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1 Additional Experiments

1.1 Known Object Setting

Following previous work [2, 11, 21], we also report results on the HICO-DET
dataset [2] with Known Object (KO) setting in Tab. 1 and Tab. 2, respectively.
It can be observed that our method surpasses the baselines under this setting.

Table 1: Performance comparison on
HICO-DET under the Known Object
(KO) setting with pre-trained detector.

Method Full Rare Non-rare

iCAN [6] 16.26 11.33 17.73
TIN [12] 19.17 15.51 20.26
DRG [5] 23.40 21.75 23.89
VCL [7] 22.00 19.09 22.87
DJ-RN [10] 23.69 20.64 24.60

SCG* [21] 24.53 20.00 25.88
SCG + Ours 25.54 21.93 26.61

Table 2: Performance comparison on
HICO-DET under the Known Object
(KO) setting with fine-tuned detector.

Method Full Rare Non-rare

PPDM [13] 24.58 16.65 26.84
HOI-Trans [22] 26.15 19.24 28.22
ATL [8] 27.38 22.09 28.96
AS-Net [3] 31.74 27.07 33.14
FCL [9] 31.31 25.62 33.02

SCG* [21] 33.74 26.41 35.95
SCG + Ours 34.52 27.34 36.67

1.2 Hyper-parameter Analysis

The detailed analysis of the coordination of these two classifiers with respect
to λ is shown in Tab. 3. It can be seen both classifiers are essential for the
performance improvement.

1.3 Efficiency and Memory Comparison

We compare the memory and computational cost with SCG [21] in Tab. 4.
Note that the adopted detector (i.e., Faster R-CNN [15]) is not counted as the
detection results can be obtained via one-pass inference for all images before
training. It can be observed the overhead brought by our method is negligible
for both training and test.
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Table 3: Performance comparison with different λ.

λ Full Rare Non-rare OR ONR AVE

0.2 21.32 17.39 22.50 19.33 24.66 22.00
0.4 21.50 17.59 22.67 19.47 25.01 22.14
0.6 21.41 17.44 22.60 19.33 24.98 22.16
0.8 21.17 17.10 22.38 19.02 25.01 22.02

Table 4: Efficiency and memory comparison.

train/img test/img #param (train) #param (test)

SCG [21] 428.16ms 248.50ms 16.04M 16.04M
+Ours 440.72ms 251.32ms 17.12M 16.50M

2 Implementations

2.1 Overall Implementations

We conducted all experiments on 4 Nvidia 2080Ti GPUs. Due to resource lim-
itation, we reduced the batch size of SCG and QPIC to 8 and linearly scaled
their learning rate.3 For QPIC, we started from a trained model and finetuned it
with the proposed method for a total of 15 epochs. The learning rate is decayed
by 0.1 at the 10-th epoch. For the other two baselines, we followed the default
scheduling and started the training of fm from the 3rd epoch for stability. λ is
empirically set to 0.4 in all experiments.

For the proposed method, we parameterize fm as a three layer Multi-layer
Perceptron with ReLU activation function. For each memory cell, we set the size
n to 16 for each object and k to 4. About the write operation, τo is set to the
third smallest wo (for objects with more than 5 associated verbs) or 0 (other
objects). Regarding to other aspects with respect to base models (feature ex-
tractor, sampling strategy, and loss function), we adopted their default settings.
More details are as follows.

2.2 Implementation of Baselines

The implementation details of the baselines are listed in Tab. 5. In this table, the
batch size is represented as number of images per GPU × number of GPUs. BCE
stands for binary cross-entropy loss. Kindly find the codes with the corresponding
model names in the zip file.

2.3 More Hyper-parameter Settings

Due to resource limitation, we used a smaller batch size and scaled learning
rate for both the baseline (SCG) and our method in all previous experiments.

3 This may slightly influence the performance and result in inconsistency between
reported and reproduced ones.
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Table 5: Implementation details of baseline methods

Method SCG [21] HOID [18] QPIC [16]

Venue ICCV’21 CVPR’20 CVPR’21
Batch Size (default) 4× 8 4× 4 2× 8
Batch Size (ours) 2× 4 4× 4 2× 4
Feature Extractor ResNet50-FPN ResNet50-FPN ResNet-50
Proposal Generation Faster-RCNN [15] HO-RPN [18] QPIC [16]/DETR [1]
Interaction Loss BCE+focal [14] BCE BCE
Interactiveness Score [12] Yes No No
Low-grade Suppression [12] Yes No No
Sample Strategy #human&#object pos/neg ratio None

Table 6: Model performance of different hyper-parameter settings.

