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Abstract. Detecting Human-Object Interaction (HOI) in images is an
important step towards high-level visual comprehension. Existing work
often shed light on improving either human and object detection, or in-
teraction recognition. However, due to the limitation of datasets, these
methods tend to fit well on frequent interactions conditioned on the de-
tected objects, yet largely ignoring the rare ones, which is referred to as
the object bias problem in this paper. In this work, we for the first
time, uncover the problem from two aspects: unbalanced interaction dis-
tribution and biased model learning. To overcome the object bias prob-
lem, we propose a novel plug-and-play Object-wise Debiasing Memory
(ODM) method for re-balancing the distribution of interactions under de-
tected objects. Equipped with carefully designed read and write strate-
gies, the proposed ODM allows rare interaction instances to be more
frequently sampled for training, thereby alleviating the object bias in-
duced by the unbalanced interaction distribution. We apply this method
to three advanced baselines and conduct experiments on the HICO-DET
and HOI-COCO datasets. To quantitatively study the object bias prob-
lem, we advocate a new protocol for evaluating model performance. As
demonstrated in the experimental results, our method brings consistent
and significant improvements over baselines, especially on rare interac-
tions under each object. In addition, when evaluating under the conven-
tional standard setting, our method achieves new state-of-the-art on the
two benchmarks.

1 Introduction

Benefiting from the advancement of visual detection systems, Human-Object
Interaction (HOI) detection has drawn increasing research interests in recent
years. It requires detecting both humans and objects in a given image, based
on which the interactions (often expressed as verb phrases) should also be cor-
rectly recognized. HOI detection is of vital importance to human-centric visual
understanding and also benefits other high-level vision tasks, such as image cap-
tioning [29] and visual question answering [1,15].

⋆ corresponding author



2 Wang et al.

Person

Chair

83.90%

7.42% 5.30% 3.45%
0.01%

12.43%

0.7%

27.28%

8.08%
6.86%

(b0) overall label distribution 

(b2) prediction scores  

(b1) label distribution under object 

sit_on hold lie_on carry stand_on

23.01

0.01 0.01 0.00 0.00

sorted object index

(c) label distrbution over each object  (a) an HOI example 

<person, stand_on, chair>

Fig. 1: An illustration of the object bias problem. Given the detected human-
object pair in (a), the model [62] prediction (b2) is highly biased towards the
object-conditional label distribution (b1), instead of the overall long-tail distri-
bution in the training set (b0). As a result, the model predicts a more frequent
verb sit on for the object chair, leaving the true label stand on ignored. (c)
Label distribution from 25 randomly selected objects. It can be seen that most
objects are dominated by one interaction (colored in blue).

Existing HOI detection efforts can be mainly categorized into two groups:
two-stage and one-stage methods. Specifically, methods in the first group often
leverage an off-the-shelf detector (e.g., Faster R-CNN [42]) to initially detect
the regions of humans and objects. The succeeding stage of interaction recogni-
tion can be enhanced with human part/pose understanding [18,49,30,10], graph-
based message passing between humans and objects [41,67,12,52,47,62] or finer
label space construction [27,64]. Some studies also exploit cross-dataset knowl-
edge such as human-object interactiveness [32,33,56], cross-dataset objects [21]
and word embeddings [57] to improve interaction recognition. Nonetheless, these
approaches are often limited by deficiencies like inferior proposal generation or
heavy inference overhead. To address these problems, one-stage methods of-
ten resort to performing detection and interaction classification within a sin-
gle stage. Early studies treat HOI detection as a ⟨human, object, interaction⟩
point detection and matching [35,53,65] task. Recent approaches employ the
Transformer-based detector [3] to aggregate contextual information and de-
tect interaction in an anchor-free manner [44,68,5,25,60]. Nevertheless, increased
training time is often encountered by this group of approaches.

