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Abstract. Domain generalization is the task of learning models that
generalize to unseen target domains. We propose a simple yet effective
method for domain generalization, named cross-domain ensemble distil-
lation (XDED), that learns domain-invariant features while encouraging
the model to converge to flat minima, which recently turned out to be a
sufficient condition for domain generalization. To this end, our method
generates an ensemble of the output logits from training data with the
same label but from different domains and then penalizes each output
for the mismatch with the ensemble. Also, we present a de-stylization
technique that standardizes features to encourage the model to pro-
duce style-consistent predictions even in an arbitrary target domain.
Our method greatly improves generalization capability in public bench-
marks for cross-domain image classification, cross-dataset person re-ID,
and cross-dataset semantic segmentation. Moreover, we show that mod-
els learned by our method are robust against adversarial attacks and
unseen corruptions.
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1 Introduction

Deep neural networks (DNNs) have brought remarkable advances in a number
of research areas such as image classification [43], image synthesis [24], and re-
inforcement learning [54]. The huge success of DNNs depends heavily on the
assumption that training and test data are sampled under the independent and
identically distributed (i.i.d.) condition. However, this assumption often does not
hold in real-world scenarios; a large error occurs due to the discrepancy between
training and test data, also known as the domain shift problem. As a solution to
this problem, domain generalization, the task of learning models that generalize
to unseen target domains, is in the spotlight. A key to the success of domain
generalization is to learn invariant features across domains. To this end, most
previous methods align feature distributions of multiple domains by adversarial
training [48,49], minimizing the dissimilarity between the distributions of source
domains [55], or contrastive learning [40]. Then, a classifier is trained to predict
the labels for the aligned source features in hopes that it will also generalize well
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Fig. 1: Illustration of cross-domain ensemble distillation (XDED). Although the
four images share the same class label, their predictions manifest different inter-
class relations due to the visual gap between domains. XDED constructs an
ensemble by averaging all predictions and matches it with each prediction.

for any target domain. However, this approach often drops performance when
the target domain differs substantially from the source domains as the model is
prone to overfit to the source domains.

Meanwhile, the relationship between the geometry of loss landscapes and
generalization ability has attracted increasing attention [18,20,36,38]. In partic-
ular, converging to flat minima in loss landscapes is known as a key to achieve
robustness against the loss landscape shift between training and test datasets.
Inspired by the observation that higher posterior entropy helps a model converge
to flat minima [10,60,89], entropy regularization techniques like self-knowledge
distillation [87] and entropy maximization [9] have been proposed to increase
entropy rather than forcing a model to completely fit training data (i.e., one-hot
labels) to induce low entropy. Since the degree of loss landscape shift is generally
expected to be bigger in the case of domain generalization, it is more important
to converge to flat minima in domain generalization. However, the benefit of flat
minima in the context of domain generalization has not been actively studied
yet.

In this paper, we propose a novel method, named cross-domain ensemble
distillation (XDED), that learns domain-invariant features while encouraging
convergence to flat minima for domain generalization. Specifically, XDED gen-
erates an ensemble of the output logits for the data with the same label but
from different domains, and then penalizes each output for the mismatch with
the ensemble (Fig. 1). By doing so, it enables a model to learn domain-invariant
features by enforcing prediction consistency between the data with the same la-
bel but from different domains. Also, XDED increases the posterior entropy of
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each output distribution, which helps the model converge to flat minima as the
entropy regularization does. To the best of our knowledge, XDED is the first to
achieve these two objectives simultaneously for domain generalization, and this
contribution leads to significant performance improvement.

Since XDED is still limited to exploiting the information of only source do-
mains, there is further room to reduce the domain gap with the target domain.
Hence, we also introduce a de-stylization technique well-suited to domain gener-
alization, called UniStyle. UniStyle suppresses domain-specific style bias simply
by standardizing intermediate feature maps of input image during both training
and test time. Thanks to UniStyle, our model produces style-consistent predic-
tions not only for the source domains but also for the target domain, which
greatly reduces the domain gap and boosts the effect of XDED.

