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Abstract. Machine learning classifiers are typically trained to minimise
the average error across a dataset. Unfortunately, in practice, this process
often exploits spurious correlations caused by subgroup imbalance within
the training data, resulting in high average performance but highly vari-
able performance across subgroups. Recent work to address this problem
proposes model patching with CAMEL. This previous approach uses gen-
erative adversarial networks to perform intra-class inter-subgroup data
augmentations, requiring (a) the training of a number of computationally
expensive models and (b) sufficient quality of model’s synthetic outputs
for the given domain. In this work, we propose RealPatch, a framework
for simpler, faster, and more data-efficient data augmentation based on
statistical matching. Our framework performs model patching by aug-
menting a dataset with real samples, mitigating the need to train gener-
ative models for the target task. We demonstrate the effectiveness of Re-
alPatch on three benchmark datasets, CelebA, Waterbirds and a subset
of iWildCam, showing improvements in worst-case subgroup performance
and in subgroup performance gap in binary classification. Furthermore,
we conduct experiments with the imSitu dataset with 211 classes, a set-
ting where generative model-based patching such as CAMEL is imprac-
tical. We show that RealPatch can successfully eliminate dataset leakage
while reducing model leakage and maintaining high utility. The code for
RealPatch can be found at https://github.com/wearepal/RealPatch.

Keywords: Classification, subgroup imbalance, model patching, statis-
tical matching, dataset leakage.

1 Introduction

Machine learning models have fast become powerful yet ferocious pattern match-
ing tools, able to exploit complex relationships and distant correlations present in
a dataset. While often improving the average accuracy across a dataset, making
use of spurious correlations (i.e. relationships that appear causal but in reality
are not) for decision making is often undesirable, hurting generalization in the
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Matched Dataset CycleGAN

Fig. 1. Examples of images and their counterfactuals on the attribute male/female,
retrieved using RealPatch (left); both original and matched images are real samples
from the CelebA dataset. RealPatch preserves characteristics across matched pairs
such as pose, facial expression, and accessories. We also show CycleGAN synthetic
counterfactual results (right) on the same attribute.

case that spurious correlations do not hold in the test distribution, and resulting
in models that are biased towards certain subgroups or populations.

Recent works in machine learning have studied the close link between in-
variance to spurious correlations and causation [28,16,1,24,34]. Causal analysis
allows us to ask counterfactual questions in the context of machine learning pre-
dictions by relying on attribute-labelled data and imagining “what would happen
if” some of these attributes were different. For example, “would the prediction
of a smile change had this person’s cheeks been rosy”? While simple to answer
with tabular data, generating counterfactuals for image data is non-trivial.

Recent advances in generative adversarial networks (GAN) aim to build a
realistic generative model of images that affords controlled manipulation of spe-
cific attributes, in effect generating image counterfactuals. Leveraging research
progress in GANs, several works now use counterfactuals for (a) detecting un-
intended algorithmic bias, e.g. checking whether a classifier’s “smile” prediction
flips when traversing different attributes such as “heavy makeup” [11], and (b)
reducing the gap in subgroup performance, e.g. ensuring a “blonde hair” classi-
fier performs equally well on male and female subgroups [33,13]. The first relies
on an invert then edit methodology, in which images are first inverted into the
latent space of a pre-trained GAN model for generating counterfactuals, while
the latter uses an image-to-image translation methodology. One of the most re-
cent approaches, CAMEL [13], focuses on the latter usage of counterfactuals to
patch the classifier’s dependence on subgroup-specific features.

GAN-based counterfactual results are encouraging, however, we should note
that GAN models have a number of common issues such as mode collapse, failure
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Fig. 2. RealPatch: statistical matching pipeline. Given the dataset D and the spurious
attribute Z, the output is a matched dataset D⋆. To produce D⋆ we: 1) estimate the
propensity score, and adjust it with temperature scaling; 2) restrict D using the fixed
caliper to remove extreme samples; 3) compute the pair-wise closeness for each sample;
4) use the std-caliper to restrict the possible pairs according a maximum propensity
score distance ; 5) for each sample, select the closest sample in the opposite group.

to converge, and poor generated results in a setting with a large number of class
labels and limited samples per class. We provide an alternative counterfactual-
based model patching method that is simpler, faster, and more data-efficient.
We focus on a statistical matching technique (see for example [29]) such that
for every image, we find an image with similar observable features yet having an
opposite attribute value than the observed one; our counterfactual results are
shown in Figure 1. A statistical matching framework has been widely utilised to
assess causality relationships in numerous fields, such as education [25], medical
[4],[6],[32], and community policies [3], [27] to name some. In this work, we
explore statistical matching in the context of computer vision, and show its
application for model patching with real samples.