Although existing methods have made progress over benchmarks, we observe
one pervasive shortcoming that prevents them from further advancement. That
is, the interaction prediction is strongly related to the detected object. Fig. 1
shows that given the detected object chair in (a), the model predicts (b2) the
wrong verb sit on with a very high confidence, rather than yields the true action
- stand on. Previous studies [60,20,21] mostly perceive this phenomenon as the
outcome of learning from the long-tail label distribution from the overall training
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set. Nevertheless, as we step further into this problem, we find it deviates a lot
from the intuition of those methods. In particular, as shown in Fig. 1 (b0), the
label hold dominates the training set and is twice frequent than sit on. Out
of expectation, the prediction score (Fig. 1 (b2)) for hold is only 0.01, which is
2,000 times smaller than that of sit on. This observation brings our concern -
is the wrong prediction really because of the long-tail label distribution in the
overall training set? With this concern, we shift our focus to the interaction
distribution under the detected object (Fig.1 (b1)), and discover a strong bias
between the object and its conditional interaction distribution. Specifically, the
model prediction conforms more with such object-induced bias, rather than the
bias caused by the overall long-tail label distribution. In view of this, we can
infer that during training, the object-induced bias drives the model to fit well on
frequent interactions under each object, while overlooking the rare ones. How-
ever, rare classes are often more informative than non-rare ones [45,55]. Simply
ignoring them undermines the model’s representation ability, resulting in poor
generalization and limited real-world applicability. Nonetheless, to the best of
our knowledge, this bias problem has not been explored in the existing literature.
As most objects struggle with the biased interaction distribution (Fig. 1 (c)),
we therefore humbly suggest this problem to the community, and name it as the
object bias problem in this work.

As a matter of fact, dealing with this problem is non-trivial due to the inher-
ent distribution imbalance in existing benchmarks. However, building a balanced
dataset is time and labor intensive. One alternative solution is to feed the model
with balanced samples during training, which has been extensively proved effec-
tive in previous studies [43,55,28]. Yet, directly applying these methods to HOI
detection is sub-optimal, as the object bias problem is actually induced by the
class imbalance under each object, rather than that of the overall training set.
To this end, we propose a novel Object-wise Debiasing Memory (ODM) mod-
ule to achieve object-conditional class balancing. The proposed ODM is imple-
mented with an object-indexed memory, upon which read and write strategies
are designed to support the retrieval and storage of HOI features and labels.
For memory reading, we take the label of each interactive instance as query to
retrieve instances from the memory. Our read strategy assures that rare class
instances are more frequently sampled, leading to a more balanced label distri-
bution within the batch for training. On the other hand, the writing strategy is
devised to store rare class instances with higher probability. In this way, the un-
balanced interaction distribution under each object is mitigated, thus reducing
the influence of the object bias problem.

We conduct extensive experiments over two benchmark datasets, namely
HICO-DET [4] and HOI-COCO [21]. In addition, we also advocate a new ob-
ject bias evaluation protocol to quantitatively evaluate the model performance
under the object-biased condition. When equipped with our method, several
advanced baselines are evidently shown to overcome the object bias problem,
thereby achieving improved performance.

To summarize, our contributions are three-fold:
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– We systematically study the object bias problem in the HOI detection task.
To the best of our knowledge, we are the first to recognize and address this
problem in the HOI literature.

– To alleviate the object bias problem, we propose a novel ODM module to
facilitate the learning of a balanced classifier. The proposed ODM is model-
agnostic and applicable to both one-stage and two-stage methods.

– We conduct extensive experiments on benchmark datasets, namely HICO-
DET [4] and HOI-COCO [21]. When applying our method to several base-
lines, significant performance improvements, especially on rare interactions
under each object, can be observed. As a side product, we achieve new state-
of-the-art performance on the two datasets3.

2 Related Work

2.1 Human-Object Interaction Detection

HOI detection [4] is challenging since it requires both precise detection and
complex interaction reasoning capabilities. Existing methods have achieved some
progress and mainly fall into two groups: two-stage and one-stage methods.

Two-stage methods adopt an off-the-shelf detector to perform detection, fol-
lowed by an interaction prediction model over each human-object pair [4,13,47,33].
Previous approaches mostly endeavor to improve visual feature quality for in-
teraction classification. For example, Qi et.al. [41] builds a holistic graph to
assist information flow for all humans and objects, and Zhang et.al. [62] de-
vises a bipartite graph utilizing relative spatial relation to promote interaction
understanding. Besides, compositional models factorize the verb and object clas-
sification branches to improve generalization [31,21,22]. Beyond the visual ap-
pearance, more complementary cues are explored for the second stage, such as
human pose and parts [30,38,18], language embeddings [26,2,57] and external
knowledge [32,19].

