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Abstract. Active learning (AL) is a label-efficient technique for train-
ing deep models when only a limited labeled set is available and the
manual annotation is expensive. Implicit semantic data augmentation
(ISDA) effectively extends the limited amount of labeled samples and
increases the diversity of labeled sets without introducing a noticeable
extra computational cost. The scarcity of labeled instances and the huge
annotation cost of unlabelled samples encourage us to ponder on the
combination of AL and ISDA. A nature direction is a pipelined integra-
tion, which selects the unlabeled samples via acquisition function in AL
for labeling and generates virtual samples by changing the selected sam-
ples to semantic transformation directions within ISDA. However, this
pipelined combination would not guarantee the diversity of virtual sam-
ples. This paper proposes diversity-aware semantic transformation active
learning, or DAST-AL framework, that looks ahead the effect of ISDA
in the selection of unlabeled samples. Specifically, DAST-AL exploits
expected partial model change maximization (EPMCM) to consider se-
lected samples’ potential contribution of the diversity to the labeled set
by leveraging the semantic transformation within ISDA when selecting
the unlabeled samples. After that, DAST-AL can confidently and effi-
ciently augment the labeled set by implicitly generating more diverse
samples. The empirical results on both image classification and semantic
segmentation tasks show that the proposed DAST-AL can slightly out-
perform the state-of-the-art AL approaches. Under the same condition,
the proposed method takes less than 3 minutes for the first cycle of active
labeling while the existing agreement discrepancy selection incurs more
than 40 minutes.

Keywords: Active learning, implicit semantic data augmentation, ex-
pected partial model change maximization, diversity

1 Introduction

In recent years, deep learning has achieved a new height in performing various
tasks like image classification, object detection, semantic segmentation etc. How-
ever, they suffer from huge annotation labor and incur long time due to the
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requirement of large-scale labeled data to train the deep models [41]. In some
tasks, it is difficult to accumulate the data and it requires skilled professional to
annotate. Therefore, the dependency on large-scale labeled data has become a
major bottleneck for deep learning methods [12]. To alleviate this dependency,
many methods like, unsupervised learning [6,11,27,43], semi-supervised learning
[17,20,40,34], weakly supervised learning [24,28,29,44], active learning [1,2,9,41]
etc., have received significant attentions. Although weakly supervised learning
and semi-supervised learning have made rapid progresses, active learning remains
the foundation of many vision tasks due to its simplicity and better performance
[39].

AL is an iterative process. It overcomes the limited labeling budget by se-
lecting a set of samples from an unlabeled pool at each iteration [41] and labels
the selected ones. These unlabeled samples will be added to the labeled set after
being labeled by an oracle. Different unlabeled samples will yield different re-
sults. Therefore, the key question for AL is how to acquire data that can achieve
better performance.

To solve this problem, many state-of-the-art works [13,19,41] achieve com-
petitive results by designing the customized modules that make full use of the
labeled samples and unlabeled samples. For example, in [32], the authors pro-
pose variational adversarial active learning (VAAL) that uses variational au-
toencoder and a discriminator to learn the uncertainty of the unlabeled samples
implicitly. To better leverage both the annotation and the labeled/unlabeled
samples’ information, state-relabeling adversarial active learning (SRAAL) [41]
designs a compact model composed of the unified representation generator and
a labeled/unlabeled state discriminator. In [13], the authors propose agreement
discrepancy selection (ADS) by designing adversarial classifiers to the convolu-
tional neural network for the selection of informative samples. The above ap-
proaches achieve satisfying results by training the customized module with the
labeled and unlabeled data in an adversarial manner, involving excessive training
time. However, for robots with minimal computing resources and limited run-
time, it is hard to get adopted in a new scenario in quick time without extensive
training. Hence, enhancing the efficiency of the AL scheme without designing
the customized modules remains a critical challenge.

The approaches based on the expected model change principle(EMCP) [4,5]
address the efficiency challenge by querying the examples that maximally change
the current model without designing the customized modules. Specifically, EMCP
follows the stochastic gradient descent rule to estimate the ability of a candidate
example to change the model by the gradient of the loss at the current can-
didate example [4,5]. Notably, most of these methods deal with the regression
problem with the small model, and as a result, the existing EMCP methods are
not directly applicable to classification tasks for the deep networks.