Our paper provides the following contributions:

1. We propose an image-based counterfactual approach for model patching
called RealPatch that uses real images instead of GAN generated images;

2. We provide an empirical evaluation of different statistical matching strategies
for vision datasets. Our results can be used as a guideline for future statistical
matching applications, for example showing the importance of using calipers;

3. We show applications of RealPatch for improving the worst-case performance
across subgroups and reducing the subgroup performance gap in a 2-class
classification setting. We observe that spurious correlation leads to shortcut
learning, and show how RealPatch mitigates this by utilising a balanced
dataset to regularise the training;

4. We show applications of RealPatch for reducing dataset leakage and model
leakage in a multi 211-class classification setting.

Related Work. Data augmentation strategies using operations such as
translation, rotation, flipping, cutout [12], mixup [39], and cutmix [38] are widely
used for increasing the aggregate performance of machine learning models in
computer vision applications. To improve performance in a targeted fashion,
image transformation techniques that learn to produce semantic changes to an
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image are used to generate samples for underrepresented subgroups. Sharman-
ska et al. [33] used a StarGAN model [5] to augment the dataset with respect to
a subgroup-specific feature, and subsequently optimized a standard Empirical
Risk Minimization (ERM) training objective. Whereas, CAMEL, a framework
by Goel et al. [13], used a CycleGAN image transformation approach [42] and
minimized a Sub-Group Distributionally Robust Optimization (SGDRO) objec-
tive function.

GDRO method [31] aims to minimize the worst-case loss over groups in the
training data. CAMEL models [13] minimize the class-conditional worst-case loss
over groups. Another approach to reduce the effects of spurious correlation is
optimizing a notion of invariance. Invariance serves as a proxy for causality, as
features representing “causes” of class labels rather than “effects” will generalize
well under intervention. Invariant Risk Minimization (IRM) [1] tries to find a
data representation which discards the spurious correlations by enforcing that
the classifier acting on that representation is simultaneously optimal in each
subgroup. However, more analysis and better algorithms are needed to realize
the promise of this framework in practice [24,13].

Model patching focuses on robustness with respect to the unexpected failure
of standard classifiers on subgroups of a class. Subgroups can correspond to
environments/domains such as water or land, and can also refer to demographic
attributes such as females or males [9]. Our work is therefore also related to
many works addressing dataset biases in computer vision, particularly, in which
the notion of bias relates to demographic attributes (e.g. [35,36,18,17]). Wang
et al. [35] showed that even when datasets are balanced e.g. each class label co-
occurs equally with each gender, learned models amplify the association between
labels and gender, as much as if data had not been balanced. We refine their
conclusions about balanced dataset and show that balancing with a statistical
matching framework can successfully eliminate dataset leakage while reducing
model leakage and maintaining high utility.

2 Our RealPatch Framework

We propose RealPatch, a framework that first resamples a dataset such that
the spurious groups are balanced and equally informative and then utilise such
dataset to regularise a classification objective. RealPatch only uses real samples
from the original dataset when constructing the augmented dataset, making it
faster to perform, and simpler to apply to new tasks, compared to approaches
such as CAMEL [13] which require models to generate synthetic samples. Unlike
standard data augmentation, our augmentation is in the context of statistical
matching; it is a model-based approach for providing joint statistical informa-
tion based on variables collected through two or more data sources. If we have
two sources, e.g. male and female, matching augments the source domain of
male images with female images, and the domain of female images with male
images. In this section we outline the two stages of RealPatch. In Stage 1, a
statistical matching procedure is used to construct a matched dataset, a collec-
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tion of comparable pairs of images that have opposite values of the spurious
attribute. In Stage 2, we learn a model to predict the target label by including
the representations of instances in the matched dataset.

Setup. Given a dataset of N samples D={1, . . . , N} with target label Y and
spurious label Z, the dataset is divided into two spurious groups DT and DC

based on the value of Z. These partitions define the so-called treatment (Z=1)
and control (Z = 0) groups of size NT and NC , respectively. Additionally, we
call target groups the two partitions created by Y and subgroups the four sets
caused by both Y and Z. We use X to denote feature representations of the
input images extracted from a pre-trained model such as ResNet [15], or Big
Transfer BiT [20]. In our framework these encoded representations X are the
observed covariates that are used to compute the distances M between images
and identify the matched pairs. Following the work of causal inference, image
representations in X are assigned a propensity score, a measure of how likely an
image s belongs to the treatment group, es = P̂ (Zs =1|Xs). Propensity scores
are used during Stage 1 to help prevent the inclusion of instances that would
lead to poor matches.

