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This supplementary material will provide further details for the main paper,
including A. Theoretical justifications, B. More experimental details, C. More
quantitative results, D. More qualitative results. Specifically, A.1 is for the pre-
liminary knowledge about group theory and causal graph, which we will use to
justify the disentanglement of class and context and to define the classification;
A.2 is for proving the disentanglement between xc and xt; A.3 is for justifying
that Inverse Probability Weighting can realize robust classification; A.4 is for
justifying that IRMCon can achieve ϕt(x) = xt; B.1 is for more dataset de-
tails; B.2 is for more implementation details; B.3 provides more analysis for the
Fig. 6. and Fig. 7. in the main paper and how does our IRMCon-IPW superior to
traditional context estimation methods; C.1. is for illustrating the reproduced
results on context biased datasets; C.2 is for illustrating the bad performance of
vanilla ERM (without strong augmentations); C.3 is for illustrating the domain
gap results with pretrained backbone (for complement); D is for illustrating the
successful cases of our IRMCon and IRMCon-IPW; We summarize our algorithm
at the end of Section A.

A Theoretical Justifications

A.1 Preliminaries

Notations. In group theory, we use capital letters to denote sets and lowercase
letters to denote elements. → is the mapping between sets, 7→ the mapping
between elements. × is the Cartesian Product. In the causal graph, capital letters
denote variables and corresponding lowercase letters denote their values.
Group. A group is a nonempty setG equipped with a binary operation (g1, g2) 7→
g1g2 (we omit the symbol of the operation), where g1, g2 ∈ G, satisfying the fol-
lowing four axioms: Closure: ∀g1, g2 ∈ G, g1g2 ∈ G; Identity : There exists an
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identity element e ∈ G such that ∀g ∈ G, eg = ge = g; Inverse: If g ∈ G, there
exists an inverse element g−1 ∈ G such that gg−1 = g−1g = e; Associativity :
∀g1, g2, g3 ∈ G, (g1g2)g3 = g1(g2g3).
Subgroup. A subset of group G, which forms a group, is a subgroup. Addition-
ally, if H is the subgroup of G, and ghg−1 ∈ H for all g ∈ G, h ∈ H, call H is a
normal subgroup.
Direct Product. Given two groups G and H, the direct product G × H is
defined as a new set containing the ordered pairs (g, h), where g ∈ G, h ∈ H
equipped with component-wise binary operation: (g1, h1)·(g2, h2) = (g1g2, h1h2).
This new set satisfies group axioms.
Quotient Group. If W = G × H, G is equivalent to the normal subgroup of
W and H is equivalent to its corresponding quotient group, i.e., H = W/G,
where “=” is group isomorphism (the equivalent relation between groups in
group theory).
Group Action. G is a group and Dx is a set, then a (left) group action α
of G on Dx is a function α: G × Dx → Dx, which satisfies the following two
axioms: Identity : α(e, x) = x, e ∈ G,∀x ∈ Dx; Compatibility : α(g, α(h, x)) =
α(gh, x),∀g, h ∈ G,∀x ∈ Dx. We will use g · x as the abbreviation of α(g, x).
Transitive and Equivalence Relation. Given a group G and a set Dx, if
∀xi, xj ∈ Dx,∃g ∈ G, g · xi = xj , we call the action is transitive, xi and xj have
equivalence relation.
Orbit. Considering a group G acting on a set Dx, the orbit of an element x ∈ Dx

is defined as: G · x = {g · x | g ∈ G}.
Group Representation. A group representation of a group G on a vector space
V over a field F is a mapping (group homomorphism), ρ : G → GL(V ), such
that ρ(g1g2) = ρ(g1)ρ(g2), where GL(V ) is the general linear group on V . Note
that the linear group action β : GL(V )×V → V preserves the linear structure:

ρ(g)(kv1 + v2) = kρ(g)(v1) + ρ(g)(v2),

v1, v2 ∈ V, g ∈ G, k ∈ F,
(1)

where we omit the group action notation · for brevity.
Stabilizer. Given a group element g and an element xi from the acted set Dx,
if gxi = xi, we call this g is a stabilizer for xi.
Kernel. The kernel of a mapping (group homomorphism), e.g., ρ : G→ GL(V )
is the set of all elements of G which are mapped to the identity element of
GL(V ):

Ker(ρ) = {g ∈ G : ρ(g) = eGL(V )}. (2)

Causal Graph. Causal graph [10] indicates how the variables interact with each
other to reveal the causal relationships between them. In general, it is denoted
by a directed acyclic graph G = {N , E}, including nodes and directed links,
where nodes N denote variables and directed links E denote causal relationships
between variables. For example, Fig. 1, H → (X0, X) denotes the value of the
pair is caused by the value of H, X = hX0. For other basic concepts in causal
graph like confounder, intervention and backdoor adjustment, please refer to
[10].
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Fig. 1. Causal Graph for classification, derived from orbit theory. H and G are
class-agnostic and class-related transformation variables, respectively. (X0, X) denotes
paired image variable, where X = ghX0. “Yes/No” denotes whether X and X0 have
equivalent relation.

A.2 Why are class features and context features disentangled?

All real-world transformations form a group W . In the real world, there
are lots of transformations for an object. For example, “become white”, “become
sheep” and “turn 90 degrees”. Actually, they form a group W , using combina-
tion as its binary operation. This can be verified by the group axioms, like the
combination of “become white” and “become sheep” is still a transformation
in W (Closure axiom). There exists identity transformation “no change” in W
(Identity axiom). The left 2 axioms can be verified in the same way.

Decompose W to G and H. W can be divided into class-related transfor-
mations and class-agnostic transformations according to whether the class of
object changes when applying the transformation. We use G and H to denote
the class-related set and class-agnostic set respectively, and they are also groups.
For example, any combination of two class-agnostic transformations from H is
still in H (Closure axiom), and other axioms can be verified. Therefore, G, H are
subgroups of W . As all transformations can be denoted as class-related, class-
agnostic or the combination of them, G×H can denote any transformation, i.e.,
equal to W . Therefore, if we treat G as the subgroup, H is the corresponding
quotient group H = W/G.

The transformation in G is disentangled with the transformation in H,
because the change of each one will not influence another one, according to
their definitions (The class-related transformations will not influence the class-
agnostic transformations). From the property of G and H, we have:

Theorem 1. The disentanglement between xc (class-related feature) and xt (class-
agnostic/context feature) is from the disentanglement of their corresponding groups,
i.e., G (class-related transformation group) and H (class-agnostic transforma-
tion group).
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Fig. 2. The equivariant map between α and β.

Proof. As xc and xt are in vector space, G and H are semantic transformation
groups, which can act on the object in a semantic way. To prove the theorem, we
need to use group representation to map G and H into vector space and define
the group action on the vector space.

First we define the group action α for W on the set Dx in a semantic way:

α : W ×Dx → Dx. (3)

Then, we define two group representations corresponding to H and G:

ρ1 : W → GL(V1), Ker(ρ1) = H,

ρ2 : W → GL(V2), Ker(ρ2) = G,
(4)

and two maps:

g−1 : Dx → V, V = V1 ⊕ V2.

β : W × V → V,

β(w, g−1(x)) = Diag(ρ1(w), ρ2(w))g
−1(x),

(5)

where w ∈W,x ∈ Dx, Diag is the diagonal block matrix, we use g−1 to represent
the mapping from Dx to V is because we define x = g(xc,xt) in the main paper.
We use ρ1(w) to denote the matrix because GL(V ) (general linear group) is
isomorphic to GLn(V ) (n-dimensional invertible matrix group). It is easy to
prove that β is a group action, where the operation is matrix multiplication.

As β is a group action of W on V , with the function g−1 : Dx → V , there
exists a 1-to-1 mapping between α : W ×Dx → Dx and β : W × V → V , which
is illustrated in Fig. 2.