Based on the recent theoretical result on the relationship between the domain
generalization and the flatness of local minima [8], we first empirically show that
the proposed framework can improve generalization capability by achieving two
goals: promoting flat minima and reducing the domain gap. Next, we further
demonstrate the superiority of our method through extensive experimental re-
sults. On the standard public benchmarks for cross-domain image classification,
XDED significantly enhances generalization ability in both multi-source and
single-source settings. We also validate the effectiveness of our method in vari-
ous domain generalization scenarios by showing the non-trivial improvement on
the DomainBed [26], cross-dataset person re-ID [90,91], and cross-dataset seman-
tic segmentation experiments. Moreover, we demonstrate that models learned by
our method also help achieve robustness against adversarial attacks and unseen
image corruptions.

2 Related Work

Domain generalization. The goal of domain generalization is to learn domain-
invariant features that well generalize to unseen target domains. For the purpose,
existing methods match feature distributions of different domains by adversarial
feature alignment [48,49] or reducing the difference between feature distributions
of diverse source domains [55]. Recently, meta-learning frameworks [2,16,47] have
been introduced to simulate the domain shift by dividing the meta-train and
meta-test domains from source domains. Also, data augmentation methods have
been proposed to generate more diverse data beyond those of given source do-
mains [37,41,66,77,93]. Most similar to our framework, ensemble methods for
domain generalization have been proposed [79,65,94]. They all train multiple
modules such as exemplar SVMs [79], domain-specific BN [34] layers [65] or
classifiers [94], and exploit the ensemble of learned modules for prediction in
testing. However, we remark that our XDED utilizes the ensemble of model pre-
dictions as the soft label and transfers it to the model itself. Therefore, it does
not demand any additional module during both training and testing.
Knowledge distillation (KD). KD was originally studied to transfer the
knowledge of a deep model to a shallow model for model compression [31].
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It has been also used for other purposes such as metric learning [59,42] and
network regularization [78,87,84]. In particular for network regularization, self-
knowledge distillation (self-KD) has been studied; it distills knowledge from the
model itself and enforces prediction consistency between a sample and its per-
turbed one or other samples. KD has been used for domain adaptation [52,19],
and such method trains several teacher models from the source domains and
distills the ensemble of their predictions to the student model. It unfortunately
requires large memory due to multiple teachers, and are difficult to be extended
to domain generalization as they demand target images in training. In contrast,
our method improves generalization capability of a model on unseen domains
without the need for target images and additional teacher models.
Flat minima in loss landscapes. Recent analyses have revealed that finding
flat minima is crucial for model generalization [38,18,20]. In this context, multi-
ple methods have been proposed to promote flat minima in loss landscapes since
flat minima have an advantage over sharp minima in robustness against the loss
landscape shift between training and test data.Among literature on ways of pro-
moting flat minima (e.g., weight averaging [35,8] and training strategies [20,10]),
we focus on the high entropy-seeking approaches, on which XDED is based.
Maximum Entropy [60,9] maximizes the entropy of an output distribution from
a classifier. Similarly, KD-based methods also aim at inducing high entropy of
the output distribution by penalizing the mismatch with the output distribution
from that of another classifier such as differently initialized peer networks [89]
or subnetworks within a network itself [87]. Although SWAD [8] has introduced
the importance of flat minima in the area of domain generalization, we remark
that SWAD belongs to weight averaging but does not focus on learning domain-
invariant features, whereas XDED belongs to entropy regularization as well as
is designed for learning domain-invariant features.
Bias towards styles. Recent studies [6,22] revealed that DNNs overly depend
on a strong bias towards styles, and it is also confirmed in the domain general-
ization literature [12,95,37] that a visual domain is highly correlated to feature
statistics. Hence, previous work defines image styles as the bias and attempts to
remove the bias by style augmentation in the space of feature statistics [95,37],
using another model that is intentionally biased to styles [56], or minimizing a
whitening loss [12]. Distinct from these techniques, we show that a simple yet
effective de-stylization technique leads to a smaller divergence measure between
target and source domains without bells and whistles.

