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Abstract. We study recognizing attributes for objects in visual scenes.
We consider attributes to be any phrases that describe an object’s phys-
ical and semantic properties, and its relationships with other objects.
Existing work studies attribute prediction in a closed setting with a fixed
set of attributes, and implements a model that uses limited context. We
propose TAP, a new Transformer-based model that can utilize context
and predict attributes for multiple objects in a scene in a single forward
pass, and a training scheme that allows this model to learn attribute
prediction from image-text datasets. Experiments on the large closed at-
tribute benchmark VAW show that TAP outperforms the SOTA by 5.1%
mAP. In addition, by utilizing pretrained text embeddings, we extend our
model to OpenTAP which can recognize novel attributes not seen dur-
ing training. In a large-scale setting, we further show that OpenTAP can
predict a large number of seen and unseen attributes that outperforms
large-scale vision-text model CLIP by a decisive margin. The project
page is available at https://vkhoi.github.io/TAP
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1 Introduction

Accurately describing object attributes plays a key role in a variety of computer
vision challenges. Among many others, some uses of attribute prediction include
image retrieval from text [25], referring expression and object selection [29, 59].
They also form arguably the central part of vision and language problems such
as visual question answering (VQA) [2, 26, 27], and image captioning [4].

While implicitly required and tackled by numerous downstream tasks, re-
search in attribute for objects in the wild is still under-explored. Existing work
is mostly limited to attributes in specific domains such as scenes [69], animals
[62], clothing [16, 36], and humans [33, 30, 37]. In recent years, several datasets
provide explicit annotations of object attributes, such as [31, 46]. However, they
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Pineapple: \elloZ, green,
leaf\, spik\, Zhole, piled,
point\, dust\

Basket: broZn, Zicker, round,
full, Zooden, Zoven, mesh

Basket: gra\, silver,
metal, aluminum, full,
shin\, round

Fruits: assorted, mi[ed,
multicolored, round, piled,
orange, green, small

Ground: gra\, asphalt, tarmac, dust\, stained, dark

Dog: fighting, pla\ing, biting, cheZing,
Zrestling, standing, grappling,
battling, tugging, facing off, pla\ing
tug-of-Zar

Dog: biting cloth, pulling cloth,
tilting head, pla\ing Zith dog,
having fun

Broccoli: on cutting
board, on countertop,
beloZ hand, beloZ
knife

Broccoli: in bag,
on countertop

Lime: in cup,
in glass,
betZeen ice

Food: in boZl,
in container

(a) (b) (c)

Fig. 1. Attributes in LSA. Attributes in LSA cover a wide-range of words/phrases
that describe an object, including (a) adjective, (b) verb to describe action, (c) verb-
object pairs to describe interaction, and (c) preposition-object to describe location.

are still limited in terms of their coverage of objects and unique attributes, with
even the largest datasets only consisting of a few hundreds of attributes.

Additionally, existing work considers attributes to only include adjective
properties, and exclude their interactions with other objects in the scene. The
latter is often classified as visual relationship and is dedicated to an entirely
different research topic [38, 63, 66] which requires localization of both subject
and object in a subject-predicate-object triplet. We believe this distinction is
unnecessarily limiting, e.g ., person wearing hat conveys information about the
property of person that is useful even if exact grounding of hat is unknown.
Hence, we expand the definition of attributes to include adjective- as well as
action- and interaction-based properties from the point-of-view of an object.

To this end, we first describe a pipeline to extract object-centric attributes
and interactions from large quantities of grounded, weakly grounded, and un-
grounded image-text pairs. Then, we propose a novel attribute prediction model
called Transformer for Attribute Prediction (TAP). TAP can predict an order of
magnitude larger number of unique attributes than previous methods, matching
performance of supervised baselines when directly transfer to the VAW bench-
mark [46]. After finetuning, we outperform prior art by 5.1% mAP and 5.0%
mean recall. Furthermore, our model design allows an easy extension to an open-
ended attribute prediction branch which we call OpenTAP, by using pretrained
text embeddings. OpenTAP can recognize seen attributes, or unseen attributes
described by arbitrary text. In our large-scale benchmark, for previously seen
attributes, OpenTAP achieves 12.27% mAP higher than CLIP [50], a large-scale
image-text matching and zero-shot image classification method, and maintains
its superior performance even on attributes that are not seen during training.