Besides the existing EMCP methods, ISDA [36] is another efficient approach
for training the deep networks that provide diverse instances, which can be gen-
erated by changing the original instance to semantic transformation directions
sampled from the feature covariance matrix. Next, it is straightforward to con-
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sider the feasibility of combining EMCP and ISDA. One simple direction is a
naive pipelined combination, which selects unlabeled samples by an acquisition
function that follows the EMCP, and generates virtual instances from the se-
lected samples by ISDA afterward. However, such an acquisition function fails
to consider the potential gain from ISDA with respect to diversity. Hence, with-
out any feedback during the acquisition process, the augmented samples from
ISDA would not guarantee diversity.

Fig. 1: An overview of DAST-AL. DAST-
AL looks ahead the effect of ISDA in the
process of acquisition while avoiding the
costly sampling process. Note that the
translated features are mapped to the im-
age space and shown as augment samples
in the above figure.

To solve the above problem, the
assumption in this paper is two-fold:
(1) unlabeled samples have an un-
equal contribution to increasing the
diversity of the label set after be-
ing labeled and augmented by ISDA,
(2) the augmented samples with a
higher diversity should have a higher
ability to change the classifier. Based
on these assumptions, this paper
proposes the diversity-aware seman-
tic transformation active learning,
or DAST-AL framework. DAST-AL
develops EPMCM to look ahead the
effect of ISDA in advance of the ac-
quisition process, by selecting unla-
beled samples considering the ability
of their augmented virtual samples
to change the current classifier. The proposed EPMCM algorithm of DAST-AL
enables us to select the unlabeled samples that have higher gain for increasing
the diversity of labeled sets when augmented via ISDA. Furthermore, DAST-AL
realizes the previously mentioned gain by labeling and augmenting the selected
samples by using ISDA.

Our contributions are summarized as follows:

• Firstly, we propose EPMCM for selecting the unlabeled samples. The
augmented samples of these unlabeled samples bring maximum change to the
current partial model, and achieve a higher gain from ISDA in the assessment
of diversity contributes to the labeled set.

• Then, we propose DAST-AL that overcomes the limited labeling budget
by using the proposed EPMCM to efficiently select the unlabeled samples. Af-
ter labeling and adding these unlabeled samples to the labeled set, DAST-AL
efficiently augments the labeled set by using ISDA without the costly burden of
explicitly generating the augmented samples.

• Finally, we compare the performance of our proposed method with existing
methods in [13,30,32,37,41]. Although we find performances of ADS and DAST-
AL are closely comparable, ADS takes 44 minutes in the first iteration of AL
which is much higher compared to the proposed DAST-AL.
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2 Related work

With a decade’s study, AL has proven its superiority over the other methods.
Based on the existing methods, we group them into two categories: parameter-
ized sampler and non-parameterized sampler. The difference between the two
categories lies in whether the customized modules are introduced for selecting
the most informative samples.

The parameterized sampler approaches can further be decomposed into the
synthesizing approaches and the pool-based approaches. The synthesizing ap-
proaches introduce the generative model to produce new synthetic samples that
are informative to the current model [23,26,42]. These approaches introduce
or design various generative adversial networks (GAN) [23] or variational auto-
encoders (VAE) [33] to enhance the diversity of labeled set by generating diverse
data. The pool-based approaches use the customized modules to query the most
informative instances from the unlabeled pool. A loss prediction module is de-
signed to select data that is likely to make the target model producing a wrong
prediction [37]. VAAL [32] and task aware VAAL [19] build a latent space by a
VAE that learns together with the ranking conditional GAN. SRAAL[41] build
an unsupervised image reconstructor and a supervised target learner to help re-
label the state of unlabeled data with different importance. ADS [13] introduces
a customized classifier to play the min-max game to select the most informative
samples. By introducing the customized modules, these methods achieve the
state-of-arts results. However, these approaches suffer from excessive training
time during their iterative procedure for selecting the unlabeled samples.

The non-parameterized sampler approaches can also be decomposed into two
parts: the uncertainty-based and ECMP-based approaches. The uncertainty-
based approaches select the most informative samples by evaluating the un-
certainty in the model prediction. To do so, previous works [18,22,35] simply
utilize class posterior probabilities to define uncertainty. The probability of a
predicted class [22] or an entropy of class posterior probabilities [18,35] defines
uncertainty of a data point. To better quantify uncertainty, multiple forward
passes with Monte Carlo Dropout are used [15]. However, it involves large com-
putation for large-scale learning, as each data point in the large-scale unlabeled
pool needs to be performed with multiple forward passes to measure its uncer-
tainty. The EMCP approaches are based on the decision-theoretic. They select
the unlabeled data by estimating expected model changes [4,5] that is based
on the current model. These approaches have been well applied on regression
tasks. As deep network involves a large number of parameters to estimate their
changes, the approaches are hard to be applied to these networks.