2.1 Stage 1: Statistical Matching

Matching is a sampling method to reduce model dependency and enforce co-
variate balance in observational studies across a treatment and control group.
In this work, we study the nearest-neighbour (NN) matching algorithm, which
for each treatment sample selects the closest control sample. Figure 2 depicts
our proposed matching pipeline. The pipeline has the following main building
blocks: 1) propensity score estimation; 2) closeness measure; and 3) calipers as a
threshold mechanism. Before using the matched dataset in Stage 2, the matching
quality is measured by assessing the achieved balance of the covariates.

Propensity Score Estimation. In causal inference, a propensity score es
is the probability of a sample s being in the treatment group DT , given its ob-
served covariates Xs. This conditional probability is usually unknown, therefore
it has to be estimated. This is typically done using a logistic regression on the
observed X to predict the binary variable Z [8]. Logistic regression allows us
to reweight samples when optimising the loss function. We explore the use of
spurious reweighting, where samples are weighted inversely proportional to the
frequency of their spurious label Z; more details are provided in Appendix A.

The shape of the conditional distribution has the potential to impact finding
a suitable threshold. In this work we explore the use of temperature scaling
as a post-processing step to adjust the propensity score distribution before its
use for matching. Temperature scaling has become a common approach for re-
calibrating models [14], but to the best of our knowledge has not been utilised in
the context of statistical matching for causal inference. In binary classification
cases such as ours, for each sample s the logits zs are divided by a (learned or
fixed) parameter t before applying the sigmoid function:

zs = log

(
es

1− es

)
, qs =

1

1 + e−zs/t
.
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With t=1 we obtain the original probabilities. When t<1 the rescaled probabil-
ities have a sharper distribution reaching a point mass at t=0. When t>1 the
rescaled probabilities are smoother, reaching a uniform distribution as t→∞. As
we show in our ablation study, we found rescaling to be beneficial for improving
the achieved covariate balance (Table 3).

Closeness Measure. There are multiple metrics that can be used to mea-
sure the distance Mi,j between samples i ∈ DT and j ∈ DC , the most commonly
used are Euclidean and propensity score distances. The Euclidean distance is de-
fined as Mij = (Xi−Xj)

⊤(Xi−Xj) and the propensity score distance as the dis-
tance between propensity scores Mij = |ei − ej |. Both Euclidean and propensity
score distances have the advantage of being able to control how many samples
are included via a threshold. While propensity score is the most commonly used
matching method, Euclidean distance matching should be preferred [19] as the
goal is to produce exact balance of the observed covariates rather than balance
them on average.

Calipers. Nearest-neighbour matching is forced to find a match for every
treatment sample and is therefore at risk of finding poor matched pairs. Caliper
matching is a method designed to prevent matching samples with limited covari-
ate overlap. In this work we explore the usage of two different types of caliper,
namely fixed caliper and standard deviation (std) based caliper, both applied to
the estimated propensity score. Fixed caliper [10] is a selection rule that discards
samples that have an estimated propensity score outside of a specific range; i.e.
the dataset is restricted to {s, ∀ s ∈ D | es ∈ [c, 1− c]}. This allows the exclu-
sion of examples with extreme propensity scores; a rule-of-thumb used in previ-
ous studies [10] considers the interval defined by c=0.1, i.e. [0.1, 0.9]. Standard
deviation (std) based caliper [7] is used to enforce a predetermined maximum
discrepancy for each matching pair in terms of propensity score distance. The
distance Mij is kept unaltered if |ei− ej | ≤ σ ·α, and is set to ∞ otherwise. The
variable σ is the standard deviation of the estimated propensity score distribu-
tion and α is a parameter controlling the percentage of bias reduction of the
covariates. Cochran and Rubin [7] showed the smaller the α value the more the
bias is reduced, the actual percentage of bias reduction depends on the initial
standard deviation σ. Commonly used α values are {0.2, 0.4, 0.6} [7].

In our application we 1) restrict potential matches based on fixed caliper and
2) follow a hybrid approach selecting the closest sample using Euclidean distance
matching while defining a maximum propensity score distance between samples.
The final outcome of Stage 1 is a matched dataset D⋆.