In summary, our major contributions are:

– We extend attribute recognition from predicting solely adjectival and action
attributes to predicting a larger set that also comprises object interaction. To
this end, we propose a new Large-Scale Attribute (LSA) dataset comprising
attributes extracted from multiple image-text datasets.
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– We propose TAP, a Transformer-based Attribute Prediction model that can
effectively utilize the scene context and efficiently make attribute prediction
for all objects within an image in a single forward pass, even at the absence
of strong grounding information (i.e., object bounding box).

– We propose OpenTAP, a simple extension of TAP to allow open-vocabulary
prediction of arbitrary attributes, including those not seen during training.

– We demonstrate state-of-the-art performance on the closed-set attribute pre-
diction dataset (VAW [46]), human-object interaction classification (HICO
[6]), as well as a superior performance in our open-vocabulary attribute pre-
diction experiment compared to the recent CLIP model.

2 Related Work

Our work is related to a variety of visual attribute prediction works [12, 11, 3,
44, 55, 37, 45, 31, 16, 46]. While these often target domain-specific attribute (for
constrained set of objects, e.g . clothing) or small set of attribute classes, our work
differs in three points. First, we extract a large number of attributes from public
image-text datasets to be used for training. Second, we propose a training scheme
that allows our model to make truly large-scale attribute prediction (orders of
magnitude larger than prior works) for unconstrained set of objects. Third, our
model can be extended to predict unseen attributes, making it also a zero-shot
attribute prediction model. Note that this is different from compositional zero-
shot [40, 42, 49, 41, 51] which tackles unseen object-attribute composition.

Our work shares background with vision-language (VL) models [39, 56, 8,
32, 50, 67, 28] that need to encode object properties and interaction for learning
language-grounded visual information. While the goal of these works is to achieve
better performance on downstream VL tasks (e.g ., VQA, phrase grounding), our
goal is solely on accurate large-scale prediction of attributes. In this work, we
compare against CLIP, a large scale image-text matching and zero-shot image
classifier trained on 400 million images and alt-text from the internet.

Our model architecture is related to the end-to-end object detection Trans-
former DETR and its language modulated MDETR [5, 28]. In DETR, a Trans-
former encoder is used to contextualize input image features before localizing ob-
jects. In the localization step, a Transformer decoder takes in N object queries,
and decodes them into bounding box and category by cross-attending to the
image features from the encoder. Our model also takes after this object query
approach with a Transformer decoder, but instead of decoding into object cate-
gory and bounding box, we decode them into attributes.

Open-vocabulary methods have been studied for object recognition and de-
tection using natural language [15, 68, 65, 14, 50, 13, 22]. Even though attributes
can be part of the text query, these works often neglect attributes in their pro-
posal and evaluation, and only focus on object nouns. Earlier works have used
object hierarchy from WordNet [68], which is unsuitable for attributes since ad-
jectives/verbs do not have such hierarchy predefined, or search engine to retrieve
web text description of object [15] which is costly. Recent works have attempted
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pretrained text embeddings (e.g., BERT) [64, 22] or vision-text embeddings (e.g .,
CLIP) [14, 13] to detect novel objects that are semantically similar to the text
in the embedding space. However, their focus is still on objects (nouns) and not
their descriptions. [14] attempts to include attributes with their object detec-
tor, but it only consists of basic colors. To our knowledge, our work is the first
to utilize pretrained text embeddings for large-scale attribute prediction on an
unconstrained set of object categories.

3 Attribute Data Preparation

Attribute Extraction: Our goal is to build an image understanding system
that can recognize object-centric attributes as well as its immediate interaction
with nearby objects. We refer to these as attribute phrases (or just ‘attributes’,
used interchangeably) as they can be in the form of multiple words (e.g ., wearing
hat). We select the following prominent image-text datasets as our data sources:
Visual Genome (VG) [31], GQA [21], COCO-Attributes [45], Flickr30K-Entities
[47], MS-COCO [7], and a portion of Localized Narratives (LNar) [48].