Our method fits into the category of EMCP approaches with an exception.
We estimate the partial model change for the classification tasks, rather than
estimating the expected model change of the full network for regression. Also,
our method is different from the synthetic approaches in the sense that we do not
design any customized module and have no need to explicitly generate augmented
images.
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3 Method

In this section, we introduce the proposed DAST-AL. We first introduce how to
obtain augmented instances in the feature space by following ISDA in Section 3.1.
Then, we present details of the proposed EPMCM that served as the acquisition
function in Section 3.2. In each iteration of DAST-AL, the following two steps
are successively carried out.

1. Train the backbone network (feature extractor) and classifier on the current
labeled set by using ISDA for augmenting this set to introduce more diversity.
At the same time, we use the extracted features of the labeled samples at hand
to calculate the covariance matrix for each category, where the covariance
matrix represents all the feature semantic transformation directions of each
category.

2. Use the proposed EPMCM to select the unlabeled sample. Then, the trans-
lated feature (i.e., the augmented samples) of these selected samples along
infinite semantic transformation directions result in the maximum change to
the current partial model. To overcome the limited labeling budget, these se-
lected samples, which are expected to have higher diversity, will be labeled
and added to the labeled set for step 1 in the next iteration.

3.1 Implicit data augmentation via semantic transformation

Let Me be the feature extractor, Mc be the classifier, L be the labeled set, U be
the unlabeled set, C be the number of classes, and yl be the label of a sample
xl from L.

For a sample xl in a class yl, we extract its feature with al = Me(xl). By
following ISDA, the semantic directions for class yl can then be obtained by
sampling random vectors from a zero-mean multi-variate distribution N (0, Σyl),
where Σyl is the class-conditional covariance matrix estimated from the features
of the labeled samples in class yl. As the semantic transformation directions of
different categories are different, we use the online estimation algorithm [36] to
get the covariance matrixes of all classes Σ = {Σ1, Σ2, · · · , ΣC}. Referring to
ISDA, we can randomly sample along N (0, Σyl) to generate augmented features
with different semantic transformations, i.e., ãl ∼ N (al, Σyl).

Consequently, unlimited ãl can be generated to augment the labeled set
for diversity by exploiting expected cross-entropy loss in ISDA [36]. As for the
unlabeled samples, suppose an unlabeled sample xu can be selected in the AL
cycle and labeled by a human expert with the label yu, then it will be added to
L, and its augmented feature ãu can also be obtained from ãu ∼ N (au, Σyu),
where au = Me(xu). The potential gain from ISDA in the assessment of diversity
contributes to the labeled set is up to the diversity of the ãu. Therefore, it is
crucial to measure the diversity contributing to the labeled set under unlimited
ãu, so that we can confidently rank the unlabeled samples with the potential
gain from ISDA and select the better ones.
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3.2 The proposed expected partial model change maximization

For selecting samples from the unlabeled set by considering their augmented
features, the key is to find a reasonable way to evaluate the diversity contribution
of each augmented feature sampling from the multivariate normal distribution.
Intuitively, if the augmented feature is useless for the classifier updating, then
this feature also has no use to augment the labeled set for more diversity. Inspired
by this intuition, we propose EPMCM which is expected to evaluate the diversity
contribution of the unlabeled sample under the unlimited augmented features
by considering the partial classifier change. A detailed description of EPMCM
is given below.