3 Our Method

3.1 Cross-Domain Ensemble Distillation

Review of knowledge distillation (KD). The goal of KD [31] is to transfer
knowledge of a teacher model t to a student model s, usually a wide and deep
model to a smaller one, for the purposes of model compression or model reg-
ularization. Given input data point x and its label y ∈ {1, · · · , C}, we denote
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the output logit of model as z(x) = [z1(x), · · · , zC(x)]. The posterior predictive
distribution of x is then formulated as:

P (y|x; θ, τ) = exp(zy(x)/τ)∑C
i=1 exp(zi(x)/τ)

, (1)

where the model is parameterized by θ and τ is a temperature scaling parameter.
KD enforces to match the predictive distributions of s and t. Specifically, it
is achieved by minimizing the Kullback-Leibler (KL) divergence between their
predictive distributions as follows:

LKD(X; θs, τ) =
∑
xi∈X

C∑
c=1

DKL(P (c|xi; θt, τ)||P (c|xi; θs, τ)), (2)

where X is a batch of input data, θt and θs are the parameters of a teacher and
a student, respectively.
Cross-domain ensemble distillation. We propose a new KD method for do-
main generalization, called cross-domain ensemble distillation (XDED). XDED
aims to construct the domain-invariant knowledge from the data of multiple do-
mains. Specifically, XDED generates an ensemble of logits from the data with
the same label but from different domains. Next, XDED penalizes each logit
for the mismatch with the ensemble which is not biased towards a specific do-
main, which encourages learning domain-invariant features. Unlike the conven-
tional KD, XDED does not require an additional network that increases training
complexity (e.g., extra parameters and training time) but distills the ensemble
constructed by multiple samples to the model itself in the form of self-KD.

Formally, let Xy denote the set of samples that have the same class label y in
a mini-batch. Then, we obtain an ensemble of logits from Xy by simply taking
an average as:

z̄(Xy) =
∑

xi∈Xy

z(xi)

|Xy|
. (3)

Then, the predictive distribution for the ensemble created from data Xy is as:

P̄ (c|Xy; θ, τ) =
exp(z̄c(Xy)/τ)∑C
i=1 exp(z̄i(Xy)/τ)

, (4)

The loss function of XDED is defined as follows:

LXDED(Xy; θ, τ) =
∑

xi∈Xy

C∑
c=1

DKL(P̄ (c|Xy; θ̂, τ)||P (c|xi; θ, τ)), (5)

where θ̂ is a fixed copy of the parameter θ. Following [53,84], we stop the gradient

to be propagated through θ̂ to prevent the model from falling into some trivial
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solutions. To sum up, we set our objective function as

min
θ

Lθ = LCE(X,Y ; θ) + λ
∑
y∈Y

LXDED(Xy; θ, τ), (6)

where X is a batch of input images, Y is a batch of corresponding class labels,
LCE denotes the vanilla cross-entropy loss, and λ is a hyperparameter to balance
LCE and LXDED. λ and τ are 5.0 and 4.0 throughout this paper.

3.2 UniStyle: removing and unifying style bias

To further regularize the model to produce style-consistent predictions, we pro-
pose a de-stylization technique that is well-suited to domain generalization. As
source domain styles are not expected to appear at test time, we propose UniStyle
to prevent the model from being biased towards the domain-specific styles, which
reduces the domain gap with the target domain.

More specifically, following existing methods based on style transfer [17,32,70],
we first represent a neural style as statistics of intermediate feature maps from
the feature extractor. Formally, let F ∈ RC×H×W denote an intermediate feature
map of an image. Then, a neural style of the image is represented as the combi-
nation of channel-wise mean µ(F ) ∈ RC and standard deviation σ(F ) ∈ RC of
F as:

µc(F ) =
1

HW

H∑
h=1

W∑
w=1

Fc,h,w, (7)

and

σc(F ) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(Fc,h,w − µc(F ))2, (8)

where µ(F ) = [µ1(F ), · · · , µC(F )] and σ(F ) = [σ1(F ), · · · , σC(F )]. Next, we
simply standardize each feature to have constant channel-wise statistics, µW

and σW as:

UniStyle(F ) = σW
F − µ(F )

σ(F )
+ µW , (9)

where µW = 0 and σW = 1 (i.e., zero-mean standardization). Technically,
UniStyle is a special case of InstanceNorm (IN) [70]. Nevertheless, we remark
that UniStyle aims to remove domain-specific information without any learnable
parameters to reduce the domain gap while IN learns channel-wise scaling and
bias parameters for style transfer. Also, note that we empirically observed that
UniStyle is effective when being applied at multiple early layers, which is aligned
with recent studies [17,32] suggesting that the style information is usually cap-
tured at the early layers.1

1 See the supplementary material for further analyses.
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Table 1: Comparison of the entropy values. When each model is converged, the
entropy value is calculated by averaging over all training samples.