Through the map, we know that any group action by w ∈ W on an ele-
ment x ∈ Dx has a corresponding representation described by β in (5) with the
mapping function g−1, which is:
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β(w, g−1(x)) =

(
ρ1(w)

ρ2(w)

)
g−1(x)

=

(
ρ1(g)

ρ2(h)

)
(g−1(x)V1

⊕ g−1(x)V2
)

= ρ1(g)g
−1(x)V1

⊕ ρ2(h)g
−1(x)V2

,

= ρ1(g)xc ⊕ ρ2(h)xt.

(6)

Eq. (6) denotes that subgroup G and its quotient group H separately act
on their corresponding subspace V1 and V2, influencing xc and xt respectively.
That means the changes of xc are only decided by G, which is disentangled to
H, the xt’s influencer. Therefore, xc and xt are disentangled.

A.3 Why does IPW realize robust classification?

We first define the classification in a group orbit view. Then, we draw the causal
graph for classification according to the equivalence relation.
Classification by H-Orbit. According to Eq. (3), for the quotient group H =
W/G (which is defined in Section A.2), its orbit for x ∈ Dx is H · x = {h · x |
h ∈ H}. We find that if two elements of Dx, xi and xj have equivalence relation,
i.e., ∃h ∈ H,h · xi = xj , they are in the same H-orbit (brief proof: the orbit of
xj is H · xj = H · (h · xi) = Hh · xi = H · xi, which is actually the orbit of xi).
Therefore, for each element in Dx, we can derive its H-orbit and decide whether
it is a new H-orbit or an existed one. After traversing all the elements in Dx, we
can get a partition of Dx by a bunch of H-orbits. As H denotes class-agnostic
transformations, the equivalent elements in the same H-orbit are in the same
class (because Hx will not change its class according to the definition of H).
Therefore, the partition of Dx actually achieves classification. Now, we draw
the causal graph for classification according to its orbit definition by using the
equivalence relation.
Causal Graph for Classification. We frame the equivalence relation of H-
orbit into causal graph in Figure 1 . Note that in this subsection, G and H
denote variables, while they denote sets in group theory. As the set H can be
derived by sampling variable H for multiple times, this notation will not lose
generality.
G → (X0,X) ← H. G is the class-related transformation subgroup of W
and H is the quotient group (class-agnostic transformation group). (X0, X) is
an element pair, where elements are from Dx. X is transformed from X0 by
X = hgX0, where g and h are the values of G and H. Note that X0 can be any
fixed element in Dx. Assume W is transitive on Dx, for any X0, there must exist
the corresponding g and h to perform the transformation to derive X.
(X0,X)→ Y es/No←H. This subgraph describes the judgement for whether
X and X0 have equivalence relation. For given X, we need the variable H pro-
vides the value h and H → Y es/No provides inverse mechanism, to get the
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following equation: h−1X = h−1hgX0 = gX0. To achieve “Yes” in the judge-
ment, we need further eliminate g in the RHS.

If g = gi is the stabilizer of X0, we have h−1X = giX0 = X0, which means
X ∼ X0 (i.e., they have equivalence relation) under the action h. Then X and
X0 are in the same H-orbit with the orbit index i, which is the index of the
given stabilizer gi of X0. Then, we can define the “class” label Y by using the
judgement, which is an n-dimension one-hot vector:

Yk = 1(h−1X=gkX0), k = 1, 2, 3, ..., n, (7)

where 1 is the indicator function, n is the number of stabilizers. Finally, the
classification task can be defined as predicting the index k of H-orbit, which is
equivalent to predicting the value of Y . Now, we have:

Theorem 2. According to the causal graph in Figure 1 and classification def-
inition by Eq. (7), Inverse Probability Weighting can achieve robustness
classification for X.