Different from existing EMCP-based methods that deal with regression prob-
lems at the instance level [4], we consider training the classifier Mc under an

augmented labeled set D =
{(

ãil, yl
)}n
i=1

in the feature space with cross-entropy

loss L, where ãil is sampled from N (al, Σyl) with label yl. Then, following the
empirical risk minimization principle [4], Mc is trained by minimizing the em-
pirical error on D. The corresponding empirical error is shown as follows:

ε̂D =

n∑
i=1

L
[
Mc
(
ail
)
, yl
]
. (1)

Suppose that Mc is defined by the last fully connected layer, and its pa-
rameters consist of the weight matrix W = [w1, . . . ,wC ]

T ∈ RC×F and biases

b = [b1, . . . , bC ]
T ∈ RC . For learning the best W and b, stochastic gradient

descent (SGD) [3] can be used to update the parameters iteratively according
to the negative gradient of the loss L with respect to each augment features ail
that follows Eq. 2,

{W , b}new ← {W , b} − α
∂Lai

l
({W , b})

∂{W , b} , i = 1, . . . , n, (2)

where the α denotes learning rate.
With the understanding from the discussion above, now we describe the SGD

rule in our AL scheme. Let us suppose the augmented feature ãu of unlabeled
sample xu with label yu is added to the D. The empirical error on the extended
D+ = D ∪ (ãu, yu) can be represented in the form of the following equation:

ε̂D+ =

n∑
i=1

L
[
Mc
(
ail
)
, yl
]

+ L [Mc (ãu) , yu]︸ ︷︷ ︸
:=Lãu ({W ,b})

. (3)

As a consequence of the change in the augmented unlabeled set, the pa-
rameters W and b are also get changed. Considering the SGD update rule, as
the model change is equivalent to parameters change, the parameters change
C{W ,b} (ãu) can be approximated as the gradient of the L at the ãu, described
by Eq. 4,

C{W ,b} (ãu) = ∆{W , b} ≈ α∂Lãu({W , b})
∂{W , b} . (4)
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It should be noted that the dimension of W is C×F that will lead to a large
computational burden with the increasing dimension of the feature. Hence, we
only consider estimating the change of the b, and then the partial classifier
change can be represented as C{b} (ãu). Since the goal of our AL acquisition
function is to select the unlabeled sample, the augmented features of which lead
to the maximum partial classifier change, we firstly consider an easy implementa-
tion that explicitly samples M times from the distribution N (au, Σyu) to com-
pose an limited augmented feature set Dxu

=
{(

ã1
u, yu

)
,
(
ã2
u, yu

)
, . . . ,

(
ãMu , yu

)}
of size M . Here ãku denotes kth sampled augmented features for the unlabeled
sample xu. Then, the potential of each xu to augment the labeled set can be
represented by summing the partial classifier change caused by each augmented
feature in Dxu . Consequently, the acquisition function in our AL scheme can be
formulated as follows:

x∗u = arg max
xu∈U

M∑
k=1

∥∥∥Cb

(
ãku

)∥∥∥ , ãku ∈ Dxu
, (5)

where x∗u denotes the selected unlabeled samples.

To calculate Eq. 5, the following two issues must be tackled. Firstly, the true
label yu is unknown before querying. Therefore, calculation over all possible la-
bels yu can be a costly affair for an increasing number of classes. Secondly,
when considering sampling M times, the sampling variance is unstable and lim-
ited. An ideal way is to generate as much data as possible (i.e., set M as large
as possible). However the increasing M will incur an excessive time complexity.

To address the first issue, we use a maximum a-posteriori approximation by
only considering the most likely label ŷu of au, predicted by the current Mc. As
for the second issue, aiming at simplifying computation while generating more
data, we try to implicitly generate the unlimited augmented samples. When M
grows to infinity, it is equivalent to considering the expectation of the Eq. 5
under all possible augmented features. Then, the Eq. 5 under the cross-entropy
loss can be rewritten as:

x∗u = arg max
xu∈U

(
Eãu∼N (au,Σŷu ) ‖Cb (ãu)‖

)
= arg max

xu∈U

(
Eãu∼N (au,Σŷu )

∥∥∥∥∂Lãu
(b)

∂z
· ∂z
∂b

∥∥∥∥)
= arg max

xu∈U

(
Eãu∼N (au,Σŷu )

[
1− ew

T
ŷu

ãu+bŷu∑C
j=1 e

wT
j ãu+bj

])
= arg max

xu∈U

(
E∞xu

)
,

(6)

where z is the output of the ãu by using Mc. Specifically speaking, z can be
obtained by the formula z = wT ãu + b, and then we have ∂z

∂b = 1, where
1 represents a vector of dimension C with each value 1. By assuming that the
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learning rate α is identical for each augmented feature, the third equation is then
obtained by unfolding the second equation with the expanded cross-entropy loss.