VG, GQA, and COCO-Attrs contain object-level attribute labels and bound-
ing boxes, which we directly use. VG-DenseCap, Flickr30K-Entities, MS-COCO,
and LNar, on the other hand, contain attributes in their captions. Hence, we rely
on language dependency parser [19, 53, 60] and derive rules to detect attributes,
including adjectives, verbs, verb-object and preposition-object pairs. Some of
these datasets contain grounding information (bounding box, mouse trace) for
each caption that we also extract. We convert LNar mouse trace into bounding
box (refer to supplementary). Several examples of these attributes are illustrated
in Fig. 1. For the remaining captions, we extract objects without any grounding.
Large-Scale Object Attribute Dataset (LSA): We aggregate all images,
their parsed objects and attributes into our dataset that we call Large-Scale
Attribute (LSA). The overall statistics is in Table 1. From 420k images, we
split into 379k images for training, 8k for validation, and 33k for testing. For
training, we construct a vocabulary set of attributes that we deem to be common,
determined by frequency thresholding for adjective and verb attributes (e.g .,
adjectives appear ≥ 75 times), and keeping only those that involve common
object categories for interaction and location attributes. More details about this
construction and the attribute statistics can be found in the supplementary.
Ultimately, this results in a training (or seen) attribute set Cs with |Cs| = 5526.

4 TAP - Transformer for Attribute Prediction

There are two common approaches in attribute prediction in the wild, differ-
ing in how multiple objects in an image are processed. First approach, often
used with object detector (e.g . Faster-RCNN), extracts features for the whole
image and pools regions that contain the objects [1, 23]. The pooled features
are used to predict attributes for each object. These models are normally not
used as standalone attribute prediction models but rather as pre-training target
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Table 1. Statistics of attributes extracted for LSA. Note that LNar contains 32k and
122k images from Flickr30K and COCO respectively. Among all instances, 7.1M are
grounded (bounding box), 1.4M weakly grounded (mouse trace), and 975k ungrounded.

Datasets # images # instances # attr annotations Type of grounding

VG + GQA 108k 6.5M 10.1M Box
Flickr30K-Entities 32k 285k 503k Box
MS-COCO + COCO-Attrs 122k 1.2M 2.2M Ungrounded + Box
Localized Narratives 312k 1.4M 1.7M Mouse trace

Total 420k 9.5M 14.6M

for downstream vision-language tasks. Second approach uses crops of each ob-
ject and processes them separately and independently. While the former encodes
more context and is more computationally efficient as it can predict attributes
for multiple objects in one forward pass, it suffers from lower accuracy since
the feature resolution for each object is lower. Here, we introduce TAP, a new
tranformer-based model for attribute prediction that achieves many desirable
properties: 1) Use of context information, 2) attribute prediction of multiple
objects in a single pass, and 3) easily extendable to unseen attributes.
Problem setting: Let I be an input image consisting of N objects with named
categories {oi}Ni=1 and potentially bounding boxes {bi}Ni=1. If an object does not
have bounding box, its top-left and bottom-right can be set to the image corners.
Let Cs be the set of training attribute classes, then each object has a ground-
truth label vector Yi = [yi,1, ..., yi,Cs ], yi,c ∈ {1, 0} denoting whether attribute c
is positive or negative. In our work, we treat the unlabeled classes as negatives.
Our goal is to train a multi-label classifier to predict these Cs attributes on all
N objects. Additionally, we also train a final layer to ensure proximity of the
phrase embedding for an attribute, which makes it capable of predicting open-
world attributes. We call this extension to our TAP model as OpenTAP.

4.1 Model Architecture

Fig. 2 illustrates the architecture of TAP. TAP takes in two input modalities:
(1) a visual sequence, and (2) a query sequence.
Visual sequence: The first part of our model is a CNN backbone (ResNet-50
in our model) that takes in an input image of size w × h and returns a grid of
features with size Lv = w/32 × h/32. We flatten this feature grid to get a list
of feature vectors {xi}Lv

i=1 ∈ R2048, which we refer as visual tokens. These visual
tokens are then added with a learned 2-D positional encodings similar to [28] so
that spatial information can be preserved. Let ri and ci be the row and column
index of xi in the feature grid, its final representation vi is obtained as

rowi = RowEmbed(ri), coli = ColumnEmbed(ci), (1)

vi = xi + concat([rowi, coli]) (2)
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Fig. 2. Model architecture. Sequence of ResNet encodings form the input visual
tokens. This is processed jointly with the query token which consists of object query
tokens (red), their object index embedding (blue), a sequence index embedding (or-
ange), and a bounding box embedding (green). Contextualized representation zi of the
[CLS] token of all objects are decoded into attributes. In addition, an object grounding
loss is used to train object localization (shown here for dog).