Proof. Here we useX to denote the pair (X0, X) and use Y to denote the output
of Eq. (7). For robust classification, we need to pursue the causal relationship
between X and Y (only consider the class features related to G). However, as
there exists a confounder H introducing a backdoor path (X0, X) ← H → X0.
The traditional probability objective P (Y |X) will contain the effect ofH, i.e., the
context. Therefore, we need to use intervention do(X) and backdoor adjustment
to eliminate the confounder effect from H. The objective function is written as:

P (Y |do(X)) =
∑
h

P (Y |X,h)P (h|X)

=
∑
h

P (Y |X,h)P (h)

=
∑
h

P (Y,X, h)

P (X|h)P (h)
P (h)

=
∑
h

P (Y,X, h) · 1

P (X|h)
,

(8)

which is the formula of Inverse Probability Weighting, i.e., Eq.3 in the
main paper, where CE(yi, ŷi) is the engineering implementation of P (Y,X, h)
and ϕt(xi) is the estimation for h. Therefore, using ERM-IPW can eliminate the
confounder effect of H in the causal graph and achieve robust classification.

A.4 Why does IRMCon realize ϕt(x) = xt?

Revisit Invariant Risk Minimization (IRM). We define extractor ϕ as
the function mapping from image space to feature space and classifier θ as the
function mapping from feature space to classification output space. Then, IRM
is to optimize:
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min
ϕ,θ

∑
e

Re(θ · Φ),

subject to θ ∈ argmin
θ̄

Re(θ̄ · Φ) ∀e ∈ E ,
(9)

where Re(θ · Φ) is the empirical risk in the environment e, E is the set of en-
vironments, and Φ = ϕ(x) is the representations of input images. The goal of
IRM is to simultaneously achieve the optimum of θ among all environments. Our
IRMCon use the similar implementation just replace Re(θ · Φ) with contrastive

objective −log exp(ϕt(xi)
Tϕt(Aug(xi))·θ)∑

x′
i
∈e exp(ϕt(xi)Tϕt(x′

i)·θ)
. Therefore, our goal is also to achieve the

optimum of θ simultaneously among different e. We have the theorem:

Theorem 3. When context xt is shared among environments, if and only if ϕt

eliminates the environment features, i.e., ϕt(x) = xt, the IRMCon objective can
achieve optimum.

Proof. If ϕt(x) = xt, for the contrastive features extracted by ϕt in each envi-
ronment will be same, as context is the only part shared among environments.
Therefore, the optimum state of θ∗ (Note that, although in our implementation
θ is a constant, it still has optimum state when its gradient is equal to 0) in
one environment is still the optimum state in other environments. In contrast,
If IRMCon achieves optimum and ϕt still encodes the environment features. For
each environment e = ci, we denote its features by a matrixM i

Φ. As the difference
between environments is only the class, which can be represented by a transfor-
mation matrix T j

i (e.g., from ci to cj). Then, we can denote the representation

matrix for cj by a base environment ci and a transformation: M j
Φ = T j

i M
i
Φ. As

IRMCon achieves optimum, the θ∗ should be optimal for representations in all
environments {Mk

Φ}nk=1. Therefore the transformations should be the identity
matrix, i.e., there is no difference between environments. Otherwise, the con-
trastive objective cannot achieve optimum simultaneously under varies sets of
features by the same θ∗ (ignoring some trivial cases, where the loss calculation is
invariant to the class transformation T j

i , excepting T j
i is identity). That means

the optimum of IRMCon is equivalent to ϕt(x) = xt.

B More Experimental Details

B.1 More Dataset Details

Context Biased Datasets.
Colored MNIST. We use the dataset generation code from LfF [9], where the

images are generated from grayscale digit images in the MNIST dataset, with
the size of 28 × 28. About the detailed generation process, we first choose 10
different RGB values and use this as mean value and use 3-dimensional Gaus-
sian distribution as variance to colorize each grayscale image. We pair digit and
color with a correlation ratio selected from {99.9%, 99.8%, 99.5%, 99.0%, 98.0%,
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Table 1. Accuracy (%) on context biased datasets. We reproduced all the methods and
averaged the results over three independent trials (mean±std). Note that, for EnD, we
give it ground truth attribute labels (which destroys the settings (no context labels) in
context biased datasets) on Colored MNIST and Corrupted Cifar-10, as there are no
attribute labels for BAR, we cannot reproduce EnD on BAR.

