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Abstract. Local counts, or the number of objects in a local area, is
a continuous value by nature. Yet recent state-of-the-art methods show
that formulating counting as a classification task performs better than
regression. Through a series of experiments on carefully controlled syn-
thetic data, we show that this counter-intuitive result is caused by im-
precise ground truth local counts. Factors such as biased dot annota-
tions and incorrectly matched Gaussian kernels used to generate ground
truth counts introduce deviations from the true local counts. Standard
continuous regression is highly sensitive to these errors, explaining the
performance gap between classification and regression. To mitigate the
sensitivity, we loosen the regression formulation from a continuous scale
to a discrete ordering and propose a novel discrete-constrained (DC)
regression. Applied to crowd counting, DC-regression is more accurate
than both classification and standard regression on three public bench-
marks. A similar advantage also holds for the age estimation task, ver-
ifying the overall effectiveness of DC-regression. Code is available at
https://github.com/xhp-hust-2018-2011/dcreg.

Keywords: Deep Regression, Constrained Regression, Local Count Mod-
els, Crowd Counting, Age Estimation

1 Introduction

Image-based counting of objects such as people [28,5], vehicles [11] and cells [3]
can be modelled either as a classification or a regression problem. Since local
counts or local densities are continuous, ordered values, they should naturally
be regressed. Yet surprisingly, recent works have shown that formulating local
count prediction as a classification problem is more accurate [27,6].

The preference for using classification to solve regression problems arises
in several areas of computer vision, ranging from depth estimation [4] to hu-
man pose estimation [10,25]. The underlying reason is usually task-specific. For
depth estimation, classification helps to handle the extreme dynamic range of
depth that may occur; this is especially prominent in mixed indoor and outdoor
scenes [4]. For pose estimation, classification allows for dense spatial supervision,
which is believed to be more beneficial for learning [1].
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Fig. 1. Visualization of errors in the ground truth count maps. Left: A sample 64× 64
input image with 4 local patches with centered annotations. (Top) Gaussian kernels
dynamically match the object size vs. (Bottom) Gaussian kernels with a fixed standard
deviation of σ = 3. Right: The same input image with biased dot annotations, generated
from Gaussians matching the object size. Note that the sum of the local counts differs
slightly as some kernels go beyond the local image borders.

For counting tasks, classification outperforms regression when counting in a
closed set range [27]. To find out why classification performs better than regres-
sion in certain counting tasks, we conduct a series of experiments on synthetic
data. In this paper, we focus on local counting models [3,27,6,7,26] that predict
local counts, i.e. the number of objects within the local image patches. Through
careful investigation, we trace the advantages of classification back to the im-
precise generation of ground truth local count.

In object counting, annotators mark each object of interest with a single
dot (see Fig. 1). The local count, or the number of objects within a specified
area, can simply be defined as the number of dot annotations within that area
if all the objects are wholly contained. However, fractional local counts arise
when there are partial objects. The estimate of fraction local counts can be
imprecise, especially if the dot annotations are not aligned with the object in
the image. The imprecision is worsened by the use of an intermediate density
map estimated by convolving the dot annotations with Gaussian kernels. An
accurate density estimate requires the Gaussian kernels’ standard deviation to
match the true object size. Yet, size information is often not annotated or known
in advance. Given that current methods [27,26,7] generate ground truth counts
by integrating over local areas in the density map, it becomes clear that many
factors of imprecision are at play and that the ground truth local counts will
deviate from the true local counts.

In this work, we investigate the effects of partial objects, dot annotation
position and Gaussian kernel size on the classification versus regression task
setting. To that end, we create a synthetic dataset containing images of cells to
carefully control and study these properties. Our findings show that regression
performance is comparable to classification under ideal settings, i.e. objects are
wholly contained within a local area, dot annotations are centered on the objects
and Gaussian kernels are correctly matched. The lower accuracy arises only when
the ground truth labels deviate from the true local count.
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Based on these findings, we speculate that the poor performance of regres-
sion can be attributed to the naive formulation as a continuous regression prob-
lem. Enforcing a standard L1 loss penalizes models that do not (over-) fit to
the errors present in the ground truth counts. By constraining the regression
to only discrete counts, however, we can buffer against some of the impreci-
sion in the ground truth as classification does. As such, we propose a discrete-
constrained (DC) regression model for crowd counting. Similar to classification,
DC-regression benefits from discretizing the target space while retaining an or-
dered output space of numerical counts rather than an order-agnostic class index.
The numeric output enables a comparison between summed local counts and a
global count. We also propose a global count loss regularizer, which mitigates
some of the discretization errors when converting the target space from contin-
uous to discrete.