However, it is infeasible to compute E∞xu
precisely, we derive an upper bound

E∞xu
as an alternative to that. Although the maximum upper bound is not strictly

guaranteed to be numerically maximum, in Sec. 4.1, we demonstrate that the
selection of unlabeled samples by the upper bounds is effective. The reason for
this effect is that the gap between the upper-bound and E∞xu

will decrease with
the increase of sampling times (shown in Tab. 2). Since we consider the infinite
sampling times, the large upper-bound could indicate that E∞xu

would be large
too. Moreover, to prove that the selected unlabeled samples are able to augment
the labeled set for more diversity, we visualize the augmented features of the
selected unlabeled samples (ref. to Sec. 4.3). The corresponding E∞xu

is derived
in the following manner:

E∞xu
= Eãu∼N (au,Σŷu )

[
1− ew

T
ŷu

ãu+bŷu∑C
j=1 e

wT
j ãu+bj

]

≤ Eãu∼N (au,Σŷu )

[∑C
j=1 e

wT
j ãu+bj

ew
T
ŷu

ãu+bŷu

]
− 1

= Eãu∼N (au,Σŷu )

C∑
j=1

(
e(w

T
j −w

T
ŷu)ãu+bj−bŷu

)
− 1

=

C∑
j=1

e(w
T
j −w

T
ŷu)au+(bj−bŷu )+ 1

2 (wT
j −w

T
ŷu)Σŷu (wj−wŷu )−1

= E∞xu
.

(7)

where the second inequality is hold by obeying the Jensen’s inequality 2 ≤
x + 1

x ⇐⇒ 1 − x ≤ 1
x − 1, where x = e

wT
ŷu

ãu+bŷu∑C
j=1 e

wT
j

ãu+bj
, 0 ≤ x ≤ 1. Because

of ãu ∼ N (au, Σŷu), we can obtain that
(
wT
j −wT

ŷu

)
ãu + bj − bŷu is also a

Gaussian random variable, i.e.,
(
wT
j −wT

ŷu

)
ãu + (bj − bŷu) ∼

N
((

wT
j −wT

ŷu

)
au + (bj − bŷu) ,

(
wT
j −wT

ŷu

)
Σŷu (wj −wŷu)

)
. Then, the

fourth equation can be obtained by leveraging the moment-generating function
E
[
etX
]

= etµ+
1
2σ

2t2 , where X ∼ N
(
µ, σ2

)
[8]. Finally, by calculating the E∞xu

,
we can select the unlabeled samples more efficiently. Since we do not need to
explicit sampling and design the customized modules, the proposed EPMCM
can be smoothly integrated into the AL scheme without excessive training time.

4 Experiments

Under the scope of this part, we evaluate DAST-AL against state-of-the-art AL
approaches on image classification in Sec. 4.1 and segmentation task in Sec. 4.2.
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To further verify the efficiency of our method, we perform ablation study in
Sec. 4.3 and time analysis in Sec. 4.4.

4.1 Active learning for image classification

Dataset. To verify our methods, we follow the same experimental settings pro-
posed in [13,32,37,41] that fine-tune the network from the previous cycle if avail-
able. We choose commonly used CIFAR-10 and CIFAR-100 datasets for the
image classification task. CIFAR-10 consists of 60000 images of 32× 32× 3 pix-
els where 5000 images are used for the training and 1000 images are used for the
testing. The CIFAR-10 and CIFAR-100 have 10 categories and 100 categories,
respectively, while each category contains 600 images. We also follow the same
setting in [32] that uses ImageNet [10] for the validation.
Compared methods. For image classification tasks, we evaluate our method
against state-of-the-art AL approaches, including Core-set [30], LL4AL [37],
VAAL [32], SRAAL [41], ADS [13]. We also use the random selection method
as the baseline. It is important to note that these methods are evaluated by the
same target model that consists of feature extractor and classifier.
Training settings. We use ResNet-18 [16] and VGG-16 [31] as the feature ex-
tractor in the target model to evaluate the accuracy. By following the experiment
setting in [13], we initialize the labeled set L by randomly sampling 1000 data
points from the whole unlabeled set U for the CIFAR-10 when using ResNet-18
or VGG-16, and randomly sampling 2500 data points for the CIFAR-100 when
using ResNet-18. In the each iteration of AL, the number of labeled samples
added to L for CIFAR-10 and CIFAR-100 are 1000 and 2500, respectively. We
then re-train the target model. We adopt the same image normalization as re-
ported in the experiment part [13], and the data augmentation strategies in-
cluding 32 × 32 random image crop and horizontal flip. In each AL iteration,
according to the previous work experiment setting [13], the training epoch is
set to 200, mini-batch size is set to 128, the initial learning rate is set to 0.1
before 160 epochs and it decreases to 0.01 after 160 epochs on CIFAR-10. The
momentum and weight decay are set to 0.9 and 0.0005, respectively. To obtain
the mean and standard deviation of performance, each experiment is repeated
three times.
Sub-set sampling. To make a fair comparison, we adopt the sub-set sampling
from [13]. Since the entire training set is considered as the initial unlabeled set
U , the sample size is very large, e.g., 50,000 for CIFAR-10 and CIFAR-100.
According to the study [25,30], it is less efficient to directly select top-k samples
from the U , because of the information overlap among the samples [13]. To
address this problem, we follow the same settings reported in [2,13] that first
selects a random subset SR and then selects top-k samples from SR by different
methods. Here, the sample size R is set to 10000 based on the study [13].