OfficeHome (Clipart) PACS (Cartoon)
Methods Entropy Accuracy Entropy Accuracy

ResNet-18 0.25 49.4 0.01 75.9
MixStyle [95] 0.35 53.4 0.03 78.8
XDED 0.92 55.2 0.38 81.7

3.3 Analysis of Our Method

In this section, we analyze the effectiveness of XDED, especially through the
link to the theoretical result and the supporting empirical evidences. We first
begin with a theorem related to domain adaptation [3,4], which shows that the
expected risk on the target domain is bounded by that on the source domain
and the divergence between these domains. To find a model parameter θ ∈ Θ
for domain generalization, Cha et al. [8] considered a robust empirical loss:

ε̂γS(θ) := max
||∆||≤γ

ε̂S(θ +∆) (10)

where ε̂S(θ) is an empirical risk over source domains S and γ is a radius which
defines neighbor parameters of θ. Then, Cha et al. [8] proved that finding flat
minima reduces the domain gap through the theorem below:

Theorem 1. Consider a set of N covers {Θk}Nk=1 such that the hypothesis space
Θ ⊂ ∪N

k Θk where diam(Θ) := supθ,θ′∈Θ ||θ − θ′||2, N := ⌈(diam(Θ)/γ)d⌉ and d
is dimension of Θ. Let vk be a VC dimension of each Θk. Then, for any θ ∈ Θ,
the following bound holds with probability at least 1− δ,

εT (θ) <ε̂γS(θ) +
1

2I

I∑
i=1

Div(Si, T ) + max
k∈[1,N ]

√
vk ln (m/vk) + ln (N/δ)

m
, (11)

where m = nI is the number of training samples and Div(Si, T ) is the divergence
between the source domain Si and the target domain T .

We remark that, in Eq. (11), the test loss εT (θ) is bounded by three terms: (1) the
robust empirical loss ε̂γS(θ), (2) the divergence Div(Si, T ), and (3) a confidence
bound depending on the radius γ and the number of training samples m. In the
rest of this section, according to the above theorem, we provide a theoretical
interpretation that our method enhances the generalization ability by lowering
both ε̂γS(θ) and Div(Si, T ) with the empirical evidences.
Promoting flat minima. We remark that XDED is motivated by recent en-
tropy regularization methods [9,87,89] in pursuit of flat minima. It has been
empirically demonstrated that these methods promote flat minima by inducing
higher posterior entropy. It can be interpreted as relaxing the training proce-
dure to learn richer information encoded in soft labels, which helps the model
converge to flat minima more than forcing the model to completely fit one-hot
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Fig. 3: Comparison to existing methods promoting flat minima. Each model is
evaluated on Cartoon of PACS after being trained on the rest source domains.
Left: The divergence (A-distance) between the source domains and the target
domain, Right: Generalization performance on the target domain.

labels. In this context, we also demonstrate that XDED clearly induces higher
entropy as shown in Table 1. Considering that XDED is motivated by the obser-
vation that different domains manifest different inter-class relations due to the
domain gap (Fig. 1), this is natural since our ensembles would integrate mean-
ingful inter-class relations from multiple domains and the model learned with
them would be led towards high entropy.

Next, to investigate whether the model learned with XDED converges to flat
minima indeed, we quantify the flatness of the local minima where the model
converged by measuring the increase of loss values between θ and its neighbor-
hoods, assuming that the model converged in flat minima would have smaller
increases. Following [8,9,87,89], we measure the losses of the learned models be-
fore and after adding Gaussian noises to model parameters while varying the
standard deviation of the noise σϵ (i.e., LCE(X,Y ; θ + ϵ) where ϵ ∼ N(0, σϵ))
with 100 runs. As a result, XDED demonstrates its robustness against the weight
perturbation with smaller loss increases as shown in Fig. 2.