DC-regression is more accurate than both classification and standard regres-
sion in crowd counting. It is also applicable to other discrete regression tasks
such as age estimation, and we verified its effectiveness in our experiments. In
summary, the contributions of this paper are:

1. A novel discrete-constrained (DC) regression model that benefits from the
discretization of classification while retaining the ordering and numerical
output space of regression.

2. A series of experiments on controlled synthetic data indicated that the impre-
cise local counts emerged during the annotation and ground truth generation
process account for the advantage of classification over regression.

3. DC-regression, coupled with a global count loss, outperforms both classifica-
tion and regression on three crowd-counting datasets. It has significant im-
provements over state-of-the-art approaches when inserted into an advanced
local count model like S-DCNet [27].

4. Verified that DC-regression is also applicable to the age estimation task.

2 Related Work

Counting By Regression. The goal of object counting is to predict the num-
ber of visually present objects in images. Given that counts have an ordering,
it is naturally modelled as a regression problem. Two commonly adopted re-
gression targets are density maps [29,5,16,14] and local object counts [12,26,7].
Density maps were first proposed by [3]; they are a dense target proportional to
the spatial distribution of the objects. Zhang et al. [28] first adopted a deep net-
work to regress density maps and most regression methods [29,5,16,14] followed
a similar approach. Local count is another learning target of deep regression
networks. Local count methods [12,26,7] first divide images into local patches,
then predict object numbers of each local patch separately.

However, both learning targets could be imprecise if only dot annotations are
provided for object counting. Specifically, ground truth density maps could be
affected by biased dot annotations and mismatched Gaussian kernels (as shown
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in Fig 1). Local counts can be even more imprecise as they are obtained by in-
tegrating over local areas in the density map. Optimum transport [13] has been
adopted [22,21,9] to account for possible errors in ground truth density maps
with extra optimization procedures. Different from them, we tackle errors in
ground truth count maps using discrete constraints.

Counting By Classification. Instead of regressing local counts, counting by
classification methods model local counts as different classes [27,6,23]. Liu et
al. [6] first divided the count ranges into discrete intervals and then predicted
the interval index with a classifier. The final count value was chosen as the me-
dian value of the predicted interval. Xiong et al. [27] adopted a classifier to model
a closed-set range of counts, and generalized it to the open-set range via spatial
divide-and-conquer. Based on these works [27,6,23], it appears that classification
works better than regression for object counting.

Classification vs. Regression. Other than object counting, classification has
also shown to perform better than regression for specific tasks in depth estima-
tion [4], human pose estimation [10,25] and age estimation [30]. In this work, we
show experimentally that classification is better than regression when ground
truth count maps are imperfect. We also find that regression could be improved
by adopting discrete constraints of local counts similar to classification.

3 Method

3.1 Preliminaries

Suppose we are given an image I ∈ RH×W with T dot annotations (xt, yt), t =

{1, . . . , T}. Using the dot annotation map D0 =
∑T

t=1 δ(xt, yt), where δ(xt, yt)
denotes a Dirac function centered at (xt, yt), we can generate a density map D
by convolving D0 with a Gaussian kernel Gσ, with a standard deviation of σ1:

D =

T∑
t=1

δ(xt, yt) ∗Gσ (1)

Summing the local density in the Ph × Pw non-overlapping window, the ground
truth count maps C∈RHc×Wc , where Hc=H/PH and Wc=W/Pw is defined as:

C(j, k) =

(j+1)×Ph∑
h=j×Ph

(k+1)×Pw∑
w=k×Pw

D(h,w). (2)

A local count model predicts a corresponding local count map Ĉ ∈ RHc×Wc .
In practice, C is imprecise when dot annotations (xt, yt) are biased or Gaussian
kernels Gσ are mismatched. Consider an object near the border of the local

1 This work assumes a kernel size of 4σ and use the terms ‘size’ and ‘σ’ interchangeably.
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area, if the dot annotations are off-center or Gaussian kernels have too large a
standard deviation, then some portions of the density may shift to other nearby
local areas, leading to imprecision in Eqs. (1) and (2).