One-stage methods perform both detection and interaction classification in
an end-to-end manner. Besides detecting human and object regions, earlier one
stage methods exploit either human-object interaction points [35,53] or their
union regions [24] as interaction clues. With the success of Transformer[48]
for object detection [3], some methods [5,68,25,44,60] present to formulate
HOI detection as a set-prediction problem, where the anchor-free detection and
attention-based global context aggregation are jointly operated.

Recently, some studies focus on the long-tail distribution problem in HOI de-
tection benchmarks. For example, ATL [21] constructs new HOI instances from
external object datasets in an affordance transfer fashion, while FCL [22] gen-
erates object features to fabricate more training samples. Besides, CDN [60]
presents a dynamic re-weighting mechanism to tackle the long-tail problem.
However, they mainly focus on the general long-tail distribution from the whole
training set, leaving the object bias problem untouched in the literature.

3 Code available: https://github.com/daoyuan98/ODM.

https://github.com/daoyuan98/ODM
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2.2 Bias Identification and Mitigation

Previous practices on the bias problem mainly follow an identification then miti-
gation paradigm. Pertaining to the bias identification, Zhao et.al. [63] finds that
the gender bias contained in datasets can be further amplified by the model
trained on them. Manjunatha et.al. [39] explicitly discovers the bias in Visual
Question Answering [1] via association rule mining, while Guo et.al. [16] allevi-
ates the bias through loss re-scaling. Lately, Li and Xu [34] unearths unknown
biased attributes of a classifier with generative models. To mitigate the bias
problem, adversarial training [11] is employed to learn bias irrelevant represen-
tations [61]. Recently, Wang et.al. [54] benchmarks previous mitigation methods
and presents a combination of domain-conditional models for de-biasing, while
Choi et.al. [8] tackles the unbalanced distribution with the weak supervision
from a small reference dataset.

3 Object Bias Identification
The object bias problem in HOI detection refers to predicting interactions based
on the unbalanced label distribution under each object. In the following, we
demonstrate that the object bias problem comes from two aspects: (1) the con-
ditionally unbalanced label distribution induced by objects and (2) the biased
model training on the datasets.

3.1 Unbalanced Verb Distribution

The objective of HOI detection is to detect and classify ⟨human, verb, object⟩
triplets, where the most challenging and crucial part is verb classification.4 De-
note the whole verb set as V, Vo for object o represents a subset of all verbs,
i.e., Vo ∈ V and |Vo| < |V|. We use p(v|o) to represent the verb distribution con-
ditioned on object o, and po(v) to signify the global verb distribution involving
only verbs for object o in the training set. The latter is employed to re-normalize
the number of verbs associated with o, leaving other irrelevant verbs unaffected.
From Fig. 2, we can observe that these two distributions are both skewed and
actually different from each other. Besides, a globally frequent class can be a
rare one after object conditioning and vice versa. For example, hold is the most
frequent verb from a global view, while the object vase sees verb make most
(Fig. 2). It thus brings our question: among these two long-tailed distributions,
which one dominates more for the final verb classification?

Fig. 2: Comparison between the object-conditional verb distribution ptrain(v|o)
and the overall re-normalized distribution ptraino (v) for four objects in the train-
ing set of HICO-DET [4].

4 With the detected object, verb classification is required to recognize the interaction.
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3.2 Biased Model Learning

To delineate the second aspect, we exemplarily study the behavior of the state-
of-the-art model SCG [62] on the HICO-DET dataset. Denote ŷ(v|o) as the
averaged verb score output by SCG conditioned on object o, and ptest(v|o) as
the counterpart of ptrain(v|o) on the test set. We compare them in Fig. 3 (a)
and observe that ŷ(v|o) pays less attention to conditionally rare classes in the
training set (e.g., paint for vase, clean for microwave). In contrast, condi-
tionally frequent classes (e.g., operate for microwave, wear for tie and sit