Dataset
Bias

Ratio(%)

Methods

ERM
Rebias

[3]
EnD
[15]

LfF
[9]

Feat-Aug
[7]

IRMCon-IPW
(Ours)

C
o
lo
re
d

M
N
IS
T

99.9 20.4±1.1 20.8±0.6 19.8±1.6 56.8±1.6 51.2±1.8 66.7±2.3

99.8 26.4±0.4 28.3±0.9 28.1±0.8 68.3±1.5 57.6±2.6 75.5±1.5

99.5 42.9±1.1 44.4±0.5 45.1±1.3 77.0±1.5 67.4±0.3 81.0±0.9

99.0 59.2±0.5 58.6±0.4 60.2±0.3 82.5±1.7 73.9±1.9 85.3±0.3

98.0 72.5±0.2 73.5±1.0 74.7±1.7 84.1±1.5 78.0±1.5 88.3±0.2

95.0 85.7±0.5 85.5±0.5 85.4±0.4 86.8±0.5 82.3±0.1 92.2±0.5

C
o
rr
u
p
te
d

C
if
a
r-
1
0 99.5 22.7±0.5 22.7±0.7 22.7±0.6 26.1±0.7 29.3±1.7 31.0±0.6

99.0 25.8±0.6 24.9±0.7 24.9±0.7 31.8±0.7 35.5±0.2 37.1±0.4

98.0 28.7±0.1 29.1±0.7 30.1±0.7 38.9±1.0 41.9±0.9 42.5±1.0

95.0 39.9±1.6 38.9±1.7 41.1±0.8 51.3±0.9 52.0±0.7 53.8±1.3

B
A
R 99.0 52.9±0.7 52.1±0.5 - 48.1±2.7 41.7±1.6 55.3±0.6

95.0 65.2±1.9 65.0±1.8 - 60.6±2.6 55.8±2.2 67.9±0.8

Table 2. Accuracy (%) of vanilla ERM on BAR compared with ERM (with augmen-
tation) and other methods.

Dataset
Bias

Ratio(%)
Methods

ERM (vanilla) ERM LfF Feat-Aug IRMCon-IPW

B
A
R 99.0 35.2±2.1 52.9±0.7 48.1±2.7 41.7±1.6 55.3±0.6

95.0 39.7±1.8 65.2±1.9 60.6±2.6 55.8±2.2 67.9±0.8

95.0%}. The remaining images are uniformly colorized by the left 9 colors. In
the test set, all colors are uniformly distributed over all digits. There are totally
60,000 training images and 10,000 test images in each setting.

Corrupted CIFAR-10. We also use the dataset generation code from LfF [9],
where the images are generated from Cifar-10 Dataset, with the size of 32× 32.
Here, we set the attribute as 10 different corruptions {Saturate, Elastic, Impulse,
Brightness, Contrast, Gaussian, Defocus Blur, Pixelate, Gaussian Blur, Frost},
and other generation protocols are the same as the Colored MNIST. We totally
set four correlation ratios {99.5%, 99.0%, 98.0%, 95.0%}, and in each setting,
there are totally 50,000 training images and 10,000 test images.