The ground truth and estimated count for image I can be estimated by
summing the respective local count maps:

c =

Hc,Wc∑
j,k

C(j, k), ĉ =

Hc,Wc∑
j,k

Ĉ(j, k), (3)

where j and k are row and column-wise indices of the count map. The error
of the local count is defined as the difference between the ground truth and
predicted local counts. The error of local count E ∈ RHc×Wc and global count e
is computed as:

e = c− ĉ =

Hc,Wc∑
j,k

E(j, k), where E = C − Ĉ. (4)

A typical regression-based local count model would use a CNN backbone and
add a dedicated regression head. The final model would take image I as input,
output the local count map Ĉ and be trained with an L1 loss:

Lreg =
1

HcWc

Hc,Wc∑
j,k

|E(j, k)|. (5)

Note that eq. (5) denotes the loss for one image; this loss is averaged over all
images in the batch during training.

3.2 Discrete-Constrained Regression

But as we argue that ground truth count maps are imprecise and may contain
error ϵ, i.e. C = Ctrue + ϵ, where Ctrue is the count map generated with ideal
density map. The regression loss in Eq. (5) then becomes

Lreg =
1

HcWc

Hc,Wc∑
j,k

|Etrue(j, k) + ϵ(j, k)|, where Etrue = Ctrue − Ĉ. (6)

When |E(j, k)| >= |ϵ(j, k)|, the sign of the observed error and true error remains
the same, i.e. sgn(Ei(j, k)) = sgn(Etrue(j, k)), where “sgn(·)” denotes the sign
function. As such, the gradient will also be the same, i.e.

∂|E(j, k)|
∂Ĉ(j, k)

=
∂|Etrue(j, k)|

∂Ĉ(j, k)
= −sgn(E(j, k)). (7)

To account for the ϵ, we opt to partition the target space into discrete in-
tervals. Specifically, we follow a classification setup and a range [Vmin, Vmax]
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into N + 1 intervals {V0}, (V0, V1], (V1, V2], ..., (VN−1, VN ], where V0 = Vmin

and VN = Vmax. In counting datasets, Vmin = 0 and Vmax is the maximum
count value in the training set. A count value c that falls into [Vi−1, Vi], where
(i = 1, 2, ..., N), would be associated with the i-th interval. As such, the loss
is considered to be correct when the prediction Ĉ(j, k) is outside the range
[VG(j,k), VG(j,k)+1), where G(j, k) is the index of C(j, k).

We formulate the discrete-constrained loss Ldc as:

Ldc =

∑Hc,Wc

j,k S(j, k)× |E(j, k)|∑Hc,Wc

j,k S(j, k)
(8)

where the mask S = 1−1{VG < Ĉ <= VG+1}, 1{} is the indicator function and
G is the index of C. S only selects the samples that are predicted outside the
intervals to compute loss, which ensures the gradient directions to be correct.

3.3 Global Count Loss Lgc

The overall aim of counting is to estimate a global count from summing all the
local counts. Even if all the local counts are correctly predicted, i.e. Ldc = 0,
there may still be a gap between their sum and the GT global count, precisely
due to the quantization. We could use a global count loss Lgc to decrease the
quantization errors. Naively, an L1 loss could be applied to the global count, i.e.

