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Abstract. This supplementary material includes: 1) implementation de-
tails of the proposed IFL and the baseline methods; 2) a detailed analysis
of our problem formulation; 3) more evidences of the re-sampling strat-
egy in the proposed environment construction; 4) more details of the
dataset construction for the proposed ImageNet-GLT and MSCOCO-
GLT benchmarks; 5) more experimental results of the proposed Invariant
Feature Learning framework.

A Implementation Details

For the proposed IFL, we first trained the model using the cross-entropy loss
for 60 epochs, then we started to construct and update environments every 20
epochs. This is because the early epochs are learning generalized features [15,24],
so constructing environments in early epochs won’t benefit the robustness of the
model too much. The trade-off parameter α between the classification loss and
IFL metric loss is initialized as 0.0 and changed to 0.001 and 0.005 along with
the environment construction. Besides, following the center loss [21], the mean
feature is accumulated by an SGD optimizer with the fixed learning rate of 0.5.
The pseudo code of the overall IFL algorithm is given in Algorithm 1.

For fair comparisons, we re-implemented all the investigated algorithms into
the same GLT codebase that is publicly available on Github: https://github.
com/KaihuaTang/Generalized-Long-Tailed-Benchmarks.pytorch. By default,
all images are resized to 112 × 112 using Random Resized Crop and Random
Horizontal Flip during training. We used ResNeXt-50 [23] as our backbone for all
methods except for BBN [27], RIDE [20] and TADE [26]. All models were trained
by the SGD optimizer with the batch size 256. The initial learning rate is 0.1 and
the default learning rate decay strategy is Cosine Annealing scheduler [10] except
for BBN [27], LDAM [2] and RIDE [20] that adopted the multi-step scheduler
based on original settings in the corresponding papers. For all one-stage meth-
ods, results were reported as the performance of the model at epoch 100. For

https://github.com/KaihuaTang/Generalized-Long-Tailed-Benchmarks.pytorch
https://github.com/KaihuaTang/Generalized-Long-Tailed-Benchmarks.pytorch
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two-stage cRT [7] and LWS [7], additional 10 epochs were required to fine-tune
a balanced classifier.

Algorithm 1 The proposed IFL algorithm

Input: the original training set {(x, y)}
Initialize: backbone f(·; θ), classifier g(·;w)
for N warm-up epochs do

// optimizing the model from cross-entropy classification loss
θ, w ∈ argminθ,w Lcls(f(x; θ), y;w)

end for
Initialize: class centers {Cy} for all classes
repeat
{(xe1 , ye1)}, {(xe2 , ye2)} = EnvConstruct({(x, y)}, θ, w)
for M epochs do

// learning from Lcls and LIFL

θ, w ∈ argminθ,w

∑
e∈E

∑
i∈e(Lcls + α · LIFL)

// update class center
{Cy} ← MovingAverage({Cy}, {(f(xe1 ; θ), ye1)}, {(f(xe2 ; θ), ye2)})

end for
until Converge
Output: backbone f(·; θ), classifier g(·;w)

B Problem Formulation

In Section 3 of the original paper, we formulate the classification model p(Y |X) as
p(Y |zc, za) based on a common assumption [12] that any object image X equals
to a set of underlying class-specific components zc and varying attributes za, i.e,
X = (zc, za), where (zc, za) can fully describe the entire the image X. Regarding
the classification task, a robust feature should only be extracted from the under-
lying zc, leaving non-robust za out of the visual feature. That is to say, an ideal
feature backbone f(·) should only respond to class-specific zc: z = f(X) = h(zc),
where there exists a mapping function h(·) between the extracted feature z and
the underlying robust class-specific components zc. So, we can further convert
the p(Y |X) into the following formula using the Bayes theorem [18]:

p(Y = k|X = x) = p(Y = k|zc, za)

=
p(zc, za|Y = k)

p(zc, za)
· p(Y = k)

=
p(zc|Y = k)

p(zc)
· p(za|Y = k, zc)

p(za|zc)︸ ︷︷ ︸
attribute bias

· p(Y = k)︸ ︷︷ ︸
class bias

,

(1)

where p(zc|Y=k)
p(zc)

is a robust indicator of the class; p(za|Y=k,zc)
p(za|zc) is a bias term

introduced by the existence of imbalanced attributes; p(Y = k) is a class bias
reflecting the class distribution of the training data.
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To better understand this formulation, we will provide a more detailed anal-
ysis, together with some interesting findings that can be derived from Eq. (1),
in the following sub-sections.