Biased action recognition dataset (BAR). This dataset is proposed by LfF [9],
which contains 6 kinds of action-place bias: {(Climbing, RockWall), (Diving, Un-
derwater), (Fishing, WaterSurface), (Racing, APavedTrack), (Throwing, Play-
ingField), (Vaulting, Sky)}. There are totally 1,941 biased images and 654 unbi-
ased images in the dataset. We set the ratio of biased images in the training set
ranging in {99.0%, 95.0%}, that means we select 17 unbiased images to create
99.0% biased settings, where there are 1.958 training images and 637 test images;
and we select 94 unbiased images to create 95.0% biased settings, where there
are 2,035 training images and 560 test images.
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Algorithm 1: IRMCon-IPW

1 Step 1. IRMCon
Input: Training set {(xi, yi)}ni=1

Output: Context feature extractor ϕt

1 Randomly initialize ϕt;
while not converged do

23 Sample a mini-batch from training set;
4 Split it into environments by class label;
5 Update ϕt by IRMCon loss in Eq. 7.;

Step 2. IPW
Input: Training set {(xi, yi)}ni=1, context feature extractor ϕt

Output: Context invariance classifier f
6 Randomly initialize fb, f, ϕc;

while not converged do
7 Sample a mini-batch from training set;
8 Use freezed ϕt to extract context features xt;
9 Estimate P (x|ϕt(x)) in Eq. 8.

10 Update fb by GCE loss in Eq. 3. with xt as input;
11 Update f, ϕc by ERM-IPW loss in Eq. 3.;

Domain Gap Datasets. In the domain generalization task, we follow Do-
mainBed [4] to preprocess the dataset and the input image size is set to 224×224
for all settings. All dataset details are the same as theDomainBed [4] code base.

B.2 More Implementation Details

In this section, we provide more implementation details. We set batch size as
256, 256 and 64 for Colored MNIST, Corrupted Cifar-10 and BAR, respectively.
We totally train 50, 50 and 250 epochs for Colored MNIST, Corrupted Cifar-10
and BAR, respectively. For PACS, we apply Adam optimizer with 0.001 learning
rate for 100 epochs training from scratch for all the methods. To save space, if
the hyperparameters are different in each setting under a dataset, we narrate
them by the following orders: Colored MNIST is {99.9%, 99.8%, 99.5%, 99.0%,
98.0%, 95.0%}; Corrupted Cifar-10 is {99.5%, 99.0%, 98.0%, 95.0%}; BAR is
{99.0%, 95.0%}; PACS is {“art painting”, “cartoon”, “photo”, “sketch”}.

For our IRMCon, we apply the same backbone as LfF bias model, with a con-
trastive head, where the contrastive head dimension is 12 for Colored MNIST
and 64 for others. Under the weighted sample strategy, we train IRMCon by
0.4k, 8k, 1.6k iterations for Colored MNIST, Corrupted Cifar-10 and BAR re-
spectively, the optimization is by Adam with learning rate as 0.008, 0.002, 0.002,
8e-4 for Colored MNIST, Corrupted Cifar-10, BAR and domain gap datasets. For
λ, we set it as 1.0 for context biased datasets and 0.1 for domain gap datasets.
Note that fb in Eq. 4 for LfF in the main paper is the classification head of
the backbone; fb in Eq. 8 for ours is a 2 layer MLP, where the input dimen-
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Fig. 3. The test accuracy (%) of LfF [9] and our IRMCon-IPW with different values
of λw trained on 4 biased Colored MNIST datasets. The results show that we always
outperform LfF under any setting.

sion is our contrastive feature (context) dimension and middle dimension is 8
× input dimension for Colored MNIST and 2 × input dimension for others.

Table 4. Accuracy (%) of IRMCon-
IPW on Colored MNIST dataset with
different values of λ. In the main paper,
we report the results when λ = 1.0.