Lc =
|e|

HcWc
, (9)

However, Lc is problematic as it produces the same gradient for all the local
counts, regardless of over- or under-estimation. We therefore improve Lc to L0

bias

by selecting local patches that have the same trend as global error, i.e., consid-
ering only over-estimated patches if the global count is an over-estimate and and
same for under-estimation. This prevents the wrong gradient for patches with
the opposite sign of global error e. L0

bias can be defined as

L0
bias =

∑Hc,Wc

j,k Sa(j, k)× |E|∑Hc,Wc

j,k Sa(j, k)
, (10)

where Sa = 1{sgn(e)×E(j, k) > 0}, and sgn() denotes the sign function. Among
patches with Sa = 1, we further discard those patches with smaller errors that
compensate the error of patches with Sa = 0. We achieve this by introducing a
threshold λ, which satisfies

Hc,Wc∑
j,k

Sa(j, k)× 1{sgn(e)× E(j, k) >= λ} × |E(j, k)| =
Hc,Wc∑
j,k

|E(j, k)| (11)

and select patches via Sm(j, k) = Sa(j, k)× 1{sgn(e)×E(j, k) >= λ}. Now, an
adjusted loss Lλ

bias can be computed as

Lλ
bias =

∑Hc,Wc

j,k Sm(j, k)× |E(j, k)|∑Hc,Wc

j,k Sm(j, k)
. (12)
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A related work [8] introduced the Bayesian loss LBL to constrain the integra-
tion of density map to be equal to the annotated point numbers. It also serves
as a type of global count loss. We compare these variants of global count losses
in the ablation studies.

4 A Synthetic Dataset Investigation on Local Counting

4.1 Data Preparation

Inspired by [3,27], we create a synthetic dataset of cells to study counting-related
factors in a controlled setting. Each synthetic image was fixed to 128×128, which
could be further subdivided into a 4 × 4 array of 32 × 32 local image patches.
Each local image patch had 0 to 20 oval cells, where the major and minor axis
of the oval were randomly sampled from [2, 4] pixels. Each of the training and
test sets contained 1000 such synthetic images.

Presence of Partial Objects We synthesized two complete datasets. Both
had the same local count distribution, but the presence of partial objects in the
local 32 × 32 patches was controlled. A comparison of the two data variants is
shown in Fig. 2 (a). When there are no partial objects, the ground truth local
counts corresponds exactly to the number of dots. With partial objects, the
ground truth local count can be estimated either (i) with integer counts, based
on the number of dots within the local patch, or (ii) with fractional counts by
integrating (summing) the Gaussian-convolved density map using a Gaussian
kernel with the same size as the cell.

Biased Dot Annotations Typical real-world counting datasets [29,2] have
dot annotations. The dots are not necessarily centered on the object and may
sit anywhere within the border of the object as shown in Fig. 1. The imprecise
locations of the dots propagate as errors on the density maps when convolved
with Gaussian kernels, which in turn creates biases in the ground truth local
counts. To simulate this effect, we randomly moved the dot annotations ∆ pixels
in h and w directions, where ∆ was uniformly sampled from {−a,+a}, where
a = {0, 1, 2, 4}.

Mismatched Gaussian Kernels In most counting datasets [29,2], the sizes
of the objects are not known. This makes the Gaussian-convolved density map an
imprecise estimate since a fixed-sized Gaussian kernel is applied when it should
be a function of the object size. We investigate the effect of Gaussian kernel size
on local counting models. We adopt 0, 3, 6 as the deviations of Gaussian kernels
to generate density maps and then integrated density maps to obtain local count
maps. A deviation of 0 means using the dot annotations directly. We also add
a baseline where the Gaussian kernel sizes were selected according to the actual
cell sizes, denoted by “GT Size”.

Model / Implementation Details For our local count models, we adopt
all the convolutional layers in VGG16 [15] to extract feature maps, then used a
regression head consisting of two 3 × 3 convolutional layers (512 and 1 output
channels) to map local features to local counts. The size Ph,Pw of the local
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No Partial Objects With Partial Objects 

Fig. 2. Counting performance with respect to partial objects on the simulated cell
dataset. Left: Some samples of simulated cell images without and with partial objects,
respectively. Right: The counting performance of regression and discrete models. “linear
20/40” denotes 20 and 40 linear intervals respectively.

patch is 32× 32. An Adam optimizer was adopted for training, with a learning
rate of 10−3 and a batch size of 6. For the discrete models, we choose 20/40
linear intervals, with an interval length of 1/0.5, and 40 logarithm intervals.
To evaluate, we consider the Mean Absolute Error (MAE), where lower MAE
indicates better counting performance.