on for couch) gain higher scores regardless of their prediction correctness. To
quantify how much bias the model has learned, we compute the Jensen-Shannon
Divergence [36] between ŷ(v|o) and ptraino (v), ptrain(v|o), ptest(v|o) and visualize
them in Fig. 3 (b). We can see that ŷ(v|o) is closer to ptrain(v|o) than ptraino (v),
indicating the model leans towards the object-conditional statistics, rather than
the overall label distribution in the training set. Besides, ŷ(v|o) is even more
similar to ptrain(v|o) than the ground-truth distribution ptest(v|o). This implies,
if we can counteract the learning of the object bias, there is a large potential of
performance improvements with existing methods.
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Fig. 3: (a) The model output analysis of SCG [62] on HICO-DET [4] test set with
four objects. We show the difference between conditional training distribution
ptrain(v|o), averaged model output ŷ(v|o) and the ground-truth conditional verb
distribution ptest(v|o). (b) The Jensen-Shannon divergence [36] is utilized to
compute the distribution distance. Note that the values are increased 100x for
better illustration.

3.3 Comparison with Other Biases

Long-tail in HOI Detection We notice that some prior efforts [60,21,20] have
studied the long-tail problem in HOI detection. Nevertheless, the object bias
problem presented in this paper is intrinsically and technically different from the
long-tail one. On the one hand, the object-conditional distribution can be distinct
from the overall long-tail distribution. For example, hold is the most frequent
verb across the whole dataset but less frequent in some objects (Fig. 2). On the
other hand, the model prediction tends to conform with the object-conditional
label distribution, rather than the overall one. Combing these two sides, we thus
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introduce the object bias problem to the community and expect more insightful
findings along this line.
Bias in Scene Graph Generation (SGG) It is worth noting that the bias
problem in the sister task - SGG, is also different from the object bias prob-
lem. In fact, mainstream studies in SGG debiasing [58,7,46] mainly focus on
the overall class imbalance, which is essentially same as the long-tail problem
in HOI detection. The most relevant work to ours is [59]. It leverages the most
frequent predicate under subject-object pair for relation prediction, which is
shown to be a strong baseline on benchmark dataset. However, there are two key
differences between [59] and our work: 1) [59] focuses on relational bias from
the data’s perspective only, while we provide a comprehensive study across the
aspects of the dataset, model behavior and evaluation protocol. 2) [59] leverages
the training set statistics to conduct prediction. However, when deploying the
method to another dataset or other out-of-distribution settings, degraded perfor-
mance is expected, as it severely overfits specific training set [6,46]. By contrast,
we design a novel debiasing method to counteract the object bias during training,
which is detailed in the following section.

4 Object Bias Alleviation

4.1 Problem Definition

Given an image, an HOI detection model is expected to detect each interactive
triplet ⟨human, verb, object⟩ and output their interaction score sh,v,o, which
is calculated as sh,v,o = sv · sh · so. sh and so are the confidence scores for
the detected person and object, respectively. They are often obtained from the
confidence score output by the detector. sv represents the verb score predicted
by a classifier. In the following, we mainly consider the calculation of sv and
omit the upper-script v for notational convenience.

4.2 Base Model

In this work, we consider a generic HOI detection model, as shown in the left part
of Fig. 4. It takes as input an image, detects all humans and objects, and links
each human-object pair. Thereafter, with message passing or context aggrega-
tion, a set of human-object pair representations, i.e., the HOI features {xo

i }Ni=1

are obtained, where N denotes the number of human-object pairs. Each feature
xo
i captures the interaction relation between a human and an object of class o.
We then feed these features into a classifier fb to predict verb scores: si =

σ(fb(x
o
i )), where σ(·) is a sigmoid function. Note that there can be multiple

or no interactions within one human-object pair. Thus, the verb recognition is
usually formulated as a multi-label classification problem. The objective of the
base model is formulated as follows:

L =

N∑
i=1

Lbce
b (si,v

o
i ) + Laux, (1)

where vo
i denotes the ground-truth label involving object o, Lbce

b is the binary
cross entropy loss for verb classification and Laux corresponds to other objectives
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of the base model such as interactiveness prediction and object localization. As
discussed before, the base model often severely suffers from the object bias prob-
lem. To overcome this issue, we design a novel Object-wise Debiasing Memory
module which has minimal influence to the reasoning process of the base model
and is plugable to any existing HOI detection methods.

Query

Write In

Read Out

hold
read

open
carry

none

book

person

Input Image

Fig. 4: Overview of the proposed method. Given an image, an HOI detection
model extracts HOI features for each human-object pair. A memory cell Eo is
maintained for each object o. During training, instances are conditionally read
and written into its respective cell with label-awareness. We show one human
object pair (o = book) for clearance.