Performance on CIFAR-10 Fig. 2(a) shows the performances on the CIFAR-
10 with the VGG-16 as the feature extractor. We can observe that, first, our
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Fig. 2: Comparison of DAST-AL with Core-set [30], LL4AL [37], VAAL [32],
SRAAL [41], ADS [13], and random selection method as a baseline: (a) on the
CIFAR-10 using the VGG-16 as the target model, (b) on CIFAR-100 using the
VGG-16 as the target model, (c) on ImageNet using the same target model in
[32], (d) on cityscapes using the DRN as the target model.

DAST-AL achieves an accuracy close to 90% by using 20% of the labeled sam-
ples. The highest accuracy of the ResNet-18 with full dataset reaches 93.5% as
reported in [41], and this is only 3.05% better than DAST-AL with 20% sam-
ples. Second, although the state-of-the-art ADS outperforms proposed DAST-AL
when using 2% samples, The proposed DAST-AL can outperform ADS when us-
ing over 4% samples. The following two are the reasons: (1) At early iterations,
ADS can improve feature representation by taking a long time (see the time
analysis in Sec. 4.4) to train the customized classifier with a large number of
unlabeled samples. (2) Our proposed EPMCM is able to consistently select the
unlabeled sample, augmented samples of which have a large diversity contri-
bution for the label set. Notably, the effect of the ADS would decay with the
decrease of the unlabeled samples. Moreover, using ResNet-18 as the feature
extractor, the proposed DAST-AL has the higher mean accuracy as shown in
Tab. 1, demonstrating the robustness of proposed method comparing the others.

Performance on CIFAR-100 Although CIFAR-10 and CIFAR-100 have the
same number of training images, CIFAR-100 has 100 categories while CIFAR-10
has 10 categories only. Hence, CIFAR-100 is much more challenging to tackle
and needs larger proportions of training samples for achieving gratifying perfor-
mance. As we can see from Fig. 2(b), at early iteration, DAST-AL outperforms
all other methods, except ADS. Meanwhile, when using over 20% samples, our
method is marginally better than ADS. The primary reason for the performance
improvement of DAST-AL at the above iterations lies in the ability to select the
unlabeled samples that can augment the challenging labeled set for more diver-
sity. And, our DAST-AL outperforms the state-of-the-art SRAAL when using
the same initial labeled samples. This indicates that DAST-AL can increase the
diversity of the labeled samples by using ISDA. In addition, since DAST-AL does
not use any unlabeled samples for training, our method does not suffer from the
decrease in the number of the unlabeled samples.
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4.2 Active learning for semantic segmentation

Dataset. Semantic segmentation tasks can be viewed as pixel-level classification
tasks, which is more challenging than the image-level classification [41]. Here,
we follow the experiment in [41], and choose the dataset Cityscapes [7] to eval-
uate DAST-AL against state-of-the-art AL approaches. The Cityscapes dataset
consists of 3475 frames with instance segmentation annotations. To make a fair
comparison, we also modify this dataset into 19 classes following the experiment
in [41].

Compared methods. We evaluate our DAST-AL against a number of existing
AL methods that reports performance on the semantic segmentation Cityscapes
dataset. These methods contain Core-set [30], MC-Dropout [14], VAAL [32],
QBC [21], and SRAAL [41]. As mentioned earlier, we introduce the random
selection method as the baseline.