Matching Quality. Matching quality can be assesed through measuring
the balance of the covariates across the treatment and control groups. Two com-
monly used evaluation measures are standardised mean differences (SMD) and
variance ratio (VR) [30]. In the case that high imbalance is identified, Stage 1
should be iterated until an adequate level of balanced is achieved; we provide
a guideline of adequacy for each metric below. Standardised Mean Differences
computes the difference in covariate means between each group, divided by the
standard deviation of each covariate. For a single covariate a from X we have:
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SMD =
āT − āC

σ
, where σ =

√
s2T + s2C

2

Here, āT (āC) and s2T (s2C) are respectively the sample mean and variance of
covariate a in group DT (DC). Intuitively, smaller SMD values are better and as
a rule of thumb an SMD value below 0.1 expresses an adequate balance, a value
between 0.1 and 0.2 is considered not balanced but acceptable, and above 0.2
shows a severe imbalance of the covariate [26]. Variance Ratio is defined as the
ratio of covariate variances between the two groups, with an ideal value close to
1. While in some studies [40] a variance in the interval (0, 2) is defined acceptable,
we follow Rubin [30] and use the stricter interval (4/5, 5/4) to indicate the desired
proximity to 1. To obtain a single measure for all covariates X, we categorise
SMD into ≤0.1, (0.1, 0.2), and ≥0.2, and VR into ≤4/5, (4/5, 5/4), and ≥5/4
and assess the distribution of covariates. We show an assessment of matching
quality for one run on each dataset in Section 3.1, comparing the covariate
balance before and after matching as well the effect of using temperature scaling.

2.2 Stage 2: Target Prediction

This stage is concerned with predicting a discrete target label Y from covariates
X. Inspired by Goel et al. [13] our training process involves the minimization
of a loss L that combines a SGDRO objective function LSGDRO and a self-
consistency regularisation term LSC :

L = LSGDRO + λLSC , (1)

where λ is a hyperparameters controlling the regularisation strength. The SG-
DRO loss is inspired by GDRO [31], with the difference of considering a non-flat
structure between the target and spurious labels; the hierarchy between target
and spurious labels is included by considering the spurious groups difference
within each target group. The SGDRO component of our loss is computed on
the entire dataset D.

Similarly to [13], our LSC encourages predictions fθ(·) of a matched pair
(xT , xC) in D⋆ to be consistent with each other and is defined as:

LSC(xT , xC , θ) =
1

2
[KL(fθ(xT )||m̃) +KL(fθ(xC)||m̃)] , (2)

where m̃ is the average output distribution of the matched pair. While the SG-
DRO objective accounts for the worst-case subgroup performance, the form of
the regularisation term induces model’s predictions to be subgroup invariant
[13].

3 Experiments

We conduct two sets of experiments to assess the ability of RealPatch to 1)
improve the worst-case subgroup performance and reduce the subgroup perfor-
mance gap in a binary classification setting, and 2) reduce dataset and model
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leakage w.r.t. a spurious attribute in a 211-class classification setting. We de-
scribe them in turn.

3.1 Reducing Subgroup Performance Gap

In this section we study the effect of our RealPatch for increasing the worst-case
performance across subgroups and reducing the gap in subgroup performance.
We evaluate RealPatch against a variety baselines on three datasets, and perform
an ablation analysis on configurations of RealPatch. We compare approaches
using Robust Accuracy: the lowest accuracy across the four subgroups, Ro-
bust Gap: the maximum accuracy distance between the subgroups, as well as
Aggregate Accuracy: a standard measure of accuracy. Our goal is to improve
the robust accuracy and gap while retaining the aggregate accuracy performance
as much as possible. That is because performance degradation on a subgroup(s)
might occur if this improves the worst performing subgroup (e.g. [23]).