4.3 Object-wise Debiasing Memory

It is widely accepted that instances from rare classes contain richer information
for interaction understanding [45,55,23]. However, as discussed in Sec. 3, frequent
verb classes under each object dominate the prediction results, while other infor-
mative but rare ones are often ignored. In view of this, we propose to re-sample
HOI instances with a re-balancing strategy. In general, re-sampling has been
shown to be an effective technique for class unbalance mitigation [55,43,28]. How-
ever, in HOI detection, it is infeasible to directly apply these techniques. On the
one hand, the object bias problem is induced by object-conditional unbalance,
rather than the overall one, which is distinct from the traditional class-imbalance
scenario. On the other hand, there can be multiple human-object interactions
within a single image, simply re-sampling one image with rare classes may lead
to oversampling of non-rare ones, which may further exacerbates the object bias
problem.

To circumvent this, we resort to the fine-grained feature-level re-sampling
during model training. Accordingly, we maintain a memory for each object, on
which an effective read and write strategy is devised to operate. We name this
module Object-wise Debiasing Memory (ODM) and the framework is illustrated
in Fig. 4. Specifically, a memory cell Eo is maintained for each object o, which
has a fixed size n and stores three types of elements: the HOI feature xo

j , the
verb label vo

j and the feature generation time aoj . During training, each ODM
cell is sampled (read out) with label awareness, followed by a dynamic update
(write in) operation to ensure feature consistency. The pseudo-code for read and
write strategy is shown in Alg. 1 and detailed as follows.

Read Strategy To achieve verb balance under each object, it makes sense
to assign high sampling priority to rare class instances. At each training step,
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Algorithm 1 Read and Write Strategy for Eo

// Read Strategy

Input: HOI instance {x,v}, number of required samples k
Output: k HOI instances and labels

features = [x]; labels = [v]
while number of sampled features < k do

// pick rare class entries when not selected
j = argmaxj

∑
i dist(labels[i], Eo[j]) (Eq. 2)

Append xj ,vj to features, labels

return features, labels

// Write Strategy

Input: HOI instance {x, v }, generation time a
if Eo is not full then

Append {x,v, a} to Eo

else:
if score(vo) ≥ τo (Eq. 3) then

Replace entry of the longest duration with {x,v, a}.

given an interactive HOI feature xo
i with verb label vo

i , we take v
o
i as query and

sample a set of k HOI instances {xo
j ,v

o
j}kj=1 from the memory Eo such that the

label distribution after sampling is less skewed. To that end, we select from the
memory with the largest weighted hamming distance, which is calculated as:

dist(vo
1,v

o
2) =

c∑
t=1

wo
t · (vo

1[t] ⊕ vo
2[t]), (2)

where ⊕ means XOR operation, [·] is subscription and wo
t is a weighting coeffi-

cient of the t-th class associated with object o. Firstly, the hamming distance is
employed to consider absent classes with respect to selected instance [14]. Sec-
ondly, the weighting mechanism ensures dynamic control over certain classes.
Specifically, we calculate wo

t as No/Nv,o, where No and Nv,o denotes the num-
ber of object o and interaction ⟨v, o⟩ in the training set. By designing wo

t as
inverse interaction frequency within object o, rare class instances are prioritized
and thus more frequently sampled from the memory. In addition, we perform
iterative sampling to avoid all selected samples are from the same class.

Write Strategy During the writing stage, it is expected to store more rare class
instances to ensure the sample complexity for memory reading. Specifically, we
treat one instance as write-feasible if its hamming score for a multi-hot label is
greater than a threshold τo. The hamming score is given by:

score(vo
j ) =

c∑
t=1

wo
t · vo

j [t], (3)

where c is the number of verb classes and wo
t is the same weighting coefficient

as that in Eq. 2. With this strategy, non-rare instances will not be written into
the memory, thereby alleviating the risk of their dominance for model training.
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When the memory is full, we replace the feature of the longest duration with
write-feasible instances, so as to ensure timely update of memory contents.