Training settings. Following the works in [32,41], the target model in our se-
mantic segmentation experiment consists of the dilated residual networks (DRN)
[38] as the feature extractor and a convolution layer as a classifier. Similar to the
previous image classification setting, we initialize the labeled set L by randomly
sampling 348 data points from the whole unlabeled dataset U . In the ith iteration
of AL, the number of labeled samples added to L is 150, and then re-train the
target model. In addition, we only adopt the random horizontal flips as the data
augmentation strategy in [32]. In each AL iteration, according to the previous
work experiment setting [32,41], the training epoch is set to 50, mini-batch size
is 8, the initial learning rate is set to 5×10−4. To obtain the mean performance,
each experiment is repeated 5 times with the same initial labeled pool.

Performance comparison. For the semantic segmentation task, following the
setting in the SRAAL [41], we use the mean intersection over union, denoted
as Miou to evaluate the performances of various methods. Since semantic seg-
mentation tasks can be viewed as pixel-level classification tasks, we select the
unlabeled samples by averaging E∞xu

from Eq. 7 of each pixel. In our experiments,
we use the same initial labeled set and the same selection budget for different
methods.

Fig. 2 (d) shows our result on various AL methods. We can observe that,
first, SRAAL and VAAL obtain better performance than other methods, such as
QBC, MC-Dropout, and core-set. This is because both VAAL and SRAAL take
a long time to train the VAE module with a large number of unlabeled samples,
and then they can select the most informative unlabeled samples. Second, our
DAST-AL outperforms the SRAAL and with a large margin. It verifies that
although the maximum upper bound in the Eq. 7 is not strictly guaranteed to
be numerically maximum, DAST-AL still can effectively select the unlabeled
samples, the augmented samples of which have large diversity shown in Eq. 7.
Moreover, our method achieves high performance without being trained with the
unlabeled samples and designing any extra modules.
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4.3 Ablation study and discussion

To evaluate the effect of ISDA and EPMCM in DAST-AL, we conduct a series
of ablation studies on CIFAR-10 with the ResNet18 as the feature extractor. As
we can see from Tab. 1, by using ISDA and EPMCM, DAST-AL significantly
boosts the performance at later iterations. By using ISDA only, the accuracy of
Ran+ increases close to 2% when compared with Ran under 10% labeled samples.
The reason behind the performance improvement of Ran+ is that ISDA can be
used to increase the diversity of the labeled set, particularly when the labeled
set is small. With the increase of the labeled sample selected by the random
method, the accuracy of Ran+ is less than the Ran when using 40% labeled
data. This observation firstly verifies that the effect of ISDA is decayed with the
random method, and then it proves that the proposed EPMCM can enhance the
power of ISDA by selecting the unlabeled samples, augmented samples of which
have a larger diversity contribution for the labeled set. For further verifying our
remark, we conduct the visualization experiment in Sec. 4.3. Moreover, DAST-
AL achieves better results compared to the Maxp+. Notably, it illustrates that
ISDA works better with EPMCM as ISDA and EPMCM share the same intuition
that how to effectively increase the diversity for the labeled set.

Method
Accuracy (%) on Labeled Proportion (%)

5 10 15 20 25 30 35

Ran 67.13 80.06 85.25 87.14 89. 25 90.36 91.21
Maxp 67.13 76.37 79.88 81.40 82.84 83.46 84.60
Ran+ 69.27 80.76 85.60 87.82 89.30 90.67 91.15

Maxp+ 69.27 76.35 81.13 81.72 82.85 83.24 84.03
DAST-AL 69.27 82.98 87.84 90.42 92.10 93.06 93.32

Table 1: Comparison of ISDA and EPMCM in DAST-AL on CIFAR-10 under
different proportion of labeled samples. Ran denotes DAST-AL random selects
the unlabeled samples without ISDA, Maxp denotes DAST-AL select the unla-
beled samples by its max prediction probability without ISDA. (·)+ represents
the supervision under ISDA. It should be noted that Maxp+ represent the sim-
ple pipeline that combines ISDA with existing AL methods.

The gap coming from the upper-bound term: We randomly select 1000
queried samples from CIFAR-10 and get their upper-bound. Meanwhile, we also
explicitly generate the different number of augmented samples to compute an
acquisition score of the queried sample. Then, we get the mean and std of the
gap. The following table shows that the mean of the gap decrease with the
increase of the sampling times. Hence, we are allowed to use upper-bound as we
are considering the case of infinite augmented samples.