Datasets. We use three publicly available datasets, CelebA5 [21], Water-
birds6 [31] and iWildCam-small7 [2]. CelebA has 200K images of celebrity
faces that come with annotations of 40 attributes. We follow the setup in [13],
and consider hair colour Y ∈ {blonde, non-blonde} as target label, and gen-
der Z ∈ {male, female} as spurious attribute. In this setup, the subgroup
(Y =non-blonde, Z=female) is under-sampled in the training set (from 71,629
to 4,054) as per [13] amplifying a spurious correlation between the target and
the demographic attribute. We keep all other subgroups as well as the valida-
tion and test sets unchanged. The images are aligned and resized to 128x128.
For stability we repeat our experiments three times using different randomly
under-sampled subgroups (Y =non-blonde, Z=female). Waterbirds has 11,788
examples of birds living on land or in water. We follow [31] and predict Y ∈
{waterbird, landbird}, and use the background attribute Z ∈ {water, land} as
spurious feature. The spurious correlation between target and background is
present in the dataset as waterbirds appear more frequently in a water scene,
whereas landbirds on land. In order to perform three runs we randomly define
the train/validation/test splits while enforcing the original subgroup sizes as
per [13]. iWildCam-small is a subset of iWildCam dataset [2], whose task is to
classify animal species in camera trap images. Here, we consider two species (me-
leagris ocellata and crax rubra) within two camera trap locations. The dataset
contains 3, 349 images, specifically 2, 005 (train), 640 (val) and 704 (test). These
splits have a spurious correlation between animal species and locations.This ex-
periment emphasizes the applicability of RealPatch in a small dataset setting.

Baselines. Here we describe the four baseline methods used for compari-
son. Empirical Risk Minimization (ERM) is a standard stochastic gradient
descent model trained to minimize the overall classification loss. Group Dis-
tributionally Robust Optimisation (GDRO) is a stochastic algorithm pro-
posed by [31] with the aim of optimising the worst-case performance across the

5
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

6
https://github.com/kohpangwei/group_DRO

7
https://github.com/visipedia/iwildcam_comp/tree/master/2020

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/kohpangwei/group_DRO
https://github.com/visipedia/iwildcam_comp/tree/master/2020
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Table 1. A comparison between RealPatch and four baselines on two benchmark
datasets. The results shown are the average (standard deviation) performances over
three runs. RealPatch is able to construct a model that is robust across subgroups
with high robust accuracy and small robust gap.

Dataset Method
Aggregate ↑
Accuracy (%)

Robust ↑
Accuracy (%)

Robust ↓
Gap (%)

CelebA ERM 89.21 (0.32) 55.3 (0.65) 43.48 (0.68)
GDRO 90.47 (7.16) 63.43 (18.99) 34.77 (19.65)
SGDRO 88.92 (0.18) 82.96 (1.39) 7.13 (1.67)
CAMEL 84.51 (5.59) 81.48 (3.94) 5.09 (0.44)
RealPatch (Ours) 89.06 (0.13) 84.82 (0.85) 5.19 (0.9)

Waterbirds ERM 86.36 (0.39) 66.88 (3.76) 32.57 (3.95)
GDRO 88.26 (0.55) 81.03 (1.16) 14.80 (1.15)
SGDRO 86.85 (1.71) 83.11 (3.65) 6.61 (6.01)
CAMEL 79.0 (14.24) 76.82 (18.0) 7.35 (5.66)
RealPatch (Ours) 86.89 (1.34) 84.44 (2.53) 4.43 (4.48)

Table 2. Experiments with iWildCam-small[2]. The results shown are the average
(standard deviation) performances over three runs. CycleGAN-based CAMEL is not
applicable for small training data (2K images).

Method
Aggregate ↑
Accuracy (%)

Robust ↑
Accuracy (%)

Robust ↓
Gap (%)

ERM 79.97 (1.18) 75.43 (3.01) 19.65 (1.96)
SGDRO 78.55 (2.45) 75.50 (3.58) 14.28 (4.35)
RealPatch (Ours) 79.36 (2.09) 76.70 (3.19) 11.36 (4.87)

subgroups. Sub-Group Distributionally Robust Optimisation (SGDRO)
[13] as described in Section 2.2. CAMEL is a two stage approach proposed by
[13] that uses the synthetic samples to define a subgroup consistency regulariser
for model patching. Conceptually this model is most similar to ours, where we
use real samples for model patching. The training details are in Appendix A.

