFA (Ours) 30.22

Table 4. Top-1 error rates of
ResNet-50 on iNaturalist 2018

classifier’s performance in a moderately balanced scenario. Another observation
is that re-weighting strategies [11,6] are beneficial for long-tailed issues, since
some re-weighting methods including CB-CE, CB Focal loss, CB-RSG, as well
as our CB-SAFA surpass cross-entropy training (CE loss) by a significant mar-
gin. Moreover, we compare our method with other previous sample generation
methods [33,43,39] in Supplementary.

Results on ImageNet-LT: We present the results for ImageNet-LT in Table 2.
When compared to LDAM-DRS, LDAM-DRW-RSG [38], LADM-DRS-SAFA
(ours) still achieves a greater level of accuracy, demonstrating that SAFA can
solve the problem of imbalanced datasets. On medium-shot and few-shot classes,
SAFA can produce effective and diverse tail-class features to enlarge tail-class
feature space to improve the model and considerably improve its generality.

Results on Places-LT: The Table 3 shows the top-1 accuracy on Place-LT. The
results reveal that when SAFA is paired with LDAM-DRS, performance may be
increased even further, demonstrating that SAFA is useful. Furthermore, when
compared to the two most current prominent approaches, tau-normalized, BBN,
DisAlign, and RSG, SAFA can increase the model’s performance on medium-
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Dataset CIFAR-10 CIFAR-100

Networks
ρ = 200 ρ = 10 ρ = 200 ρ = 10

w/o SAFA SAFA w/o SAFA SAFA w/o SAFA SAFA w/o SAFA SAFA

ResNet-32 25.26 23.42 11.63 11.06 61.55 58.31 41.22 41.02
ResNet-56 23.59 21.49 10.35 10.12 59.71 56.37 39.69 39.21
ResNet-110 23.18 21.09 10.04 9.86 59.13 55.17 39.07 38.51
DenseNet-40 22.92 20.56 9.94 9.56 58.96 54.87 38.81 38.17
ResNeXt-29 22.81 20.44 9.71 9.39 58.97 54.79 38.74 38.15

Table 5. Top-1 error rates of different network architectures combined with LDAM-
DRW [6] on CIFAR-LT

Dataset CIFAR-10 CIFAR-100

Imbalance factor 200 100 50 20 10 200 100 50 20 10

LDAM-DRW[6] 25.26 21.88 18.73 15.10 11.63 61.55 57.11 52.03 47.01 41.22

w/o Lr 31.21 26.96 20.97 18.74 13.15 64.87 62.41 56.83 49.12 42.53
w/o Lt

ms 23.56 20.39 17.61 14.83 13.18 58.87 54.38 51.32 45.92 42.87

w/o Lh
ms 24.67 20.94 17.16 13.67 11.69 59.89 55.09 51.29 44.86 41.78

w/o Lc 23.84 20.41 17.08 13.89 11.54 58.53 54.13 50.71 44.69 41.53

Full method 22.47 19.52 16.43 13.62 11.06 57.53 53.96 49.98 44.12 40.89

Table 6. Results of ablated methods by removing each proposed loss from Eqn (1).
We report the top-1 error rates of ResNet-32 combined with SAFA and LDAM-DRW
[6] on CIFAR-LT-10/CIFAR-LT-100 with different imbalance ratios

shot and few-shot classes while causing less accuracy loss on many-shot classes,
resulting in higher overall accuracy and competitive result.
Results on iNaturalist 2018: We show the experimental results under the
same setting as [38] on iNaturalist 2018 dataset. The results reveal that by
leveraging the proposed sample-adaptive feature augmentation method, we may
achieve superior results, demonstrating the efficacy of SAFA. As can be observed,
SAFA assists the model in achieving competitive outcomes, demonstrating that
SAFA is capable of effectively coping with imbalanced datasets.

4.3 Ablation Studies

Adaptivity to different backbone networks: Firstly, we analyze the ef-
fectiveness of our proposed SAFA module by integrating SAFA into different
network architectures including ResNet-32, ResNet-56, ResNet-110, DenseNet-
40, and ResNeXt-29 (8×64d), and report the comparison results on CIFAR-LT-
10/CIFAR-LT-100 with ρ = {200, 10} in Table 5, in which “w/o SAFA” denotes
that removing SAFA during training. From Table 5, we can see that all models
equipped with SAFA are consistently better whether ρ = 100 or ρ = 10, which
indicates that SAFA can be employed into various deep neural network to im-
prove long-tail classification performance.
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Combination with different loss functions: In table 1, by comparing the
results of CE loss (resp., Focal loss, LDAM-DRW loss) with the results of CB-
SAFA (resp., SAFA focal loss, LDAM-DRW SAFA loss), it is seen that our SAFA
is compatible with different loss functions and can consistently improve classifi-
cation performance based on different loss functions.
Analysis of each loss term of SAFA: In our SAFA, we employ a recon-
struction loss Lr, a tail mode seeking loss Lt

ms, a head mode seeking loss Lh
ms,

and a contrastive loss Lc. To investigate the impact of each loss term, we con-
duct ablation studies on CIFAR-10 and CIFAR-100 datasets by removing each
loss term from the final objective in Eqn. (1). The results are summarized in
Table 6. Firstly, we can see that the classification performance is compromised
when removing Lr, even worse than baseline LDAM-DRW [6] without augmen-
tation, implying that our recycle reconstruction loss is necessary and it enforces
our SAFA module to extract transferable delta and achieve sample-adaptive
augmentation. Removing Lc results in slight performance degradation on two
datasets, since the generated features may not belong to the category of com-
bined tail class without contrastive loss. By removing the head mode seeking loss
Lh
ms, we can see that the classification performance in less imbalanced scenarios

such as imbalance ratio ρ = {200, 100} on two datasets become much worse while
leaving less impact on relatively balanced settings with ρ = {20, 10}. Another
observation is that ablating tail mode seeking loss Lt

ms results in a minor de-
terioration of classification performance in extremely imbalanced settings with
ρ = {200, 100}, compared to a more significant decline in less imbalanced set-
tings with ρ = {20, 10}. It can be explained as follows: in extremely imbalanced
settings like ρ = {200, 100}, where head-class samples may be compact in fea-
ture space, leading to more compact deltas in feature space, in other words,
the distance among deltas is limited. In this scenario, using head mode seeking
loss Lh

ms to enlarge the distance between real tail-class feature and augmented
tail-class feature based on the distance of head-class pairs can produce diverse
tail-class samples, whereas the distance between deltas may be sufficient to pro-
duce different samples without the use of Lh

ms. Similarly, Lt
ms is adopted to

enlarge the distance between two tail-class features augmented from the same
tail-class feature. It is helpful to leverage Lt

ms to enforce SAFA to be sensitive
to the difference of paired features from the same tail class in a less imbalanced
setting, where the tail-class feature space may be compact, however it is not
necessary for a relatively loose tail-class feature space.

5 Conclusions

In this paper, we propose a novel plug-in approach SAFA, which is convenient
to be integrated into various networks and coupled with different loss functions.
Our SAFA aims to extract transferable delta from head class and achieve sample-
adaptive application to tail class to enlarge tail-class feature space. Extensive
experiment demonstrate the effectiveness of the proposed SAFA.
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