4.2 Partial Objects

When no partial objects are present, the plot in Fig. 2 shows that regres-
sion outperforms classification. When the class number increases from 20 to 40,
counting error slightly increases for classification. This is because the local count
is an integer value and increases with a step size of 1, so half of the intervals con-
tain no samples when there are 40 instead of 20 intervals. DC-regression shows
the best performance. Even when the interval is 0.5 and 40 intervals are used,
the performance only drops slightly.

When partial objects are present, considering fractional counts for partial
objects yields better performance. Classification shows comparable performance
with regression. If fractional counts are considered for partial objects, increasing
the number of intervals from 20 to 40 decreases the counting error. DC-regression
shows better performance than standard regression and classification.

4.3 Incorrect Local Counts

The impact of biased point annotations is shown in Fig. 3 (a). When the
ground truth of local counts is imprecise, performance is highly dependent on
the extent of the incorrect class label or interval. When the annotation bias is
small, e.g. 1, the ground truth error is bounded by the interval of the discrete
model, but when the bias becomes large, e.g. 2 or 4, the ground truth error
may exceed the interval length. This results in the wrong classification label
being assigned. One way to handle this is to use log-based instead of linear
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Fig. 3. Left: Counting results under various degrees of point annotation bias. Here Lλ
bias

is adopted as Lgc. Middle: The bias of local count value caused by point annotation
bias. Right: Counting error distribution w.r.t. local count value when dot deviation is
2. Linear/log denotes linear and log-spaced intervals respectively, while 20/40 denotes
the number of intervals.

intervals. In fact, the MAE increases monotonically with respect to the ground
truth local count (see Fig. 3(b)). This result directly implies that dense areas
have higher ground truth error than sparse areas and using log-spaced intervals
will outperform linearly spaced intervals. Plots of the error with respect to the
ground truth local count (see Fig. 3 (c)) show that classification performs better
than regression in sparse areas (0 ∼ 5 cells per patch) but worse in denser patches
(6− 20 cells per patch). Similarly, DC-regression shows much higher error than
regression in highly dense areas (16 − 20 cells per patch), where log intervals
have higher discretization error. However, the error of dense patches (11 ∼ 20
cells per patch) decreases significantly if we add the global constraint regularizer
Lgc to the DC-regression.

Mismatched Gaussian kernels add errors to the ground truth local counts.
Fig. 4 shows that the error is monotonically increasing with respect to C. Classifi-
cation and DC-regression are more robust than regression under varied Gaussian
kernel sizes. Log intervals are better than linear intervals for classification when
using a kernel of size 6, since the error of the ground truth is much larger than
the linear interval length of 0.5. Finally, adding a global count loss Lλ

bias into
DC-regression decreases the count error in dense patches (16 ∼ 20) where log
intervals become too large.

4.4 Study Findings

We draw the following conclusions about local count models based on the ob-
servations from above:

1. Partial objects make local counting harder. All local count models (regres-
sion, classification and DC-regression) perform worse when partial objects
are present in local image patches even if the ground truth local counts are
perfectly generated according to object size.

2. The ground truth local counts are not precise when partial objects are
present and may contain error ϵ. Both the bias of point annotation (xt, yt)
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Fig. 4. Left: Counting results under various Gaussian kernel sizes. Here, Lλ
bias is

adopted as Lgc. Middle: The bias of local count value caused by various Gaussian
kernel sizes. Right: Counting error distribution w.r.t. local count value with 6 as Gaus-
sian kernel size. Linear/log denotes linear and log-spaced intervals respectively, while
20/40 denotes the number of intervals.

and Gaussian kernel Gσ increase ϵ in local counts C. The error ϵ is mono-
tonically increasing with respect to local count value C. As such, log-spaced
intervals are more suitable than linear intervals, which use increasing interval
length to handle increasing ϵ.