B.1 Details about Class-specific zc

Since the underlying class-specific zc equals to the existence of multiple inde-

pendent components, the formal definition of p(zc|Y=k)
p(zc)

in Eq. (1) is as follows:

p(zc|Y = k)

p(zc)
=

∏
ci∈exist

p(zci = 1|Y = k)

p(zci = 1)
·

∏
cj∈non−exist

p(zcj = 0|Y = k)

p(zcj = 0)
, (2)

where the underlying class-specific components zc can be regarded as a 0/1
vector; {ci} are the existed components on the object; {cj} are the non-existed
components on the object. An object X belongs to class Y = k, if and only if I)
all the essential components of class Y = k exist, e.g, a human has to contain the
existence of both p(zhead on object = 1|Y = human) = 1 and p(zbody on object =
1|Y = human) = 1, II) and the other irrelevant components don’t exist, e.g,
p(ztail on object = 0|Y = human) = 1 and p(zhorn on object = 0|Y = human) = 1.

Note that the above formulation may raise two questions regarding the class-
specific zc: 1) the hierarchy of classification and 2) the partial occlusion.

The Hierarchy of Classification: One common question about the above
Eq. (2) would be what if an object with all the essential components of a class also
contains other irrelevant components, e.g, an object with both human head and
human body also has 4 horse limbs4. This problem is raised from the hierarchy
of classification. If an object from class Y = k contains one or more unneces-
sary components, it usually means the object is actually from a sub-species of
class Y = k, which is belong to Y = k but with more fine-grained descriptions.
In a valid multi-class classification dataset, a species and its sub-species won’t
simultaneously exist in the prediction vocabulary. Otherwise, it becomes a multi-
label classification task. However, multiple sub-species from a common hidden
hyper-species can be co-existed in one dataset, e.g, “shetland sheepdog” and
“pug-dog” in ImageNet [17] are both from a hyper-species “dog”. In this case,
although these sub-species may have close templates, the class-specific compo-
nents zc still satisfy the property of intra-class invariance. In fact, visualizations
from the previous research [19] found that the cross-entropy loss will automat-
ically learn discriminative components instead of some common components in
this case, e.g, only the teeth of “warthog” will be learned as class-specific fea-
tures, rather than the entire body, to increase the power of discrimination within
the dataset.

The Partial Occlusion: Another question is about what if there are par-
tial occlusions on the images. Does this break the intra-class invariance of class-
specific components zc? The answer is still NO. The recent study of Masked

4 Centaur: a creature from Greek mythology that has both human upper body and
horse lower body [22], which can be regarded as a sub-species of human.
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Auto-Encoders [4] proves that deep-learning models can reconstruct the entire
image from mere 25% patches due to the redundant visual information. However,
what if the strong occlusion hurts the class-specific component zc by removing
the entire component? During training, these images shouldn’t exist in the train-
ing data in the first place, as they can not be labeled. During prediction, the
corresponding image is no longer predictable and supposed to be detected as an
outlier [1], which is beyond the scope of this paper. Therefore, if there are just
some slight partial occlusions, models would still be capable of obtaining the
original zc, as we can naturally imagine the entire object from the redundant
visual information.

B.2 Details about the attributes za

When we look at Eq. (1), we may wonder if there exists certain attribute zaj
that

is class-independent, i.e, p(zaj
|Y = k, zc) = p(zaj

|zc). The answer is YES. So

we can have a formal definition of p(za|Y=k,zc)
p(za|zc) in Eq. (1) as follows:

p(za|Y = k, zc)

p(za|zc)
=

∏
ai∈d−Y

p(zai
|Y = k, zc)

p(zai
|zc)︸ ︷︷ ︸

biased attributes

·
∏

aj∈ind−Y

p(zaj |Y = k, zc)

p(zaj
|zc)︸ ︷︷ ︸

benign attributes

, (3)

where d−Y and ind−Y stand for class-dependent and class-independent, respec-
tively; {ai} are class-dependent attributes; {aj} are class-independent attributes.
It’s easy to notice that all benign attributes have p(zaj |Y = k, zc) = p(zaj |zc), so
the

∏
aj∈ind−Y

p(zaj
|Y=k,zc)

p(zaj
|zc) always equals to 1 and won’t introduce any biases.