RealPatch Configurations and Hyperparameters. RealPatch can be
instantiated in many different configurations. In these experiments hyperparam-
eters of RealPatch include the choice of calipers, temperature, and reweighting
strategies in the propensity score estimation model as well as self-consistency
strength λ, adjustment coefficients and learning rates in the target prediction
model. To select hyperparameters for Stage 1 of RealPatch we perform a grid
search, selecting the configuration with the best covariates balance in term of
SMD and VR. An ablation study on such hyperparameters is provided in Sec-
tion 3.1. As per the hyperparameters of Stage 2, we perform model selection
utilising the robust accuracy on the validation set. Further details of hyperpa-
rameters used and best configuration selected are summarised in Appendix A.
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Results on CelebA. From Table 1, RealPatch is able to significantly im-
prove the worst-case subgroup performance and reduce the subgroup perfor-
mance gap compared to the other baseline methods such as ERM, GDRO, SG-
DRO. Our proposed method improves the robust accuracy, robust gaps and ag-
gregate accuracy with respect to the best baseline SGDRO by 1.86%, 1.94% and
0.14% respectively. When compared to CAMEL, RealPatch improves robust ac-
curacy (+3.34%), but slightly worsens the robust gap (+0.1%). Compared with
CAMEL, GDRO and SGDRO, RealPatch is very consistent across runs, with
a standard deviation of 0.13, 0.85 and 0.9 for aggregate accuracy, robust accu-
racy and robust gap, in contrast to 5.59, 7.16 and 0.18 (aggregate accuracy),
3.94, 18.99 and 1.39 (robust accuracy) and 0.44, 19.65 and 1.67 (robust gap) for
CAMEL, GDRO and SGDRO respectively. On inspection of matched pairs from
the dataset D⋆, we observe preservation in pose, facial expression (e.g. smiling
in most of the examples), hair style (in many cases the colour as well, but not
always), and accessories such as hat and glasses. Figures 1 shows samples of re-
trieved matched pairs, further examples are in Appendix B. Naturally, due to use
of real samples used in matching, RealPatch suffers no issues regarding quality of
images in the augmented dataset often observed with generative models. Figure
1 shows CycleGAN generated examples used in the consistency regularizer in
the CAMEL’s loss.

Results on Waterbirds. Our RealPatch model can significantly reduce the
gap between subgroup performances and improve the worst-case accuracy com-
pared to all baselines. While GDRO have a better aggregate accuracy up to
1.37%, this model exhibits a higher imbalance over the subgroup performances
with a robust gap of 14.80% in comparison to 4.43% of RealPatch and a ro-
bust accuracy of 81.03% as opposed to 84.44% of RealPatch. When compared
to CAMEL, RealPatch shows improvements across all metrics, with +7.89%
aggregate accuracy, +7.62% robust accuracy and −2.92% robust gap. Similar
conclusions hold true when comparing RealPatch against the best baseline SG-
DRO with +1.33% robust accuracy and −2.18% robust gap. The characteristics
preserved between matched pairs are less obvious than in CelebA, mainly ob-
serving matching across the bird’s primary/body colour; examples are shown in
Appendix B.

Results on iWildCam-small.We show results comparing RealPatch against
ERM and the best baseline SGDRO in Table 2. When compared to the two base-
line methods, our RealPatch improves robust accuracy by +1.27% and +1.2%
and robust gap by −8.29% and −2.92%. It is worth noticing in this setting
CycleGAN-based CAMEL is not applicable due to insufficient data to train Cy-
cleGAN. Examples of retrieved matched pairs are in Appendix B.

Please refer to Appendix B for the full results of Table 1 and Table 2 which
include the four subgroup performances.

Ablation Analysis. We perform ablations on three of the main compo-
nents of our statistical matching stage, analysing the effect of 1) temperature
scaling, 2) fixed caliper and 3) std-based caliper towards matching quality. Since
the distribution of propensity scores is altered by temperature scaling, and the
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Fig. 3. Estimated propensity score distribution on CelebaA dataset after matching,
shown for each of the four subgroups. We compare the original distribution (blue,
t = 1) with its scaled version using the selected temperature (orange, t = 0.7). Post-
matching, the propensity score is approximately bimodal, showing that our procedure
is balancing the propensity distribution across subgroups. Decreasing t makes the two
modes have more similar values, resulting in a matched dataset with better covariate
balance in terms of SMD and VR (Table 3).

Table 3. Comparison of the covariate balance in 1) the original dataset D, 2) the
matched dataset D⋆ 3) the matched dataset D⋆ with no temperature scaling 4) D⋆

with no fixed caliper and 5) D⋆ with no std-based caliper. The results are reported
for a single run per dataset. Our matching procedure can successfully improve the
covariate balance in both benchmark datasets, with fixed caliper significantly boosting
its quality.