3. Classification and DC-regression perform much better than regression when
ϵ is present, which suggests that it is beneficial to adopt discrete constraints
in regression with imprecise ground truth.

4. Adding Lgc into DC-regression effectively decreases discretization error in
dense areas and improves the performance of DC-regression.

5 Experiment on Real-World Datasets

5.1 Datasets & Implementation Details

We verified the effectiveness of DC-regression on real-world counting and age
estimation datasets. We evaluated DC-regression on three challenging crowd
counting datasets (SHTech [29], JHU [17] and QNRF [2]). Due to the varied size
of images in counting datasets, we randomly cropped fixed-sized sub-images as
training samples. The crop size for SHTech was 320 × 320, and 512 × 512 for
JHU and QNRF datasets. For generating density maps, we followed the same
settings as [29,27]. To show the generality of DC-regression, we also evaluated
it on two age estimation datasets, MegaAge (Mega) and MegaAsian (MegaA)
datasets [30].

We followed the same architecture as specified in Sec. 4.1. We adopted the
Adam optimizer, with a batch size of 8 for crowd counting and 32 for age esti-
mation. The initial learning rate of 10−4 was decreased by 0.1 whenever training
error plateaued. More implementation details are provided in the Supplemen-
tary. For evaluation, we used MAE to indicate counting accuracy and the Root
Mean Squared Error (MSE) to reflect counting stability. Lower MAE and MSE
indicate better counting performance.
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Fig. 5. The Effect of Number of Intervals (N) on on SHTech PartA dataset [29]. Left:
Counting error with respect to N . Right: MAE with classification probabilities (pc and
pf ) with respect to N . The discretization error (green bars) denotes the counting error
of classification when all the class indexes are correctly predicted. pc and pf denotes
the average probability of correctly or falsely predicted samples, respectively. Lλ

bias is
adopted as Lgc.

5.2 Ablation Study

Number of Intervals We adopted log-spaced intervals for both classification
and DC-regression, varying the number of intervals N from 2 to 1000. When
N = 2, there were only background {0} and foreground classes (0, Vmax]. For
classification, we adopted the median value of the training samples within inter-
val (Vi−1, Vi] to map the index back to a count.

From Fig. 5, we observe that regression sets a baseline performance indicated
by the dashed line. With the right selection of N , all the discrete models surpass
the regression baseline, but a poor selection of N hurts the performance. For
classification, when N is small, discretization error of the intervals increases
the MAE. When N is large, MAE increases again as the classes are no longer
distinguishable. DC-regression also shows poor performance when N <= 5 as
it is similarly affected by discretization errors like classification. However, it has
stable performance when N > 5 as it converges to standard regression when
N → ∞. The global loss Lgc mitigates the discretization errors of DC-regression
whenN <= 5, making this the optimal combination. As classification showed the
best performance when N=100, we keep N=100 for the remaining experiments.

Interval Spacing We compared linear, log-spaced and uep [23] intervals for
classification and DC-regression. Lλ

bias from Eq. (12) is chosen as Lgc. Table 1
shows that log-spaced intervals, in line with the synthetic experiments, are bet-
ter than linear intervals for both classification and DC-regression. After adding
the global count loss Lgc to DC-regression, counting performance improves and
all three types of intervals perform similarly. This confirms that Lgc mitigates
discretization errors and makes DC-regression less sensitive to interval spacing.