4.4 Training and Inference

The proposed memory operations serve as an ad-hoc re-sampling approach to
ensure more balanced training at each iteration. After reading from the mem-
ory, we then leverage another classifier fm to perform more balanced interaction
classification. Inspired by recent work on class-imbalanced learning [66,51,23],
we combine fm with the base classifier fb to achieve a trade-off between the de-
biasing and representation capability. The overall objective is defined as follows:

L =

N∑
i=1

Lbce
b (si,v

o
i ) + Lbce

m (s+i ,v
o+
i ) + Laux, (4)

where xo+
i = [xo

i ; {xo
j}kj=1] and vo+

i = [vo
i ; {vo

j}kj=1] are obtained after the read

operation and s+i = fm
(
xo+
i

)
.

During inference, given an HOI feature xi, we take the weighted combination
of these two classifiers’ output as the final prediction:

v̂i = σ
(
λfb(xi) + (1 − λ)fm(xi)

)
, (5)

where λ is a hyper-parameter balancing the two classifiers.

5 Experiments

5.1 Experimental Setting

Dataset We conducted experiments on two benchmarks: HICO-DET [4] and
HOI-COCO [21]. HICO-DET is the most widely employed benchmark in HOI
detection. It consists of 38,118 and 9,658 images in the training and test set,
respectively. HICO-DET covers the whole 80 object classes in MS-COCO [37]
and 117 verb classes, resulting in a total of 600 HOI categories in the form of
⟨person, verb, object⟩. HOI-COCO is a recently introduced dataset based on
V-COCO [17]. It has a total of 9,915 images, with 4,969 for training and 4,946 for
test. There are 222 HOI categories composed of 21 verb classes from V-COCO
and 80 MS-COCO object classes.
Baselines As our goal is to prove the superiority and versatility of the proposed
method, we applied our approach to three existing methods: HOID [50], SCG [62]
and QPIC [44]. HOID generates human-centric object proposal for interactive
objects only. SCG is a recently proposed two-stage method leveraging spatial
information for graph-based message propagation. It achieves state-of-the-art
performance with both fine-tuned and ground-truth detection among two-stage
methods. QPIC is an advanced one-stage method, which utilizes Transformer
architecture to perform query-based detection and classification.
Standard Evaluation Metrics We followed the standard evaluation setting
[4] and reported mean average precision (mAP) for both datasets, where the
mAP on rare (less than 10 training instances), non-rare and full classes are



Overcomming Object-Bias in Human-Object Interaction Detection 11

Table 1: Performance comparison under object-bias setting on HICO-DET. OR
and ONR denote Object-Rare and Object-NonRare, respectively.

Detector Pre-trained Detector Fine-tuned Detector Oracle Detector

Method HOID [50] +Ours SCG [62] +Ours QPIC [44] +Ours SCG +Ours SCG +Ours

OR 17.05 19.02 18.38 19.47 26.29 26.96 28.67 30.21 51.03 52.48
ONR 24.24 24.33 25.06 25.01 34.64 34.65 40.72 41.08 73.97 75.43
AVE 20.65 21.17 21.72 22.24 30.47 30.81 34.69 35.64 62.50 63.95

reported. For both settings, a prediction is regarded as positive if (1) the HOI
classification is correct and (2) the detected human and object bounding boxes
have IoUs greater than 0.5 with the ground-truth bounding box.
Object-bias Evaluation Metric To quantitatively study how much object
bias has been alleviated by our method, we propose a new object bias evaluation
setting. Specifically, we treated an interaction class as object rare (object non-
rare) if Nv,o/No < (≥) α. On HICO-DET dataset, we set α to 0.3 based on its
statistics. Note that an originally non-rare class in the whole training set can
be object rare under this setting. For each object, we computed the mean of
Average Precision (AP) for object rare and object non-rare classes, respectively.
After that, we averaged across all objects to obtain mean Average Precision
for Object-Rare (OR) and Object-NonRare (ONR), respectively. Besides, their
AVErage is also reported. Different from the traditional evaluation, the object
bias evaluation protocol considers the performance within each object and thus
offers a better test bed for quantifying a model’s ability to overcome the object
bias problem.

5.2 Object Bias Evaluation

The results under the new object bias setting are shown in Tab. 1. With SCG as
baseline, our method significantly improves object rare classes by a clear margin
of +1.09 mAP, +1.54 mAP and +1.45 mAP under three detection settings.
Besides, the proposed method also boosts HOID and QPIC by +0.97 mAP and
+0.67 mAP under OR setting. This provides evidence that our method can
effectively alleviate the object bias problem. Notably, the proposed module can
also improve ONR classes in most cases.