Domain-invariant feature learning. Here, we highlight that XDED also
learns domain-invariant features via regularizing the consistency between the
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predictions from the data with the same label but from different domains and
their ensemble. Thus, we compare XDED with existing methods promoting flat
minima, which are dedicated to the flatness of local minima only. Specifically,
to examine the effectiveness in reducing the divergence Div(Si, T ), we measure
A-distance [3,39]. Due to the computational intractability, we calculated an ap-
proximated one [50,56] 2 As shown in Fig. 3 (Left), we observe that the existing
methods promoting flat minima fail to reduce the distance while XDED clearly
lowers the distance and UniStyle further enhances the result. Naturally, that re-
sult is connected to the quantitative superiority of our framework over existing
flat minima-promoting methods (Fig. 3 (Right)).

4 Experiments

4.1 Generalization in image classification

Multi-source domain generalization. Specifically, for a fair comparison, we
follow the leave-one-domain-out protocol [45] where we train a model on three
domains and evaluate it on the remaining domain. For the benchmark datasets,
we employ the PACS [45] and OfficeHome [72] that are widely-used benchmarks
for domain generalization in image classification. PACS contains 9,991 images of
7 classes over 4 domains: Art Painting, Cartoon, Photo, and Sketch. OfficeHome
includes 15,500 images of 65 classes over 4 domains: Artistic, Clipart, Product,
and Real. We use ResNet-18 [27] as the backbone, and our UniStyle is applied
to output feature maps of the first and second residual blocks for PACS and the
first one only for OfficeHome.
Results. As summarized in Table. 2, we observe that our method not only signif-
icantly enhances the vanilla but also outperforms the latest competing methods.
In particular, our method outperforms the second-best method on Cartoon of
PACS and Clipart of OfficeHome by about 4.0% and 2.0%, respectively. these
results justify the superiority of our method, which is simple yet effective.
Single-source domain generalization Thanks to the simple design of our
proposed method, which does not explicitly require domain labels, our method
can be transparently incorporated with single-source domain generalization where
we only have access to a single source domain during training. Therefore, to fur-
ther evaluate the impact of our method on single-source domain generalization,
our model is trained on each single domain of PACS and evaluated on the re-
maining target domains.
Results. As shown in Table. 3, our model, on average, significantly outperforms
other baselines by 8.7% in average accuracy. Besides, in all cases except for the
case of C → S, our model shows its superiority in performance. We believe this
interesting result stems from the fact that our method is still able to help the
model converge to flat minima and exploit the fine-grained relations between
intra-domain samples even if only a single source domain is given.

2 It is defined as d̂A = 2(1 − 2ϵsvm) where ϵsvm is the generalization error of a SVM-
based two-class classifier trained to distinguish between target and source domains.
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Table 2: Leave-one-domain-out generalization results on PACS and OfficeHome.
PACS OfficeHome

Methods Art CartoonPhoto Sketch Avg. ArtisticClipart Product Real Avg.

ResNet-18 77.0 75.9 96.0 69.2 79.5 58.9 49.4 74.3 76.2 64.7

MMD-AE [48] 75.2 72.7 96.0 64.2 77.0 56.5 47.3 72.1 74.8 62.7
JiGen [7] 79.4 75.3 96.0 71.6 80.5 53.0 47.4 71.4 72.7 61.2

CrossGrad [66] 79.8 76.8 96.0 70.2 80.7 58.4 49.4 73.9 75.8 64.4

MASF [16] 80.2 77.1 94.9 71.6 81.0 - - - - -
Epi-FCR [47] 82.1 77.0 93.9 73.0 81.5 - - - - -

EISNet [74] 81.8 76.4 95.9 74.3 82.1 - - - - -

L2A-OT [93] 83.3 78.2 96.2 73.6 82.8 60.6 50.1 74.8 77.0 65.6
SagNet [56] 83.5 77.6 95.4 76.3 83.2 60.2 45.3 70.4 73.3 62.3

SelfReg [40] 82.3 78.4 96.2 77.4 83.6 - - - - -
MixStyle [95] 84.1 78.8 96.1 75.9 83.7 58.7 53.4 74.2 75.9 65.5