Choice of Global Count Loss Lgc Table 2 compares the different global count
loss terms. When adding global count losses LBL from [8] and Lλ

bias to regres-
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Table 1. Comparison different kind of interval partitions in discrete counting models

Method Interval Partition
SHA SHB

MAE MSE MAE MSE

classification
linear 65.6 115.4 8.6 14.6
log 64.3 112.3 8.7 17.2
uep [23] 63.9 112.8 7.9 15.1

DC-regression
linear 62.5 106.0 7.5 12.2
log 61.6 96.7 7.1 11.1
uep [23] 61.9 104.2 7.4 12.2

DC-regression+Lgc
linear 60.3 95.5 6.6 11.0
log 60.3 103.7 6.7 10.6
uep [23] 61.3 97.5 6.7 10.2

Table 2. Comparison of different Lgc. Lcls denotes the standard cross-entropy loss
used in classification.

main loss Lgc
SHA SHB

MAE MSE MAE MSE

regression L1 — 65.4 103.3 10.7 19.5

classification Lcls — 64.6 106.7 8.7 17.2

regression + Lgc
— LBL 62.1 103.4 7.4 10.8

— Lλ
bias 62.9 108.5 7.8 12.0

Ldc — 61.6 96.7 7.1 11.1
Ldc Lc 63.5 104.4 7.5 13.2

DC-regression Ldc L0
bias 61.6 105.3 7.1 11.9

Ldc Lλ
bias 60.3 103.7 6.7 10.6

Ldc LBL 60.7 101.0 7.1 11.0

sion, the performance surpasses standard regression and classification with L1

or cross entropy loss Lcls. However, it does not surpass standard DC-regression,
suggesting that local count supervision is still more effective than global count
supervision under discrete constraints. When looking at DC-regression specifi-
cally, the naive global count Lc from Eq. (9) harms DC-regression, as explained
in Sec. 3.3. However, being selective on the local patch for the global count
rectifies this error, with Lλ

bias being more effective than L0
bias, which shows no

improvement. We refer the reader to the Supplementary for a detailed compari-
son and discussion between L0

bias and Lλ
bias. We further observe that LBL is also

helpful for discrete regression and shows comparable results as Lλ
bias.

5.3 Adding DC-Regression to State-of-the-Art

S-DCNet, proposed by Xiong et al. [27], is a classification-based state-of-the-art
local counting model. As it was proposed to tackle open-set counting, it features
two loss functions: Lc for supervising closed-set counters and Lm for supervising
local counts outside the closed set. We replaced these losses by adopting DC-
regression’s Ldc from Eq. (8) for Lc and Ldc + Lgc for Lm. Note that we do not
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Table 3. Applying DC-regression in S-DCNet [27]

Lc Lm
SHA SHB JHU QNRF

MAE MSE MAE MSE MAE MSE MAE MSE

S-DCNet (cls) [27] Lcls L1 58.3 95.0 6.7 10.7 65.2 272.8 104.4 176.1
S-DCNet (reg) L1 L1+LBL 61.1 94.2 7.4 12.5 66.1 272.1 92.3 158.8
S-DCNet (dcreg)∗ Ldc L1+LBL 59.7 91.4 7.0 11.6 60.0 269.9 86.9 159.3

S-DCNet (dcreg)† Ldc L1+Lλ
bias 59.8 100.0 6.8 11.5 62.1 268.9 84.8 142.3

consider the global count loss for closed set counting as the closed counters only
predict truncated counts outside the closed set range.

We also added a standard S-DCNet regression baseline (‘reg’) for compari-
son. Table 3 shows that S-DCNet (reg) performs worse than the classification
variant of S-DCNet (‘cls’) and is consistent with the conclusion in [27]. The DC-
Regression variant of S-DCNet (‘dcreg’), however, is comparable or better than
S-DCNet (cls), verifying the effectiveness of DC-regression.

5.4 Comparison on Crowd Counting Datasets

We compare DC-regression with other state-of-the-art counting methods on
three crowd counting datasets in Table 4. DC-regression outperforms local count
regression and classification on all the datasets. Adding global count loss such
as LBL or Lλ

bias further improves the results, suggesting that a global constraint
is helpful for local count models. In particular, DC-regression and S-DCNet
(dcreg) show comparable performance with state-of-the-art approaches. Specifi-
cally, our methods are better than or comparable with density regression meth-
ods [22,9,21], which adopt optimum transportation [13] to model the imperfect
ground truth of density maps.