5.3 Standard Evaluation

Results on HICO-DET We followed [62] to report the results with detector
pre-trained on MS-COCO [37] (HOID and SCG), detector find-tuned on HICO-
DET (SCG and QPIC) and oracle detector (SCG). The results can be found in
Tab. 2, 3 and 4, respectively.

Our method improves the performance of all three baseline methods across all
detection settings. For instance, with pre-trained detector, our method promotes
HOID and SCG by +0.89 and +1.29 mAP on rare classes, respectively, which
amounts to 6% and 8% relative improvements. When leveraging fine-tuned de-
tector, the proposed approach can improve QPIC and SCG on rare classes by
+0.52 and +0.81 mAP. In particular, with the detection quality improved,
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Table 2: Results on HICO-DET with
pre-trained detector.

Method Full Rare Non-rare

iCAN [13] 14.84 10.45 16.15
TIN [32] 17.03 13.42 18.11
DRG [12] 19.26 17.74 19.71
VCL [20] 19.43 16.55 20.29
ACP [26] 20.59 15.92 21.98
DJ-RN [30] 21.34 18.53 22.18

HOID* [50] 19.58 15.29 20.96
+Ours 20.45 16.18 21.73

SCG* [62] 20.99 16.30 22.40
+Ours 21.50 17.59 22.67

Table 3: Results on HICO-DET with
fine-tuned detector.

Method Full Rare Non-rare

PPDM [35] 21.73 13.78 24.10
HOI-Trans [68] 23.46 16.91 25.41
ATL [21] 27.68 20.31 29.89
AS-Net [5] 28.87 24.25 30.25
FCL [22] 29.12 23.67 30.75

QPIC* [44] 29.04 21.55 31.27
QPIC + Ours 29.26 22.07 31.41

SCG* [62] 31.08 24.14 33.15
SCG + Ours 31.65 24.95 33.65

our method also enhances non-rare classes by a noticeable margin. Lastly, with
the oracle detector, the proposed method can advance SCG on both rare (+1.22
mAP) and non-rare classes (+1.26 mAP). These results demonstrate the superi-
ority of the proposed method. As a side product, we achieve new state-of-the-art
on the HICO-DET dataset.

Table 4: Results on HICO-DET with
oracle detector.

Method Full Rare Non-rare

iCAN [13] 33.38 21.43 36.95
TIN [32] 34.26 22.90 37.65
Peyre et al. [40] 34.35 27.57 36.38
FCL [22] 44.26 35.46 46.88

SCG* [62] 51.03 38.93 54.65
SCG + Ours 52.29 40.15 55.91

Table 5: Results on the HOI-COCO.
* indicates reproduced baseline.

Method Full Rare Non-rare

Baseline [21] 22.86 6.87 35.27
+VCL [20] 23.53 8.29 35.36
+ATL [21] 23.40 8.01 35.34

Baseline* 22.87 6.98 35.21
+CDN [60] 23.15 7.25 35.49
+Ours 23.73 8.58 35.49

Results on HOI-COCO We followed [21] to provide results with MS-COCO
pre-trained detector, which is the most typical setting for two-stage methods.
The results are shown in Tab. 5. For fair comparison, we reproduced the baseline
method used in ATL [21]. We also compared with the debiasing technique applied
in CDN [60], which aims to alleviate the general long-tail problem. It can be
observed that our method outperforms these debiasing methods on this relatively
small scale dataset, especially for rare classes.

5.4 Ablation Studies

We studied the effectiveness of our proposed method. All experiments are con-
ducted on HICO-DET dataset with the SCG [62] baseline, and evaluated under
both standard protocol and the proposed object bias setting.

Comparison with other Debiasing Methods We compared our method
with various debiasing methods in Tab. 6. The competitors include loss re-
weighting methods, general debiasing methods and Scene Graph Generation
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Table 6: Comparsion with debiasing methods.