In the original paper, we consider all attributes as a whole, i.e, a vector za, so we
didn’t differentiate the biased attributes and benign attributes. Their differences
are explained in the following.

Biased Attributes: Nearly all semantic attributes are biased. For example,
considering a class-specific component zcfur

as “fur” and zacolor
is an attribute

describing its “color”, different animals (Class Y) may have different distribu-
tions for the color of fur. In summary, the biased attributes {ai ∈ d − Y } are
either dependent on a class-specific component, e.g, the “color” or “texture” for
a specific zci , or dependent on multiple components at the same time, e.g, the
“posture” of a human that depends on both head, body and four limbs. Those
biased attributes not only cause the long-tailed prediction confidence within each
class, but also create spurious correlations between a biased attribute zai

and a
specific class Y = k.

Benign Attributes: Since we consider all attributes as a whole in the orig-
inal paper, i.e, an underlying vector za, we don’t differentiate benign attributes
from the entire za. However, if we look as Eq. (3), an attribute aj ∈ ind − Y
is totally benign as its distribution is independent of Y = k, i.e, p(zaj |Y =

k, zc) = p(zaj
|zc), making

p(zaj
|Y=k,zc)

p(zaj
|zc) = 1 become an unbiased term. In fact,

it fundamentally explains the effectiveness of the intuitive Data Aug-
mentation method, as the data augmentation introduces additional images
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Fig. 1. The relationship between the prediction logits and the cosine similarity between
image features and its class center in ImageNet-GLT. The direct proportion between
them demonstrates why the prediction confidence, i.e, p(Y = k|X), can be used to

probe the intra-class variation, i.e, p(za|Y =k,zc)
p(za|zc) .

(at no cost) with benign attributes that are independent of their classes. There
are two types of benign attributes regarding different types of data augmenta-
tion: I) the image-level attributes, that are independent of both zc and Y , are
commonly used as a pre-processing augmentation in the data loader, as they can
be easily generated from any given image, e.g, the rotation (Rotation), position
(Crop), size (Resize), and color (ColorJitter) for the image; II) the component-
related attributes, that are only independent of Y but still depend on zc, are
data augmentation at the data collection stage, e.g, the viewpoint, as they are
variations caused by the relative position between the camera and a specific com-
ponent instead of the object class. These benign attributes can increase both the
volume and the diversity of the classification dataset without any cost, which
explains why the data augmentation method like RandAug [3] are so effective
in our experiments.

C Environment Construction

C.1 Motivation

Since we don’t impose the disentanglement assumption that perfect feature vec-
tors z = [zc; za] with separated zc and za can be learned, we cannot easily
eliminate za through feature selection. Therefore, we can only implicitly prevent
features from associating with za during the backbone optimization. To achieve
this, we use the prediction logits of images to sample diverse distributions of
p(za|Y=k,zc)

p(za|zc) based on the formulation Eq. (1), as p(Y = k|X) ∝ p(za|Y=k,zc)
p(za|zc)

within a given class Y = k. If the feature backbone relies on the non-robust za,
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the diverse distributions of p(za|Y=k,zc)
p(za|zc) will make the model have unstable class

centers across different environments. On the contrary, if the feature backbone
relies more on the robust and invariant components zc, the class centers should
be more consistent against the environment change, which motivates the design
of the proposed IFL.

C.2 Re-sampling Strategy

The overall environment construction pipeline can be explained as follows: since
p(za|Y=k,zc)

p(za|zc) is only directly proportional to p(Y = k|X) within a given class

Y = k, the re-sampling strategy is conducted within each class independently.
Then, for each environment, we merge the resultant subsets from each class
that use the same re-sampling strategy, so the diverse environments are thus

corresponding to different re-sampling strategy, i.e, different p(za|Y=k,zc)
p(za|zc) .