Index Setting Full↑ Rare↑ Non-rare↑

1 Baseline (4 GPUs * 2 image, unscaled lr) 19.94 14.70 21.50

2 Baseline (4 GPUs * 1 image, scaled lr) 20.75 15.96 22.18
3 + Ours 21.16 17.41 22.28

4 Baseline (4 GPUs * 2 image, scaled lr) 20.99 16.30 22.40
5 + Ours 21.50 17.59 22.67

We also studied the performance of baseline and our method under other hyper-
parameter settings in Tab. 6. It can be observed that a) smaller batch size results
in worse performance (2&4, 3&5). b) linearly scaling learning rate with respect
to batch size can prohibit performance degradation to some degree (1&4). c)
Under different training settings, our method outperforms the baseline by a
considerable margin (2&3, 4&5).

3 Discussion on Debiasing Baselines

Re-weighting Methods For re-weighting methods (i.e., inverse frequency weight-
ing and CB-Loss [4]), we followed their conventions and computed the num-
ber of HOI instances (i.e. interactive human-object pairs) in the training set
to facilitate the weight calculation. However, this leads to severe performance
degradation. We conjecture that there are mainly two reasons. Firstly, these loss
functions are all designed for reducing the general bias, instead of the object
bias studied in this paper. Secondly, these re-weighting strategies interfere a lot
the original training process, which requires complex interaction recognition and
reasoning. In contrast, our proposed method allows dynamic adjustment with
respect to each HOI instance in the training process, thereby improving the
performance.
General Debiasing Methods For Adversarial Training (AT) [19], we trained
the model with another classifier, whose output dimension equals to the num-
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ber of object classes (i.e., 80 in HICO-DET). Given each human-object feature,
a cross-entropy loss with a flat label, i.e., 1/No is introduced to the original
training process, so that the representation is expected to be object-agnostic.
For Domain Independent Training (DIT) [19], we trained the model with an-
other classifier. The output dimension of this classifier equals to the number
of total interactions (i.e., 600 in HICO-DET). During inference, the interaction
prediction is taken as the maximum probability over all interactions involving
this verb. We observe significant performance degradation with these methods.
The key reason to this is that these methods ignore the object factor in their
representations, which is essential for interaction recognition.
SGG Debiasing Methods The original TDE [17] aims to alleviate the contex-
tual bias in Scene Graph Generation (SGG). Besides the original forward pass, it
conducts a second forward pass in the same model by masking (e.g., set to zero)
both the subjects and the objects. The final prediction is taken as the subtrac-
tion between the original logits and the logits in the second pass. In this way, the
biasing effects caused by factors other than the subject and object are expected
to be eliminated. In this work, to alleviate the object bias, we conduct a second
forward pass by masking everything other than the object. Then, similarly, the
final output logits is obtained by subtracting this logits from the original ones.
By doing the subtraction, the output is expected to be less affected by the object
bias problem, following the intuition of [17]. In PCPL [20], we take the represen-
tation of an HOI class as the average of all features that involve this interaction
class. We argue that the failure of these methods may result from the ignorance
of multi-label setting, which results in different logits in TDE (since single-label
classification is conducted for SGG.) and imprecise class embedding estimation
in PCPL (because an embedding for one instance may be counted into multiple
classes, confusing the representations).

4 More Visualizations

4.1 More Memory Evolutions

We show the evolution of label distribution under another four randomly picked
objects in Fig. 1. It can be observed that the model prefers to sample some
frequent class instances at early iterations due to their dominance. When it
comes to later training steps, rare class instances gain more attention with the
help of the proposed ODM. By the end of the first epoch (i.e., 4.5k iterations),
the tail classes under each object is more frequently sampled.

4.2 More Qualitative Results

We provide additional qualitative results in Fig. 2. It can be seen that our method
can effectively alleviate the object bias problem by reducing false negative errors.
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Fig. 1: Extra examples for the evolution of accumulated verb distribution after
reading from the proposed ODM. The leftmost column shows ptrain(v|o) and the
other 4 columns represent the sampled verb distributions at different iterations.

SCG: 0.024
Ours: 0.444 

Pet

Launch Kite

Inspect Truck
Pet Horse

fly hold pull carry launch inspectInspect Kite

ride sit on drive load inspect

SCG: 0.014
Ours: 0.499 

ride straddle drive ... pet
...

SCG: 0.208
Ours: 0.688 

fly hold pull carry inspect

SCG: 0.032
Ours: 0.357 

Fig. 2: Additional qualitative results. Human and object are bounded by red
box and yellow box, where the tag indicates the ground truth interaction. For
each example, the object-conditional verb distribution on training set ptrain(v|o)
are shown, where the involved verb is bold.
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