Dataset SMD VR

≤ 0.1 ↑ (0.1, 0.2) ↓ ≥ 0.2 ↓ ≤ 4/5 ↓ (4/5, 5/4) ↑ ≥ 5/4 ↓

CelebA D 348 344 1356 309 859 880
D⋆ (best) 1977 71 0 0 2038 10
D⋆ (t=1) 1957 91 0 2 2032 14
D⋆ (c=0) 1522 482 44 13 1797 238
D⋆ (α=∞) 1909 138 1 11 2028 9

Waterbirds D 376 346 1326 992 723 333
D⋆ (best) 1436 512 100 18 1533 497
D⋆ (t=1) 1409 526 113 13 1482 553
D⋆ (c=0) 852 596 600 50 1104 894
D⋆ (α=∞) 1436 512 100 18 1533 497

propensity score is used by both types of calipers to exclude possible matches,
these components are fairly coupled. We compare results obtained using different
matching configurations, starting with the best configuration optimised in term
of covariates balance achieved and (a) removing temperature scaling (setting
t=1), (b) removing the fixed caliper (setting c=0) and (c) removing the std-
based caliper (setting α=∞). In Table 3 we report the covariate balance before
(D) and after (D⋆) matching for a single run of CelebA and Waterbirds, under
all the three settings. It should be noted that the selected best configuration
for all three runs of Waterbirds do not include the usage of std-based caliper,
there is therefor no difference between D⋆(best) and D⋆(α=∞) in Table 3. A
similar analysis for iWildCam-small is in Appendix B. We evaluate the match-
ing quality through Standardised Mean Difference (SMD) and Variance Ratio
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(VR) as described in Section 2.1. All datasets benefit from matching, resulting
in a better covariate balance than the original dataset. In CelebA we are able
to produce an adequate balance (SMD ≤ 0.1 and 4/5 ≤ VR ≤ 5/4) for most of
the covariates, 1977 out of 2048 for SMD and 2038 out of 2048 for VR. For the
Waterbirds dataset, we achieve a slightly less prominent balance, nevertheless,
improvements with respect to the original training dataset are achieved. Across
all datasets the strongest effect is obtained by removing the influence of the
fixed caliper. Since the propensity score characterises how likely an image is to
belong to a subgroup, preserving all images at the extremes before calculating
possible pairs is seen to be highly detrimental. The impact of temperature
scaling and std. caliper is weaker overall, or absent for Waterbids under the
setting α = ∞, though still worth investigating for the specific application.

While the use of calipers is relatively well known in causal inference, temper-
ature scaling is not commonly explored. We inspect the effect of its usage on the
propensity score distribution. For a single run of CelebA, in Figure 3 we show the
estimated propensity score distribution for each of the four subgroups forD⋆ (the
after matching dataset). Post-matching, the propensity score is approximately
bimodal, showing that our procedure is balancing the propensity distribution
across the subgroups. We show the distribution of D⋆ generated with t=1 (no
temperature) and D⋆ generated with t=0.7 (selected temperature). Decreasing t
leads to the two modes having more similar values, resulting in matched dataset
with better covariate balance in terms of SMD and VR (Table 3). We observe a
similar effect on the Waterbirds dataset, shown in Appendix B.

3.2 Reducing Dataset and Model Leakage

In this section we study the effect of our RealPatch on dataset and model leakage.
Leakage. We use dataset leakage and model leakage [35] to measure dataset

bias. Dataset leakage measures how much information the true labels leak about
gender, and corresponds to the accuracy of predicting gender from the ground
truth annotations. In model leakage, the model is being trained on the dataset,
and we measure how much the predicted labels leak about gender.

imSitu dataset. We use the imSitu dataset [37] of situation recognition,
where we have images of 211 activities being performed by an agent (person).
We follow the setting of prior works [41,35] and study the activity bias with
respect to a binarised gender of the agent. The dataset contains 24,301 images
(training), 7,730 images (validation), 7,669 images (test).

Matching Results. We performed matching on the training data, and in-
clude all matched pairs as a rebalanced dataset to analyse the leakage. On this
dataset, all samples have been matched, and the dataset size after matching has
been doubled. This is expected, given the dataset has 211 classes with 44− 182
samples per class, which is significantly less than in CelebA. Doubling the size
of the dataset does not mean we include every sample twice. Instead this should
be seen as rebalancing/resampling the dataset based on how many times each
sample has been matched. For matching we use the features extracted with a pre-
trained ResNet101 model. The selected hyperparameters are spurious reweight-
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Table 4. Matching-based rebalancing in imSitu achieves the best leakage-accuracy
trade-off. It shows nearly no dataset leakage, leading to a reduction in model leakage
while maintaining overall accuracy. This is in contrast to the co-occurrence-based re-
balancing based on gender-label statistics (e.g. α=1 [35]), where a reduction in dataset
leakage does not lead to reduction in model leakage in a meaningful way, and the over-
all accuracy drops.