5.5 Comparison on Age Estimation Datasets

Unlike local counts, human age is modelled as integer counts in standard age-
estimation datasets [30]. As such, we postulate that applying our discrete con-
straint to regress age may also be suitable. We verify the effectiveness of DC-
regression on age estimation datasets Mega and MegaA [30], adopting a linearly
spaced interval of length 1 as age increases with step 1. To evaluate, we use MAE,
MSE and CAi (i=3,5,7), where CAi denotes the proportion of samples with MAE
less than i. Table 5 shows that DC-regression is better than regression, which
suggests that it is better to use discrete constraints for age prediction. Similar
to the analysis of counting, we should ignore the loss of age when the prediction
is within the class intervals, in order to provide the correct gradient to benefit
the training process.
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Table 4. Comparison with State-of-the-art method on Crowd Counting Datasets.
Methods are grouped as density map regression, local count regression, classification
and DC-Regression approaches

Backbone
SHA SHB JHU QNRF

MAE MSE MAE MSE MAE MSE MAE MSE

CSRNet [5] VGG16 68.2 115.0 10.6 16.0 85.9 309.2 108.2 181.3
DRCN [17] VGG16 64.0 98.4 8.5 14.4 82.3 328.0 112.2 176.3
BL [8] VGG19 62.8 101.8 7.7 12.7 75.0 299.9 88.7 154.8
PaDNet [18] VGG16 59.2 98.1 8.1 12.2 — — 96.5 170.2
MNA [20] VGG19 61.9 99.6 7.4 11.3 67.7 258.5 85.8 150.6
OT [22] VGG19 59.7 95.7 7.4 11.8 68.4 283.3 85.6 148.3
UOT [9] VGG19 58.1 95.9 6.5 10.2 60.5 252.7 83.3 142.3
Generalized Loss [21] VGG19 61.3 95.4 7.3 11.7 59.9 259.5 84.3 147.5

regression (Lreg) VGG16 65.4 103.3 10.7 19.5 71.2 296.0 98.6 166.6
LBL VGG16 62.2 103.4 7.4 10.7 64.2 275.7 90.1 162.5

Lλ
bias VGG16 62.9 108.5 7.8 12.0 68.6 289.4 93.3 160.8

classification VGG16 64.6 106.7 8.7 17.2 67.8 261.6 97.6 163.2
S-DCNet (cls) [27] VGG16 58.3 95.0 6.7 10.7 65.2 272.8 104.4 176.1

DC-regression VGG16 61.6 96.7 7.1 11.1 67.2 288.2 91.4 157.5

DC-regression+Lλ
bias VGG16 60.3 103.7 6.7 10.6 64.8 282.6 86.0 148.2

DC-regression+LBL VGG16 60.7 101.0 7.1 11.0 61.6 263.2 87.1 152.1
S-DCNet (dcreg)∗ VGG16 59.7 91.4 7.0 11.6 60.0 269.9 86.9 159.3

S-DCNet (dcreg)† VGG16 59.8 100.0 6.8 11.5 62.1 268.9 84.8 142.3

Table 5. Comparison on age prediction datasets

Method
Mega MegaA

MAE RMSE CA3 CA5 CA7 MAE RMSE CA3 CA5 CA7

Posterior [30] — — 38.69 57.90 73.15 — — 62.08 80.43 90.42
Xia et al. [24] — — — — — 2.80 — 62.50 82.37 —
Yu et al. [19] — — 42.19 60.0 72.70 — — 64.80 83.20 91.40

classification 5.57 7.15 39.72 57.10 71.45 2.91 4.14 68.19 84.82 93.03
regression 5.26 6.72 41.89 59.84 74.73 2.87 4.00 68.57 85.10 93.51
DC-regression 5.15 6.58 42.36 61.31 75.26 2.80 3.97 69.40 85.98 93.79

6 Conclusion

In this paper, we experimentally showed that ground truth local counts are
error-prone, and classification outperforms regression when local counts are im-
precise. The disadvantage of regression could be mitigated by adopting discrete
constraints. We proposed DC-regression to handle the ground truth error in local
count models. DC-regression showed superior results in counting tasks compared
to classification and regression, and it is also suitable for age estimation tasks.
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