λ
Bias(%) 0.0 1.0 2.0 5.0
99.9 60.1±1.3 66.7±2.3 64.7±0.7 58.8±6.4

99.8 73.8±1.4 75.5±1.5 73.4±0.8 72.6±1.2

99.5 79.3±2.6 81.0±0.9 81.1±0.9 80.3±1.0

99.0 84.8±0.6 85.3±0.3 86.2±0.7 85.7±0.1

98.0 87.9±0.2 88.3±0.2 88.5±0.2 88.2±0.6

95.0 91.8±0.1 92.2±0.5 91.9±0.1 91.5±0.2

We provide the ablation study for λ
(in Eq. 7 in the main paper) on Col-
ored MNIST in Table 4. The results
show that the regularization term helps
us realize better context disentanglement
and finally improve the OOD generaliza-
tion performance, but higher regulariza-
tion weights sometimes influence the op-
timization (See the performance on 99.9%
biased Colored MNIST, when we set λ =
5.0.) Besides, in the implementation for
Eq. 4 in the main paper, we find a 0-value
problem of the weight estimation formula. For example, when training the 99.5%
biased Colored MNIST, We find 33,400 0-value weights estimated by LfF bias
model, over 60,000 at epoch 5. This means unbias model will lose many possible
valuable samples in the whole training process, leading to the inferior perfor-
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Table 3. Accuracy (%) on domain gap datasets with pretrained ResNet-18. We repro-
duced the methods by theDomainBed [4] code base and results are averaged over three
independent trials (mean±std). “-” denotes the implementation issue in the training.

Methods
PACS

Art. Cartoon Photo Sketch Avg.

w
/
d
o
m
a
in

su
p
er
v
is
io
n

IRM[2] 80.0±0.7 76.9±0.3 95.5±0.4 72.6±0.9 81.2
DRO [12] 81.8±0.4 75.9±0.5 95.6±0.4 75.9±1.1 82.3
InterMix [17] 81.7±0.5 74.7±0.5 95.3±0.1 70.7±0.4 80.6
MLDG [8] 82.0±0.6 76.5±0.4 96.1±0.4 76.1±0.8 82.6
DANN [1] 53.5±3.1 63.3±2.9 90.0±0.2 60.4±1.5 66.8
V-REx [6] 81.4±0.6 77.2±0.6 95.1±0.1 77.6±0.7 82.8
Fish [14] 81.3±0.1 76.9±0.5 96.0±0.1 74.8±0.1 82.2
TRM [16] 83.6±1.7 77.9±0.5 - 75.7±1.3 -

w
/
o
d
o
m
a
in

su
p
er
v
is
io
n

ERM 80.3±0.3 76.4±0.4 95.4±0.4 76.5±0.4 82.1
SD [11] 83.9±0.2 78.5±0.3 95.9±0.1 75.3±0.4 83.4
RSC [5] 75.2±0.4 74.7±0.7 93.0±0.4 71.4±1.4 78.6
LfF [9] 80.4±0.4 76.8±1.3 95.3±0.3 72.5±0.9 81.2
IRMCon-IPW 81.1±0.4 77.3±1.3 95.4±0.3 76.6±1.3 82.6

mance. As a result, we add a λw on Eq. 8 to improve the weight estimation for-
mula to ignore 0-value weight problem. To justify our improvement is not only
from the improvement of weight estimation formula, we compare our method
and LfF under different λw under several settings on Colored MNIST in Fig. 3.
We find that although LfF can also be improved by our refined weight estimation
formula, our IRMCon-IPW always outperform LfF under any settings with dif-
ferent λw, which means the key improvement of our method is the better context
estimation, i.e., λw only play a role as assist.

B.3 How does our IRMCon-IPW superior to the traditional
context estimation methods

The failure of traditional methods. As the traditional methods, such LfF [9], use
class classification results to estimate context, its context estimation is destined
to be mixed with class. In another viewpoint, the reweighting implementation
of LfF can be seen as finding hard samples and assigning higher weights to
them. For example, the samples with rare context are hard samples (in 99.5%
Colored MNIST, there is only 0.5% samples with other colors, called context
rare samples). However, there is another case that the samples with bad class
features are also hard samples (as shown in Fig. 4 red box, called class noisy
samples). It is right to assign higher weights for the context rare samples),
but not for the class noisy samples, which will degenerate the reweighting
performance. This is also the reason for Fig.6. (Bottom) in the main paper.
If there is no context bias, i.e., no context rare samples, no one should be
assigned with higher weights. For the traditional reweighting methods, the class
noisy samples still exist, and the model will assign higher weights to them. The
result is model wrongly learns some class noisy samples with higher weights
and degenerates the performance, which is even worse than the ERM baseline.
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Estimated higher IPW-weight samples (Traditional):99.5% Biased Colored MNIST