Type Method Full Rare Non-rare OR ONR AVE

Baseline 20.99 16.30 22.40 18.38 25.06 21.70

Reweighting

+inv. freq. 17.58 14.15 18.61 9.77 21.01 15.39
+CB-Loss(0.9999) [9] 14.30 13.54 14.53 9.93 21.48 15.71
+CB-Loss(0.999) [9] 13.34 12.96 13.45 9.02 20.73 14.88
+CB-Loss(0.99) [9] 13.98 13.20 14.21 9.46 20.98 15.22

General +AT [54] 20.49 16.22 21.77 18.12 24.46 21.29
Debiasing +DIT [54] 18.13 16.99 18.47 17.35 23.05 20.20

SGG +TDE [46] 20.44 14.89 22.10 18.30 24.44 21.37
Debiasing +PCPL [58] 16.93 12.95 18.12 15.04 24.27 19.65

+Ours 21.50 17.59 22.67 19.47 25.01 22.24

Table 7: Performance of different classifiers on HICO-DET.

Detector Classifier Full Rare Non-rare OR ONR AVE

Pre-trained on MS-COCO
fb 21.08 16.66 22.40 19.00 24.38 21.69
fm 20.79 16.50 22.08 18.59 24.87 21.73
full 21.50 17.59 22.67 19.47 25.01 22.24

Fine-tuned on HICO-DET
fb 31.24 24.77 33.17 30.04 40.62 35.33
fm 30.60 23.30 32.77 29.43 40.79 35.11
full 31.65 24.95 33.65 30.21 41.08 35.64

Oracle
fb 51.24 39.27 54.82 51.81 74.73 63.27
fm 51.09 37.94 55.01 51.28 75.15 63.21
full 52.29 40.15 55.91 52.48 75.43 63.95

(SGG) debiasing methods. We observed all these methods degrade the original
baselines. This may be related to the strong interference with the original train-
ing process. Besides, some methods are designed to tackle the globally long-tail
problem and single-label classification, thus incapable of resolving the object-
conditional long-tail problem in HOI detection.

Efficacy of Classifiers The distinctive importance of the verb classifier in
the base model (fb), the one trained with ODM (fm) and the full classifier
(λfb + (1 − λ)fm) are explored in this experiment. From the results in Tab. 7,
we see that for all three detectors, fm is inferior to fb on both evaluation proto-
cols. However, when combining these two together, the final performance can be
further promoted. This is mainly because these two classifiers focus on different
classes and are in fact complementary to each other.

5.5 Visualizations

Effects of Memory We studied how the proposed ODM alleviates the distri-
bution imbalance and illustrated the evolution of verb distribution after reading
from the memory in Fig. 5. With these examples, we can conclude that our
method can effectively address the label imbalance problem under each object.
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Fig. 5: The evolution of accumu-
lated verb distribution after reading
from the proposed ODM for 4 ran-
domly selected objects. The leftmost
column shows ptrain(v|o) and the other
4 columns represent the sampled verb
distribution at different iterations.
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sit on straddle ride racehold

 SCG:  0.106 × 
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Fig. 6: False negative (top two) and
false positive (bottom two) instances
from the SCG baseline on HICO-
DET test set. For each instance, the
ptrain(v|o) is also shown, where the in-
volved verb is bold by a rectangular.

Especially, at the 2500-th iteration, the verb distribution is already less skewed,
which remains stable till the end of this epoch (∼4.5k iterations).

Qualitative Results We show some qualitative results in Fig. 6. For the
two false negative instances (top two), the baseline model assigns low score
to ground-truth interactions, wherein both involved verbs are conditionally rare
in the training set (race for motorcycle, jump for skis). For the false posi-
tive instances (bottom two), the baseline favors more frequent verbs (hold for
frisbee, ride for skateboard), though the interaction prediction is incorrect.
In contrast, our method can overcome these two kinds of errors and achieve
better performance.

6 Conclusion and Future Work
In this work, we systematically studied the object bias problem in Human-Object
Interaction detection. We demonstrated the recognition of this problem from the
aspects of unbalanced label distribution and biased model learning, and advo-
cated a new protocol to comprehensively evaluate model performance. To re-
duce the heavily skewed label distribution under each object, we proposed an
Object-wise Debiasing Memory to facilitate balanced sampling of HOI instances.
Extensive experiments validate the effectiveness of the proposed method, demon-
strating that it can significantly alleviate the object bias problem and outperform
advanced baselines with large margins. Due to the universal existence of the bias
problem, in the future, we plan to explore identifying bias factors in other related
tasks such as visual relation detection and scene graph generation.
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