Query sequence: Based on the list of N objects, a sequence of object queries
is created so that our model can decode them into attributes. For every object
i, we add to our query sequence a [CLS] token, which is the object query that
shall be decoded into attributes at the final stage. For every [CLS], we use the
following information: (1) the object category name, (2) the image location of the
object, (3) the object instance index that the query corresponds to. Specifically,
for every object i, we tokenize its category oi using the WordPiece tokenizer
[61] into word tokens and append them into the sequence. To provide image
location: we encode the object’s bounding box [39, 20] as a 5-d vector bi =(

x0

W , y0

H , x1

W , y1

H , (x1−x0)(y1−y0)
H×W

)
where (x0, y0) and (x1, y1) are respectively the

top-left and bottom-right coordinates of the box, and H and W specify the
image size; bi is then projected via a learned linear layer Wbox and added with
the [CLS] token. Next, to indicate which object instance a given [CLS] token
belongs to, we add to it a cardinal object index embedding [OBJi]. Finally, a
cardinal sequence index is added for every object category tokens to denote the
order of tokens within each object category and account for objects comprising
multiple words (e.g ., office chair). This sequence index resets for every new
object instance. In summary, given object i, its token wj (at index j w.r.t.
object i) has its final representation hj computed as follows:

ŵj = WordEmbed(wj), w[OBJi] = WordEmbed([OBJi]), (3)

pj = SequenceIndexEmbed(j), (4)

hj = ŵj + w[OBJi] + pj +Wboxbi1wj=[CLS], (5)

where Wbox is the learnable linear layer that transform bi to have the same
dimension as the word embeddings.
Multi-modal Transformer: Both visual ({vi}) and query ({hj}) embeddings
are mapped to the same embedding space with the help of two fully-connected
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(FC) layers, FCimg and FCquery. Both sequences are then concatenated into a
single, long sequence and fed to the Transformer. Doing so allows an object’s
attribute prediction to properly account of its context and surrounding objects,
which is crucial for predicting attributes that denote an object property in con-
text of others (e.g ., wearing glasses). We denote the output visual embeddings
to be {v′i} which will be used for the object grounding loss discussed later. For
the output query embeddings, we only care about those belong to the [CLS]

tokens, which we denote as zi for the output [CLS] embedding of object i.
Closed-vocabulary classifier (TAP): We apply a linear classifier on every zi
to obtain Cs logit values for the attribute classes [ri,1, ..., ri,Cs ].
Open-vocabulary classifier (OpenTAP): We propose an open-vocabulary
classifier head that extends TAP to recognize novel attributes it has not seen
during training. As CLIP is a SOTA zero-shot image classifier that has been
trained on 400M image-text pairs and potentially seen an enormous amount of
attributes, we propose to use pretrained CLIP text embeddings for our open-
vocabulary classifier. We train a linear layer on top of zi’s to project them close
to the CLIP text embeddings of the ground-truth attributes, while keeping the
text embeddings fixed. By fixing the text embeddings, we expect our model to
generalize to unseen attributes represented by arbitrary text inputs thanks to
the structure in the CLIP embedding space.

Formally, let qj be the CLIP text embedding of attribute class j. To compute
similarity between zi and qj , we use the scaled cosine similarity

si,j =
zTi qj/τ

∥zi∥∥qj∥
, (6)

where τ is a temperature hyperparameter. Details on how we generate text
embeddings of the attributes are presented in section 5. Note that our open-
vocabulary classifier head is not limited to CLIP text, but can be used with
any pretrained text encoders (e.g ., BERT [10]). We select CLIP mainly because
it is more representative of the visual world and as determined by empirical
results. For example, BERT that is only trained on text corpus is not expected
to capture well object appearance characteristics, such as color and texture.

4.2 Training and loss functions

Attribute classification: We apply a reweighted binary cross entropy loss for
our closed-set prediction branch

Lcl
bce(Y, r) =

N∑
i=1

Cs∑
c=1

− 1[yi,c=1]pc log(σ(ri,c))− 1[yi,c=0]nc log(1− σ(ri,c)), (7)

where pc and nc are the positive and negative weights for attribute c computed
in the same way as [46] to handle data imbalance. Similarly, the open-vocabulary
branch is also trained with the same BCE loss and we denote it as Lop

bce(Y, s).
Object grounding As our training data also contains ungrounded image-text
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pairs, we employ a grounding loss that trains the model to attend to the cor-
rect image regions for objects with known grounding. By providing grounding
supervision when available, the model can learn to ground object and transfer
that knowledge to softly localize any object of interest when training/testing on
ungrounded objects. Specifically, for a query embedding zi of object i, we enforce
an alignment between zi and the output visual embeddings {v′j}j∈O+

i
where O+

i

denotes the indices of those visual tokens that locate inside the bounding box of
object i in the image feature grid. Our grounding loss is as follows:

Lground =

N∑
i=1

1

|O+
i |

∑
j∈O+

i

− log

(
exp (zTi v

′
j/τ)∑Lv−1

k=0 exp (zTi v
′
k/τ)

)
, (8)

which is similar to contrastive loss in [28], but instead of using it to strongly su-
pervise a phrase grounding model, we use it to equip TAP with object grounding
ability so that it can also learn and predict attributes from ungrounded objects.
Our final loss is the sum of the BCE and the object grounding loss

L = Lcl
bce + λopLop

bce + λgroundLground. (9)

5 Experiments

In this section, we describe our main experiments: (1) closed-set attribute pre-
diction on VAW [46], (2) open-vocabulary attribute prediction on LSA, and
(3) human-object interaction classification on HICO [6]. Results on VAW and
HICO demonstrate our model’s understanding of adjective, verb, and interaction
classes, while results on LSA shows its ability to predict large number of unique
attributes, and even recognize unseen attributes in the open world.
Architecture: We use the ImageNet-pretrained ResNet-50 [18] for the image
backbone. For word embeddings, we use the pretrained BERT-base [10, 58]. Our
multi-modal Transformer takes in both visual and query features at once and
has 5 self-attention layers with 8 attention heads each. Further implementation
details, including hyperparameters, are presented in the supplementary.
OpenTAP: As mentioned in Sec. 4.1, we extend TAP to recognize unseen at-
tributes by using CLIP-RN50 to generate text embeddings for the attribute
classes. Given an attribute, we extract its embedding using an ensemble of mul-
tiple prompts [50], such as ‘A photo of something that is <attr>.’. Since object
information is already present in the input query (Fig. 2), using object agnostic
prompts allows us to pre-compute all attribute embeddings which significantly
improves training speed. The supplementary contains all prompts that we use.

5.1 Closed-set attribute prediction

Dataset: We evaluate TAP in a closed setting on VAW [46], a large-scale at-
tribute in the wild dataset that contains positive and negative labels for 620
attributes across multiple types (e.g ., color, material, shape, size). With explicit
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Table 2. Results on VAW. The top box reports results of methods trained only on
VAW, while the bottom box shows our newly introduced baseline RN50-Context and
TAP on VAW after pre-trained on LSA. LSA-pretrained and VAW-supervised denote
whether a model is trained with attribute labels from LSA and VAW respectively

Methods
LSA VAW

mAP mR@15 mA F1@15
pretrained supervised

RN50-Baseline [46] ✓ 63.0 52.1 68.6 63.9
ML-GCN [9, 46] ✓ 63.0 52.8 69.5 64.1
Sarafianos et al. [52, 46] ✓ 64.6 51.1 68.3 64.6
SCoNE [46] ✓ 68.3 58.3 71.5 70.3
TAP [Ours] ✓ 65.4 54.2 67.2 66.4

RN50-Context ✓ ✓ 67.3 54.1 69.3 66.1
TAP [Ours] ✓ 67.2 53.8 65.5 61.5
TAP [Ours] ✓ ✓ 73.4 63.3 73.5 71.1

negative labels, the VAW dataset allows for reporting better evaluation metrics
on this problem, albeit on a much smaller scale than what TAP is capable of.
Setup: We report 3 versions of TAP: one that is trained only on VAW, one
that is trained only on LSA, and one that is first pretrained on LSA and then
finetuned on VAW. The 620-attribute set of VAW is also a subset of Cs. When
pretraining on LSA, we make sure to exclude VAW test images from LSA.
Baselines: We compare with ResNet-50 baseline, ML-GCN [9], Sarafianos et
al. [52], and the SOTA model SCoNE [46]. These models predict attributes on
each cropped object independently, and use ground-truth segmentation mask
(provided in VAW) to improve accuracy. Because these models require accurate
object box as input for cropping, they cannot be trained on LSA - a dataset
with noisy or even no bounding boxes in many cases (refer to Table 1).