In this sub-section, we will provide additional evidences to support the re-
sampling strategy in our environment construction method. To prove the direct

correlation between p(Y = k|X) and p(za|Y=k,zc)
p(za|zc) , we visualize the relationship

between the prediction logits and the cosine similarity between image features
and its class center in Fig. 1. First of all, p(za|zc) can be regarded as a fixed layout

in the given dataset and p(zc|Y=k)
p(zc)

is invariant within a class, therefore, the intra-

class variation is mainly caused by p(za|Y = k, zc) in a given class and dataset.
Since the attribute za is long-tailed, the prediction logits should also exhibit
long-tailed distribution, i.e, most of the samples with few head attributes have
relatively larger logits while few samples with most of the rare attributes have
lower logits. The visualized Fig. 1 proved this assumption. As the class center
is dominated by the head attributes due to their large population, the cosine
similarity between the feature of an image and its class center actually indicates
the rarity of the attribute vector za for this image. The rarer the attributes are,
the lower the prediction confidence is.

In summary, Fig. 1 demonstrates the reason why we can use p(Y = k|X)

to probe the p(za|Y=k,zc)
p(za|zc) and thus construct diverse environments and how bias

the intra-class distribution is (caused by long-tailed attributes).

D Dataset Construction

D.1 ImageNet-GLT

The proposed ImageNet-GLT benchmark is a long-tailed subset generated from
the original ImageNet [17] dataset. For Train-GLT, Train-CBL, and Test-CBL
splits, we can directly follow the previous ImageNet-LT benchmark [9] to con-
struct these splits. The tricky part is the Test-GBL that is used to evaluate the
Attribute-wise Long Tail (ALT) protocol and Generalized Long Tail (GLT) pro-
tocol. To create the attribute-wise balanced and class-wise balanced evaluation
environment (Test-GBL), we used the index of several feature clusters of each
category as the pretext attribute labels.
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Fig. 2. Examples of feature clusters using KMeans (through t-SNE [6]) and the corre-
sponding visualized images for each cluster in the original ImageNet [17].

(a) Class Distribution (left) and Cluster Distribution (right) for Train-GLT

(b) Class Distribution (left) and Cluster Distribution (right) for Train-CBL

(c) Class Distribution (left) and Cluster Distribution (right) for Test-CBL

(d) Class Distribution (left) and Cluster Distribution (right) for Test-GBL

Fig. 3. Class distributions and cluster distributions for each split of ImageNet-GLT
benchmark. Note that clusters may represent different attribute layouts in each classes,
so ImageNet-GLT actually has 6 × 1000 pretext attributes rather than 6, i.e, each
column in the cluster distribution stands for 1000 pretext attributes having the same
frequency.
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Fig. 4. Examples of objects from MSCOCO-Attribute [14] dataset. Note that the ob-
ject attribute won’t be released in the proposed MSCOCO-GLT

To begin with, we applied a pre-trained ResNet-50 [5] backbone provided by
PyTorch [13] to extract a 2048-dimensional feature vector for all images in the
ImageNet dataset. Then, we ran the KMeans algorithm to generate 6 clusters for
each category. As we can see from Figure 2, the corresponding visualized images
demonstrate that the feature clusters within each category naturally separate
images by different types of attributes, e.g, materials, backgrounds, etc.

Afterwards, we smoothed the attribute distribution of each category by en-
suring the frequencies of Top-2, Medium-2, Bottom-2 clusters to be 70%, 20%,
and 10% for all categories. Note that the underlying attribute distribution is
naturally long-tailed. However, since we only used a limited number of clusters,
i.e, 6 clusters, to approximate the numerous realistic attributes, those clusters
could be relatively too balanced for some categories, so we force the distribution
of pretext attributes to be the same for all categories.

We also list all the class distributions and cluster distributions for all four
split, Train-GLT, Train-CBL, Test-CBL, Test-GBL, of ImageNet-GLT bench-
mark in Fig. 3. Note that each column in the cluster distribution stands for 1000
pretext attributes for all 1000 classes that have the same frequency, as clusters
may represent different attribute layouts in each classes.

D.2 MSCOCO-GLT

The proposed MSCOCO-GLT benchmark is a long-tailed subset generated from
the MSCOCO-Attribute [14,8], where we cropped each object as individual im-
ages. Fig. 4 shows several examples of objects from MSCOCO-Attribute [14]
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(a) Class Distribution (left) and Attribute Distribution (right) for Train-GLT

(b) Class Distribution (left) and Attribute Distribution (right) for Train-CBL

(c) Class Distribution (left) and Attribute Distribution (right) for Test-CBL

(d) Class Distribution (left) and Attribute Distribution (right) for Test-GBL

STD: 0.012

STD: 0.006

STD: 0.011

STD: 0.012

Fig. 5. Class distributions and attribute distributions for each split of MSCOCO-GLT
benchmark, where the most frequent category is the “person”. Although we cannot
strictly balance the attribute distribution in Test-GBL split due to the fact that both
head attributes and tail attributes can co-occur in one object, the selected Test-GBL
has lower standard deviation of attributes than other splits.