Data
Dataset ↓
leakage λD

Model ↓
leakage λM

mAP ↑ F1 ↑

original training data 68.35 (0.16) 76.79 (0.17) 41.12 39.91

balancing with α = 3 [35] 68.11 (0.55) 75.79 (0.49) 39.20 37.64
balancing with α = 2 [35] 68.15 (0.32) 75.46 (0.32) 37.53 36.41
balancing with α = 1 [35] 53.99 (0.69) 74.83 (0.34) 34.63 33.94
RealPatch (ours) 55.13 (0.76) 68.76 (0.69) 38.74 38.13

ing in propensity score estimation, a temperature of t= 0.6, c= 0 in the fixed
caliper, and α = 0.2 in the std-based caliper. This configuration was selected
based on the best covariates balanced achieved on the training set: we can reach
an adequate balance with an SMD value below 0.1 and VR close to 1 for most
of the 1024 covariates used, 992 and 1010 respectively compared to 327 and 510
of the original dataset. A table with all the covariates balance is in Appendix B.

Leakage Results. We follow the same architectures and training procedures
as [35] to measure the dataset and model leakage. We compare our results with
the rebalancing strategies based on gender-label co-occurances proposed in [35].
We report our findings in Table 4. The results clearly show that dataset rebal-
ancing via matching helps to achieve the best trade-off between debiasing (the
dataset and the model leakage), and performance (F1 and mAP scores). We
achieve significant reduction in dataset leakage (nearly no leakage 55.13 versus
original 68.35) and model leakage (68.76 versus 76.79), while maintaining the
accuracy of the model with mAP and F1 scores comparable to those achieved
with the original training data. This is in contrast to rebalancing based on co-
occurrences of gender and activity labels [35]. In the case of a rebalanced dataset
with α=1 that achieves nearly no dataset leakage (53.99), the model trained on
this dataset leaks similarly to the model trained on the original data (74.83 ver-
sus 76.79), and has a significant drop in the overall performance. This suggests
that statistical matching helps to reduce dataset leakage in a meaningful way as
the model trained on the rebalanced dataset can reduce leakage as well.

4 Limitations and Intended Use

While SMD and VR are valuable metrics to indicate the quality of the matched
dataset, there is no rule-of-thumb for interpreting whether the covariates have
been sufficiently balanced. Supplementing SMD and VR with manual inspection
of matched pairs and evaluating on a downstream task is still required.
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Additionally, RealPatch currently only handles binary spurious attributes,
requiring additional work (such as [22]) to handle matching over multiple treat-
ments. It is worth noticing that also the baselines considered, GDRO, SGDRO
and CAMEL, have only been tested on a binary spurious attribute. We intend to
explore the usage of RealPatch for non-binary spurious attributes in the future
work. A natural extension would be to use a One-vs-Rest approach for matching:
for each sample find the closest sample having a different value of the spurious
attribute.

5 Conclusions

We present RealPatch, a two-stage framework for model patching by utilising
a dataset with real samples using statistical matching. We demonstrate the ef-
fectiveness of RealPatch on three benchmark datasets, CelebA, Waterbirds and
iWildCam-small. We show that RealPatch’s Stage 1 is successfully balancing
a dataset with respect to a spurious attribute and we effectively improve sub-
group performances by including such matched dataset in the training objective
of Stage 2. We also highlight the applicability of RealPatch in a small dataset set-
ting experimenting with the so-called iWildCam-small. Compared to CAMEL,
a related approach that requires the training of multiple CycleGAN models, we
see competitive reductions in the subgroup performance gap without depending
on the ability to generate synthetic images. We also show the effectiveness of
RealPatch for reducing dataset leakage and model leakage in a 211-class setting,
where relying on generative model-based patching such as CAMEL is impracti-
cal. RealPatch can successfully eliminate dataset leakage while reducing model
leakage and maintaining high utility. Our findings show the importance of se-
lecting calipers to achieve a satisfactory covariates balance and serve as a guide-
line for future work on statistical matching on visual data. We encourage the
use of RealPatch as a competitive baseline for strategic rebalancing and model
patching, especially in the case where developing models for image generation is
prohibitive or impractical.
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