Because it can be argued that TAP achieves better results by simply using
more context, we introduce another baseline, RN50-Context, which is the RN50-
Baseline but takes in the whole image and uses RoIAlign to extract object feature
for classification. Because RN50-Context does not perform cropping, we can
pretrain it on LSA. More details about this can be found in the supplementary.
Results: Following [46], we report mean Average Precision (mAP), mean recall
at top-15 (mR@15), mean balanced accuracy (mA), and overall F1 at top-15
(F1@15). The result is presented in Table 2.

– Without LSA-pretrained: After trained only on VAW, TAP achieves better
results than RN50-Baseline, ML-GCN [9], and Sarafianos et al. [52]. ML-
GCN is not effective since it requires constructing label co-occurrence matrix
which is not suited for partially labeled problem such as VAW. Sarafianos et
al. has to learn to produce one attention map per attribute, which is costly
and redundant because many attributes (e.g ., color) already share the same
attention map that cover the entire object region. However, TAP without LSA-
pretrained is lower than SCoNE [46] (-2.9% mAP). Note that SCoNE uses
segmentation mask while TAP does not. Transformer is well-known for being
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People: 
Adjective: uniformed, mounted, multiple, horseback 
Verb: sitting, riding, gathering, idling, loitering 
Interaction: riding horse, holding horse, wearing helmet,
wearing coat, wearing beret 
Location: on horse, on street, on sidewalk, in front of building

Leaves: 
Adjective: yellow, dry, green, golden, orange,
colorful, sun-dried, fall-colored, bony 
Verb: falling, sprawling, branching, regretting 
Interaction: covering street, covering branch  
Location: on tree, on ground, above pole 

Street light: 
Adjective: black, tall, overhead, red, lit up, metal,
electric, globed 
Verb: glowing, hanging, illuminating, being shrouded 
Location: in background, on street, on pole 

Horse:
Adjective: hairy, adult, brown, furry, white, leased, strong, buff 
Verb: standing, being ridden, walking 
Interaction: carrying person 
Location: on street, on ground, in line 

Fig. 3. Qualitative results. Every attribute list is sorted in descending order of the
model’s confidence. Both seen attributes from closed and unseen attributes from
open-vocabulary branch are shown. We display the attention mask of TAP for objects
without bounding box. Strikethrough represents wrong predictions as judged by us.

data hungry, and VAW consists of 50× less instances than LSA. Hence training
only on VAW does not fully utilize TAP’s capability that we specifically design
it for: large-scale attribute learning from image-text datasets.

– With LSA-pretrained: TAP without finetuning achieves +4.2% mAP than
RN50-Baseline, even though it is only trained on sparse attributes parsed from
captions and is not trained on VAW densely annotated data. After finetun-
ing, TAP achieves a new SOTA with a substantial improvement of +5.1%
mAP and +5.0% mR@15 over SCoNE. RN50-Context, our redesigned RN50-
Baseline that uses context, is almost comparable with SCoNE, showing the
effectiveness of using context and the LSA data. However, even though TAP
and RN50-Context both use context, TAP is clearly better. The impressive
performance of TAP is attributed to the effective usage of context, multi-
modal Transformer, and our training algorithm that allows to learn attribute
from image-caption datasets. In the supplementary, we provide qualitative re-
sults and detailed performance breakdown on each attribute type (e.g ., TAP
achieves much better accuracy on action attributes than the baselines).

More discussion: To demonstrate TAP’s efficiency that can predict attributes
for multiple objects in a scene in a single pass, we report the inference time
on VAW: on average, it takes 18.01ms/img for TAP, while it is 43.71ms for
SCoNE and 40.05ms for RN50-Baseline. In addition, thanks to object grounding
loss, TAP can also work when bounding box is not given. We demonstrate this
qualitatively in Fig. 3, and quantitatively by removing all boxes from VAW and
re-evaluate TAP, where we obtain 68.9% mAP which is still better than SCoNE.

5.2 Open-vocabulary attribute prediction

In this section, we evaluate OpenTAP on seen and unseen attributes in LSA.
We focus on investigating how a model trained on large number of attributes
can generalize to unseen attributes by leveraging fixed text embeddings.
Setup: OpenTAP generalizability to unseen attributes can be studied in 2 ways:

1. LSA common: First, we study whether OpenTAP can extrapolate to rec-
ognize unseen but common attributes, e.g ., can it recognize never-seen black
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from having seen white and gray? We perform frequency-based sampling to
select 605 attributes from set Cs of 5526 attributes (refer to sec. 3), and
remove them from the training data so that they can be used as unseen at-
tributes. Hence, we have 4921 seen, and 605 unseen attributes. The test set
consists of randomly sampled 100k instances from the test images that are
labeled with any of these 5526 attributes. By using frequency-based sam-
pling instead of uniform, we ensure the unseen set also contains attributes
that are more common (e.g ., common colors like black, orange).