Table 1. Evaluation of GLT Protocol on ImageNet-GLT: This is a supple-
mentary table of the Table 1 in original paper. ManyA, MediumA, FewA indicate the
head (Top-2 Clusters), medium (Medium-2 Clusters), and tail (Bottom-2 Clusters) at-
tributes. The (Top-1) Accuracy and Precision of previous LT algorithms and their IFL
variants are reported

Setting Generalized Long Tail (GLT) Protocol

Test Splits ManyA MediumA FewA Overall

Evaluation Metric Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision

R
e
-b

a
la
n
c
e

Baseline 47.36 51.84 33.45 36.05 23.44 25.66 34.75 40.65
cRT [7] 51.21 50.48 36.25 35.03 25.24 24.62 37.57 37.51
LWS [7] 51.95 51.14 36.77 35.60 25.09 24.70 37.94 38.01

Deconfound-TDE [19] 51.03 49.52 36.11 34.25 25.53 24.47 37.56 37.00
BLSoftmax [16] 50.58 50.21 35.74 35.17 24.96 25.46 37.09 38.08
Logit-Adj [11] 52.25 51.08 36.12 34.92 25.04 24.71 37.80 37.56

BBN [27] 51.92 53.17 36.24 36.26 25.56 26.07 37.91 41.77
LDAM [2] 52.33 51.91 37.09 36.07 26.19 25.56 38.54 39.08

(ours) Baseline + IFL 51.16 56.64 36.50 39.88 26.21 29.00 37.96 44.47
(ours) cRT + IFL 53.53 54.93 38.15 38.21 27.13 27.66 39.60 41.65
(ours) LWS + IFL 53.31 55.42 38.21 39.16 27.40 28.46 39.64 42.45

(ours) BLSoftmax + IFL 53.68 55.35 39.05 40.67 27.49 29.09 40.08 43.48
(ours) Logit-Adj + IFL 54.90 55.19 39.09 39.93 27.57 29.27 40.52 42.28

A
u
g
m
e
n
t Mixup [25] 43.46 47.05 30.23 30.63 20.96 22.73 31.55 37.44

RandAug [3] 51.63 55.21 36.96 39.95 26.14 27.84 38.24 44.74
(ours) Mixup + IFL 57.10 61.66 41.46 45.04 30.43 33.42 43.00 49.25

(ours) RandAug + IFL 58.67 62.42 44.06 47.36 31.97 34.67 44.90 50.47

E
n
se

m
b
le TADE [26] 55.52 56.35 40.86 41.23 28.85 30.01 41.75 44.15
RIDE [20] 57.49 56.24 41.57 39.96 29.94 29.18 43.00 43.32

(ours) TADE + IFL 56.99 57.44 42.55 42.39 30.86 31.55 43.47 45.17
(ours) RIDE + IFL 59.24 59.87 44.98 44.80 32.69 32.55 45.64 47.14
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dataset. Note that the object attribute won’t be released in the proposed MSCOCO-
GLT.

Different from the ImageNet-GLT, we adopt real attribute annotations to
construct the MSCOCO-GLT. However, as we can see from Fig. 4, a single object
can be labelled with multiple attributes, causing the tail attribute co-occurring
with the head in one image. Therefore, it’s impossible to strictly balance the
attribute distribution in the Test-GBL, so we proposed the Algorithm 2 to gen-
erate the Test-GBL for MSCOCO-GLT. Specifically, we need to iteratively look
for samples to minimize the standard deviation of the overall attribute distribu-
tion within each category, so the output subset is the most balanced subset in
terms of the attribute distribution in the entire dataset.

As to the Train-GLT, Train-CBL, and Test-CBL, we can use the same strat-
egy as the previous sub-section to directly sample from each category. Note that
the long-tailed distribution in the MSCOCO-GLT is more severe than ImageNet-
GLT, as it only has 29 classes but the single class “person” possess over 40%
of the training data. Therefore, the class-wise balanced Train-CBL has much
smaller size of data.