L2D [75] 81.4 79.5 95.5 80.5 84.2 - - - - -

FACT [77] 85.3 78.3 95.1 79.1 84.5 60.3 54.8 74.4 76.5 66.5
DSON [65] 84.6 77.6 95.8 82.2 85.1 59.3 45.7 71.8 74.6 62.9

RSC [33] 83.4 80.3 95.9 80.8 85.1 58.4 47.9 71.6 74.5 63.1

StyleNeophile [37] 84.4 79.2 94.9 83.2 85.4 59.5 55.0 73.5 75.5 65.8

Ours 85.6 84.2 96.5 79.1 86.4 60.8 57.1 75.3 76.5 67.4

Table 3: Single-source domain generalization accuracy (%) on PACS with a
ResNet-18. (A: Art Painting, C: Cartoon, S:Sketch, P:Photo).
Methods A )C A ) S A ) P C )A C ) S C ) P S ) A S ) C S ) P P ) A P ) C P ) S Avg.

ResNet-18 62.3 49.0 95.2 65.7 60.7 83.6 28.0 54.5 35.6 64.1 23.6 29.1 54.3

JiGen [7] 57.0 50.0 96.1 65.3 65.9 85.5 26.6 41.1 42.8 62.4 27.2 35.5 54.6

MixStyle [95] 65.5 49.8 96.7 69.9 64.5 85.3 27.1 50.9 32.6 67.7 38.9 39.1 57.4

RSC [33] 62.5 53.1 96.2 68.9 70.3 85.8 37.9 56.3 47.4 66.3 26.4 32.0 58.6

SelfReg [40] 65.2 55.9 96.6 72.0 70.0 87.5 37.1 54.0 46.0 67.7 28.9 33.7 59.5

SagNet [56] 67.1 56.8 95.7 72.1 69.2 85.7 41.1 62.9 46.2 69.8 35.1 40.7 61.9

Ours 74.6 58.1 96.8 74.4 69.6 87.6 43.3 65.6 50.3 71.4 54.3 51.5 66.5

DomainBed. We also conduct extensive experiments on the DomainBed [26]
which is a testbed for domain generalization to compare state-of-the-art meth-
ods across several benchmark datasets. The rationale behind the DomainBed
is that the domain generalization performances are too much dependent on the
hyperparameter tuning. For a fair comparison, we follow its standard protocols
for training and evaluation.

Results. As shown in Table. 4, our method generally shows competitive perfor-
mances and ranks second out of 15 methods on average accuracy. In particular,
on CMNIST, our method substantially outperforms other competing methods.
Since CMNIST is designed to simulate the domain shift by correlating the digit
colors with the class labels, we conjecture that our improvement on CMNIST is
attributed to the de-stylization effect of UniStyle, which would help the model
decorrelate between the colors and labels.
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Table 4: Domain generalization accuracy (%) on DomainBed. The column
“Terra” stands for TerraIncognita dataset. Note that we adopt leave-one-domain-
out cross-validation as a model selection criteria.

Model selection: leave-one-domain-out cross-validation

Methods CMNIST RMNIST VLCS PACS OfficeHome Terra Avg.

ERM [71] 36.7 97.7 77.2 83.0 65.7 41.4 66.9

IRM [1] 40.3 97.0 76.3 81.5 64.3 41.2 66.7

GroupDRO [64] 36.8 97.6 77.9 83.5 65.2 44.9 66.7
Mixup [86] 33.4 97.8 77.7 83.2 67.0 48.7 67.9

MLDG [46] 36.7 97.6 77.2 82.9 66.1 46.2 67.7

CORAL [68] 39.7 97.8 78.7 82.6 68.5 46.3 68.9
MMD [48] 36.8 97.8 77.3 83.2 60.2 46.5 66.9

DANN [21] 40.7 97.6 76.9 81.0 64.9 44.4 67.5
CDANN [49] 39.1 97.5 77.5 78.8 64.3 39.9 66.1

MTL [5] 35.0 97.8 76.6 83.7 65.7 44.9 67.2

SagNet [56] 36.5 94.0 77.5 82.3 67.6 47.2 67.5
ARM [88] 36.8 98.1 76.6 81.7 64.4 42.6 66.7