When Active Learning Meets Implicit Semantic Data Augmentation 13

Sampling Times 100 1000 10000 100000

Gap (ResNet18) 0.85 ± 0.49 0.57 ± 0.34 0.35 ± 0.10 0.11 ± 0.07

Table 2: We compute he gap coming from the upper-bound term with ResNet18.
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Initial Augmented Images

Table 3: Visualization of the semantically
augmented feature of the selected samples
from EPMCM and random. These ‘Aug-
mented Images’ are generated with fea-
tures sampled from feature distribution.
It should be noted that these ‘Augmented
Images’ are only for visualization.

Visualization results To demon-
strate that EPMCM can select the
unlabeled samples, augmented fea-
tures of which are able to increase di-
versity for the labeled set, we obtain
the ‘Augmented Images’ by utiliz-
ing the reversing convolutional net-
works [36] to map the augmented
features of the unlabeled samples
back to the image space. Specifi-
cally speaking, since the ImageNet
[10] has a high resolution, we com-
pose a high resolution labeled set
by randomly selecting 20000 labeled
images from the ImageNet. In our
case, 10000 images served as an un-
labeled set. Then, we train the la-
beled set with ISDA to obtain the se-
mantic directions, and select the im-
ages from the unlabeled set by ran-
dom method and EPMCM. For the
selected samples, their ‘Augmented
Images’ of the corresponding aug-
mented features are shown in right.

In Tab. 3, the first two pictures from the first column and the last two from the
same column represent the unlabeled samples selected by EPMCM and random,
respectively. The ’Augmented Images’ columns denote the images generated by
the augmented features of the unlabeled samples. It can be observed that the
unlabeled samples selected by EPMCM are more diverse.

4.4 Timing analysis

Tab. 4 shows the comparison results including DAST-AL and other methods
on CIFAR-10. For a fair comparison, all of these methods are tested in the
same torch version using the same NVIDIA TITAN Xp. Tab. 4 shows the extra
params for the customized modules in these methods, the time needed to train
for the first iteration in AL, sample a fixed budget of samples from the unlabeled
set, and the total time. LL4AL only takes 2.06 minutes for one iteration in AL
but it does not perform as well as DAST-AL considering its achieved mean
accuracy. VAAL and SRAAL introduce the customized modules that involve
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Method EP (M) TT (s) ST (s) ToT (m)

Core-set [30] - 114.98 73.29 3.14

LL4AL [37] 0.2 120.72 2.97 2.06

VAAL [32] 88.18 62855 36.12 1048

SRAAL [41] 90.22 17897 41.67 298.9

ADS [13] 0.98 2688.6 4.83 44.91

DAST-AL - 128.30 7.59 2.26

Table 4: Comparison of the extra params (EP) introduced by DAST-AL and
other methods, the sampling time (ST) is taken to select the data from the
unlabeled set on the CIFAR-10 dataset, the training time (TT) is taken to train
the target model in AL. The total time (ToT) is composed by the training time
and sampling time for one iteration in AL.

88.12 M and 90.22 M extra parameters, which need to be trained with the
labeled and unlabeled samples in an adversarial manner. This explains why
both the methods appear to be very slow in the training steps. ADS is the most
competitive baseline to DAST-AL in terms of its achieved accuracy when using
the small proportion of the labeled samples. However, DAST-AL takes 128.3
seconds while ADS requires 2688.6 seconds for the training in one iteration in
AL. This can be explained by the fact that ADS introduces adversarial classifiers
with 0.98 M extra parameters to minimize classifiers’ prediction discrepancy and
maximize prediction agreement with a large number of the unlabeled samples.

5 Conclusion and future work

In this paper, we propose a novel diversity-aware semantic transformation active
learning method to overcome a limited labeling budget for achieving better per-
formance. By looking ahead the effect of ISDA in the process of acquisition, we
can select the unlabeled samples to augment the labeled set for more diversity
with ISDA. Since we can not always guarantee that the expected partial model
change to be numerically maximum, we will continue our research to calculate
this change more accurately. In addition, as our method is able to construct a
high-quality label set, we do believe our method can be a complement for ex-
isting works i.e., semi-supervised learning which employs unlabeled samples for
training. By combining the proposed method with such a method, our method
will have much potential for larger-scale datasets.
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