We also list all the class distributions and attribute distributions for all four
split, Train-GLT, Train-CBL, Test-CBL, Test-GBL, of MSCOCO-GLT bench-
mark in Fig. 5. Here we only show the Test-GBL for CLT and GLT protocols.
Test-GBL for ALT protocols has small size due to the cost of class-wise data
re-balance for Train-CBL, but the class and attribute distributions are still the
same as Fig. 5 (d). It also worth noting that although the attribute distribution
is not strictly balanced in Fig. 5 (d), it has the lowest attribute STD, making
the Test-GBL more balanced in attributes than other splits.



Generalized Long-Tailed Classification 11

Algorithm 2 Generating Test-GBL for MSCOCO-GLT

Input: {(x, y, z)} is a set of object x with corresponding label y and attribute z
Parameter: N is the number of selected images for each category
Initialize: Test-GBL = {}
for i in Y do

//Y is the set of category
count = 0
zdist = [0, 0, 0, ...]
while count < N do

MinSTD = MAX
Cancidate = None
for (x, y, z) in {(x, y, z)} do

if y = i then
tempdist = zdist + z
tempdist = Norm(tempdist)
tempSTD = STD(tempdist)
if tempSTD < MinSTD then

MinSTD = tempSTD

Cancidate = (x, y)
zcandidate = z

end if
end if

end for
Test-GBL.append(Candidate)
zdist = zdist + zcandidate

count+ = 1
end while

end for
Output: Test-GBL

E Experimental Results

Due to the limited space, we simplified the Table 1 and Table 3 in the original
paper by skipping the results of some detailed splits, e.g, ManyA, MediumA,
FewA in GLT protocol for Table 1 and ManyC , MediumC , FewC for Table 3.
Therefore, we complete the corresponding parts in this supplementary material.

As we can see from Table 1, the detailed ManyA, MediumA, FewA of GLT
protocol are quite similar to those in the ALT protocol, so the conclusions drawn
from the Table 2 of the original still hold at here. We can notice that the effects
caused by the attribute-wise imbalance is different from those caused by class-
wise imbalance, as there are no precision-accuracy trade-off in ManyA, MediumA,
FewA. It further proves that why the previous trends [26] of improving both
head and tail categories are actually trying to solve the GLT with attribute-wise
imbalance, because extracting more attribute-invariant features can benefit both
head and tail categories.
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Table 2. Evaluation of CLT and GLT Protocols on MSCOCO-GLT: This is
a supplementary table of the Table 3 in original paper. (Top-1) Accuracy | Precision
of previous LT algorithms and their variants equipped with the proposed IFL are
reported. All methods are re-implemented under the same codebase with ResNext-50
backbone to ensure fair comparisons

Methods Class-wise Long Tail (CLT) Protocol Generalized Long Tail (GLT) Protocol

< Accuracy | Precision > ManyC MediumC FewC Overall ManyC MediumC FewC Overall

R
e
-b

a
la
n
c
e

Baseline 80.86 | 71.21 74.79 | 76.35 51.83 | 87.01 72.34 | 76.61 74.41 | 65.54 66.58 | 69.81 38.75 | 81.08 63.79 | 70.52
cRT [7] 80.18 | 71.18 75.71 | 75.43 57.50 | 85.19 73.64 | 75.84 73.00 | 64.34 67.42 | 68.00 44.00 | 76.32 64.69 | 68.33
LWS [7] 80.50 | 69.85 74.46 | 75.21 54.42 | 87.20 72.60 | 75.66 73.55 | 63.57 66.08 | 67.57 40.42 | 80.87 63.60 | 68.81

Deconfound-TDE [19] 78.36 | 72.64 77.96 | 73.01 57.08 | 82.83 73.79 | 74.90 72.14 | 65.99 71.04 | 66.68 45.00 | 75.29 66.07 | 68.20
BLSoftmax [16] 80.41 | 73.53 77.38 | 70.53 48.92 | 87.86 72.64 | 75.25 72.32 | 65.88 70.63 | 64.21 35.83 | 82.30 64.07 | 68.59
Logit-Adj [11] 80.36 | 74.03 78.00 | 77.16 61.58 | 81.54 75.50 | 76.88 73.64 | 66.14 68.75 | 69.16 47.33 | 70.79 66.17 | 68.35