VREx [44] 36.9 93.6 76.7 81.3 64.9 37.3 65.1

RSC [33] 36.5 97.6 77.5 82.6 65.8 40.0 66.6

Ours 46.5 97.7 74.8 83.8 65.0 42.5 68.4

Table 5: Generalization results on the cross-dataset person re-ID.
Market → Duke Duke → Market

Methods mAP R@1 mAP R@1

ResNet-50 19.3 35.4 20.4 45.2

RandomErase [92] 14.3 27.8 16.1 38.5
DropBlock [23] 18.2 33.2 19.7 45.3

MixStyle [95] 23.4 43.3 24.7 53.0

StyleNeophile [37] 26.3 46.5 27.2 55.0
Ours 27.4 49.3 30.1 59.0

4.2 Generalization in person re-ID

In this section, we further evaluate our method on person re-identification (re-
ID), which is to match pedestrians across non-overlapping camera views.

Experimental setup. Here, we address domain generalization for person re-ID,
where the test data is collected from cameras of the unseen dataset rather than
from those of the training dataset. Specifically, the model trained to match people
in the source dataset is evaluated by how well it matches pedestrian data of the
unseen test set, which are disjoint from the source dataset. For datasets, we adopt
two widely-used benchmarks: Market1501 (Market) [90] and DukeMTMC-reID
(Duke) [62,91]. We use 32,668 images of 1,501 identities collected from 6 cameras
and 36,411 images of 1,812 identities from 8 cameras for Market1501 and Duke,
respectively. As for performance measures, we adopt mean average precision
(mAP) and Recall@K (R@K). Following the prior work [95], we adopt ResNet-
50 [27] as a backbone architecture. In these experiments, we apply UniStyle to
the 1st, 2nd, and 3rd residual blocks of a model.
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Table 6: mIoU (%) results on the cross-dataset semantic segmentation. GTA5 is
for training, and Cityscapes, SYNTHIA, BDD, and Mapillary are test sets.

Methods (GTA5) Cityscapes BDD Mapillary SYNTHIA

DeepLabV3+ [11] 28.9 25.1 28.1 26.2

SW [58] 29.9 27.4 29.7 27.6
DRPC [82] 37.4 32.1 34.1 28.0

RobustNet [12] 36.5 35.2 40.3 28.3

Ours 39.2 32.4 37.1 28.0

Comparison to other regularization methods. As shown in Table. 5, our
method substantially outperforms other methods in mAP and Recall@1. Al-
though RandomErase and Dropblock are effective for learning discriminative
features, they fail to improve performance when encountering unseen domain
data. Furthermore, by exploiting inter-class relations provided by different cam-
eras, our method shows its superiority over MixStyle and StyleNeophile which
are designed for domain generalization but utilizes one-hot labels only.

4.3 Generalization in semantic segmentation

Experimental setup. Lastly, to investigate whether our method can be ex-
tended to the dense prediction task, evaluation on semantic segmentation is
addressed here. Following the mainstream protocol, we train models on a syn-
thetic dataset and evaluate them on several datasets which mainly belong to
real-world. Specifically, we adopt GTA5 [61] as a source dataset which consists
of 24,966 images. For target datasets, Cityscapes [13], BDD [81], and Mapil-
lary [57] are real-world datasets whose image sizes are 5,000, 10,000, and 25,000,
respectively. Lastly, SYNTHIA [63] has 9,400 images. Note that ResNet-50 is
used as the backbone and the common 19 classes are used across all datasets.
Results. We remark that XDED constructs an ensemble by simply averaging
all the logits from the pixels whose gt is the same in a mini-batch. As shown
in Table 6, ours outperforms the competing methods overall, even if those are
dedicated to this task only. We show that our method can be extended to the
pixel-wise classification with little modification on XDED. Also, the results sup-
port our claim that our method is simple yet effective in a wide range of tasks.

4.4 In-depth Analysis

Ablation study. To investigate the impact of each component in our method,
we conduct an ablation study which is summarized in Table 7. The result re-
veals that two components are complementary and consistently help the model
improve the generalization ability. For image classification, XDED contributes
most to the performance, and UniStyle boosts the effect of XDED. On both
domains, XDED uniformly improves the vanilla method by about 6%, whereas
UniStyle shows different degrees of improvement. It is because the image style
discrepancy between domains in OfficeHome is less severe than that in PACS.
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Table 7: Ablation study of the proposed components on cross-domain tasks of
image classification (Accuracy) and person re-ID (mAP).