Estimated higher IPW-weight samples (Ours):

Samples for class "4":

Biased context for "4":

GT higher IPW-weight samples:

traditional 

bias model

bias model

with IRMCon

"4"
99.5%

Fig. 4. Visualization for the samples with higher weights generated by traditional
method (LfF [9], Top) and ours (Bottom). As “blue” context is the dominating context
for class “4”, model should assign higher weights for other color samples and lower
weights for “blue” samples. The traditional method wrongly assigns higher weights
for some “blue” samples because of the failure classification, while ours can derive the
right context weights because we eliminate the class information by IRMCon and only
generate weights by the context rarity.

The superiority of our IRMCon-IPW. Thanks to our IRMCon, we can real-
ize accurate context estimation, i.e., disentangling context by eliminating class.
Therefore, our context bias estimation classifier is from context to class label,
the correlation between context and class is the only way for optimization. For
example, in the 99.5% biased Colored MNIST, our classifier can use context cor-
relation to achieve accurate 99.5% accuracy (Illustrated in Fig. 7 (Top) in the
main paper). As our classifier is only relying on context correlation to classify,
in the test set, the classifier will only achieve 10% accuracy (randomly guess)
because there is no context correlation in the test set. Due to the accurate con-
text estimation, our hard examples are only context rare samples, which is
illustrated in Fig. 4 right bottom. Therefore, we can perform better reweight-
ing process by only assigning higher weights to the context rare samples. In the
balanced training setting in Fig. 6. in the main paper, as there is no correla-
tion between our inputs (context) and labels (class), the bias model will learn
nothing. In the practice, the loss of bias, i.e., CE(y, ŷ = fb(xt)) in Eq. 8 in the
main paper, will not decrease, which is much larger than CE(y, ŷ = f(ϕc(x))).
Therefore, the weight for every sample is nearly 1 and our IRMCon-IPW can
perform similarly compared to the ERM baseline. This is the reason for Fig. 6
(Bottom), that our IRMCon-IPW achieves comparable performance to ERM in
the context balanced setting.
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GT: racing

P: racing

GT: fishing

P: fishing

GT: diving GT: pole vaulting GT: pole vaulting GT: dog

P: diving P: pole vaulting P: pole vaulting

GT: dog GT: elephant GT: giraffe

P: elephantP: dog P: dog P: giraffe

Fig. 5. GradCAM [13] visualizations of IRMCon-IPW successful cases. Top: input
test images, Middle: context visualization by bias classifier of IRMCon, Bottom: class
visualization of model trained by IRMCon-IPW. Left five samples are selected from
BAR test set, model is trained on the 99% biased training set; right four are selected
from photo domain of PACS, model is trained on the left three domains.

C More Quantitative Results

C.1 Results on Context Biased Dataset

In Table 1, we provide the reproduced results of Feat-Aug [7] and End [15],
compared with ERM and IRMCon-IPW (ours).

C.2 Results for vanilla ERM on BAR

In Table 2, we provide the results of vanilla ERM on BAR. The results show
that, without strong augmentation, especially the RandCrop transformation, the
performance of ERM drops severely.

C.3 Results on Domain Gap Dataset

In Table 3, we provide the results on Domain Gap Dataset with pretrained
ResNet-18. All methods are trained for 30 epochs with Adam optimizer, the
learning rate is 5e-5. The result shows that, our IRMCon-IPW can still improve
ERM and be comparable to the SOTA method. Note that we provide the perfor-
mance of pretrained setting just for reference, as we mentioned that pretraining
setting meets the data leakage problem.

D More Qualitative Results

In Figure 5, we show some successful examples for IRMCon-IPW, where IRMCon
correctly estimates the context and IRMCon-IPW successfully predicts the right
classification result.
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