BBN [27] 82.32 | 70.35 78.33 | 77.35 48.58 | 90.22 73.69 | 77.35 75.82 | 62.96 69.21 | 69.59 34.25 | 84.70 64.48 | 70.20
LDAM [2] 82.05 | 75.43 80.04 | 74.36 54.75 | 88.54 75.57 | 77.70 76.05 | 69.93 72.96 | 66.85 39.75 | 79.81 67.26 | 70.70

(ours) Baseline + IFL 82.09 | 72.40 77.50 | 79.29 53.67 | 90.03 74.31 | 78.90 76.09 | 66.53 68.08 | 71.80 40.00 | 83.57 65.31 | 72.24
(ours) cRT + IFL 82.55 | 73.93 78.58 | 79.34 59.83 | 88.13 76.21 | 79.11 76.77 | 67.28 69.25 | 70.25 44.08 | 80.94 66.90 | 71.34
(ours) LWS + IFL 82.27 | 73.69 78.29 | 79.39 59.83 | 88.82 75.98 | 79.18 76.73 | 67.30 68.58 | 70.65 43.83 | 80.88 66.55 | 71.49

(ours) BLSoftmax + IFL 81.77 | 72.79 78.25 | 74.53 49.92 | 90.07 73.72 | 77.08 74.73 | 66.54 69.71 | 65.39 36.58 | 85.58 64.76 | 70.00
(ours) Logit-Adj + IFL 82.77 | 75.42 79.25 | 79.61 62.67 | 84.78 77.16 | 79.09 75.59 | 68.16 69.83 | 70.73 48.17 | 72.77 67.53 | 70.18

A
u
g
m
e
n
t Mixup [25] 81.86 | 72.96 76.58 | 80.00 55.50 | 86.19 74.22 | 78.61 75.41 | 67.13 67.13 | 71.47 39.00 | 77.79 64.45 | 71.13

RandAug [3] 83.27 | 74.70 80.04 | 80.76 58.50 | 87.62 76.81 | 79.88 77.18 | 68.07 71.46 | 72.68 42.83 | 81.40 67.71 | 72.73
(ours) Mixup + IFL 84.59 | 75.20 80.17 | 83.01 59.42 | 91.38 77.55 | 81.78 78.73 | 69.93 72.21 | 75.50 43.92 | 82.52 68.83 | 74.84

(ours) RandAug + IFL 84.86 | 75.20 81.42 | 82.12 57.17 | 89.85 77.71 | 81.10 78.82 | 69.19 71.42 | 73.88 42.08 | 82.93 68.16 | 73.97

E
n
se

m
b
le TADE [26] 83.77 | 76.29 81.46 | 75.19 51.92 | 90.80 76.22 | 78.84 75.68 | 68.78 73.83 | 66.27 37.33 | 85.58 66.98 | 71.22

RIDE [20] 83.82 | 77.49 84.00 | 77.38 56.75 | 91.44 78.29 | 80.33 77.09 | 70.22 74.54 | 68.50 41.08 | 83.23 68.59 | 72.20
(ours) TADE + IFL 83.91 | 75.78 81.63 | 75.74 52.83 | 92.14 76.53 | 79.15 76.82 | 68.55 73.88 | 68.13 37.08 | 88.10 67.38 | 72.42
(ours) RIDE + IFL 85.05 | 78.36 83.21 | 78.68 58.83 | 89.04 78.86 | 80.70 77.09 | 69.64 74.54 | 70.75 43.50 | 81.59 69.09 | 72.57

In Table 2, we completed the ManyC , MediumC , FewC for both CLT and
GLT protocols in MSCOCO-GLT, where ManyC contains Top-1 to Top-11 fre-
quent categories, MediumC has Top-12 to Top-23 categories, and the rest belongs
to FewC . The proposed variants of IFL still outperform the corresponding LT
methods in most cases. But we notice that the previous strong GLT baseline
RandAug + IFL is now worse than another GLT baseline Mixup + IFL. We be-
lieve that this is probably caused by the weird distribution in Fig. 5 (a), where
one single super head class “person” contains over 40% of the entire data, so
how to learn better boundaries between “person” class and other classes be-
comes the biggest problem, making the Random Augmentation [3] less effective
than Mixup [25], because the latter can ensure the boundaries having linear
transition between classes.
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