Methods Art Clipart Market → Duke

Vanilla 77.0 49.4 19.3

w/ UniStyle 81.2 50.4 26.2
w/ XDED 83.3 55.2 24.2

Ours 85.6 57.1 27.4
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Fig. 4: Visualization results of the loss landscapes incorporating the vanilla
method and XDED on the PACS dataset. Note that each loss landscape is visu-
alized on the data of source domains, not the data of the marked target domain.
Blue and red surfaces are from the vanilla method and XDED, respectively.

Table 8: Multi-source domain generalization accuracy (%) on Photo of PACS
before and after applying given adversarial attacks.

Methods Photo w/ FGSM w/ PGD

ResNet-18 96.0 39.6 16.3
Label smoothing [69] 95.6 43.5 20.2

Mixup [86] 95.8 46.5 21.9

Manifold mixup [73] 93.5 46.6 23.8
MixStyle [95] 96.1 41.4 22.7
Ours 96.5 55.4 30.4

Interestingly, for the task of person re-ID, UniStyle reveals more impact than
does XDED. Due to the inherent characteristics of the task itself, the effect of
XDED on collecting meaningful knowledge of the same pedestrian from different
cameras may become less significant.

Loss surface visualization. To further illustrate how XDED leads to flat
minima in the loss landscapes, we provide qualitative results that visualize the
loss landscapes. Following [9], we plot the loss landscapes on data of source
domains per each case by perturbing the model parameters across the first and
second Hessian eigenvectors which are provided by PyHessian [80] which is a
framework for Hessian-based analysis of neural networks. As shown in Fig. 4,
we observe that the loss landscapes incorporating XDED clearly become flatter
than those incorporating the vanilla method for all cases. We argue that these
qualitative results also consistently support that XDED promotes flat minima.

Robustness to adversarial examples. Recent studies have demonstrated
that convergence on flat minima strengthens the adversarial robustness [76,67].
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Table 9: Average classification error (%) on the corruption benchmarks.
Methods CIFAR-10-C CIFAR-100-C

40-2 WRN [85] 26.9 53.3

Cutout [15] 26.8 53.5
Mixup [86] 22.3 50.4

CutMix [83] 27.1 52.9
AutoAug [14] 23.9 49.6

AugMix [29] 11.2 35.9

Ours 18.5 46.6

To revalidate that our method promotes flat minima, we evaluate the adversarial
robustness of learned models. Specifically, we trained models on source domains
and added adversarial perturbations on images of the unseen target domain by
using existing adversarial attack methods: FGSM [25] and PGD [51]. Table 8
shows that our method outperforms other regularization methods in terms of
robustness against both unseen data and adversarial attacks. Considering that
adversarial attacks are made to maximize the loss value, we argue that our supe-
riority in adversarial robustness is also attributed to the capability of promoting
flat minima as desired, even though our method has no direct connection to
adversarial training.
Results on corruption benchmarks. We further measure the resilience of
learned models to unseen corruptions. Following the protocol provided by [28], we
trained models on the original training dataset, and evaluated them on the test
dataset constructed by corrupting the original test dataset through predefined
corruption types. Table. 9 shows that our method outperforms all regularization
methods except AugMix [30]. Considering AugMix is a state of the art that is
dedicated to corruption robustness while ours is not, we argue that our method
still shows its significant robustness against unseen corruptions.

5 Conclusion

We have presented a simple yet effective framework for domain generalization.
XDED first generates an ensemble of output distributions for the data with the
same label but from different domains, and then penalizes each output distri-
bution for the mismatch with the ensemble in the form of self-knowledge distil-
lation. With this approach, our model can learn domain-invariant features and
also easily converges to flat minima. Besides, the proposed UniStyle suppresses
domain-specific style bias to boost the effect of XDED and encourage style-
consistent predictions. Furthermore, we empirically validate the generalization
ability of the proposed method from the perspective of flat minima and reduced
divergence between source and target. Through extensive experimental results,
we demonstrate the superiority of the proposed framework.
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