2. LSA common→rare: Next, we study whether once trained on common at-
tributes, can OpenTAP generalize to long-tailed unseen attributes. For this,
we keep the whole set Cs of 5526 attributes intact as our seen set. From
all attributes in the test images that do not belong in Cs, we construct an
unseen set Cu by selecting those that appear more than 8 times (to filter
out noise, typos). We also subsample some types of attributes (e.g . location
attributes) so that various attribute types are well-balanced in Cu. This re-
sults in |Cu| = 4012 classes. We sample 60k instances in LSA test that are
labeled with either attributes in Cs and Cu for this setup. Since Cs already
contains 5526 most common attributes, the remaining unseen attributes in
Cu are not only unseen, but are also semantically distant from the attributes
seen during training because they belong to the long-tail.

For both setups, because we use CLIP for comparison, we make sure all instances
in our test set are larger than 25% of the image area in order to not put CLIP
at a disadvantage due to small object size.
Baselines: We use CLIP as our baseline. As discussed in Sec. 2, CLIP is a SOTA
zero-shot image classifier and has been used successfully for open-vocabulary
object detection [14, 13]. However, no existing work have studied CLIP for open-
vocabulary attribute recognition. We introduce 3 CLIP baselines based on how
the attribute classifiers are constructed from its text encoder:

1. CLIP (attribute prompt): Similar to OpenTAP, for every attribute, we
create its classifier by ensembling multiple prompts with formats similar to
the following ‘A photo of something that is <attr>’. This model is agnostic
to the object present in the image since the object is not mentioned in the
prompts. This is done to establish parity with OpenTAP setup.

2. CLIP (object-attribute prompt): We ensemble object-aware prompts
with formats similar to the following ‘A photo of <obj> <attr>’ (e.g ., A
photo of man riding horse). We observe that this solely object-aware prompt
returns drastically low accuracy due to CLIP being unable to detect non-
sensical object-attribute pairs, e.g ., for an image of a boat with the text A
photo of a boat wearing shirt, CLIP still returns a high similarity score since
CLIP is highly attentive to the object mentioned in the prompt and it is not
trained to detect incompatible object-attribute pairs.

3. CLIP (combined prompt): To alleviate the above problem, we find that
combining the object-aware with the object-agnostic prompts allows CLIP
to focus more on the attribute aspect.
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Table 3. Evaluation of LSA common and LSA common→rare

Methods
LSA common LSA common→rare

APseen APunseen APoverall APseen APunseen APoverall

CLIP (attribute prompt) 2.53 3.37 2.64 2.62 2.52 2.58
CLIP (object-attribute prompt) 0.97 1.56 1.04 1.16 0.73 0.97
CLIP (combined prompt) 2.81 3.67 2.92 3.12 2.63 2.91

OpenTAP 14.34 7.62 13.59 15.39 5.37 10.91

All CLIP baselines use ensemble of multiple prompts within each prompt type
[50] (refer to supplementary). Furthermore, given an object with its bounding
box, we ensemble its CLIP image embeddings from its 1×, 1.25×, and 1.5× crops
to incorporate context similar to [14] (this improves +0.4 mAP). These are our
best-faith effort to augment CLIP model to allow for maximum accuracy.

The baselines from the closed experiment cannot be used in this setup because
they do not scale to the large number of classes in LSA. For example, Sarafianos
et al. [52] produces one attention map per class, ML-GCN [9] builds a graph of
all classes as nodes, SCoNE [46] runs supervised contrastive loss iteratively over
every class, all of which is expensive when the number of classes is large.

Results: We report in Table 3 the mAP to evaluate the ranklist returned for
every attribute by each method. The attributes are categorized into seen and
unseen based on the data OpenTAP is trained on. Unlike OpenTAP, CLIP
cannot be entirely zero-shot in these experiments as it presumably has already
been trained on these attributes from its 400M image-caption training data [50].
Hence, CLIP shows little difference in performance of seen versus unseen in
both experiments. The results show that CLIP ensemble of object-agnostic and
object-aware prompt is better than just object-agnostic or just object-aware.

OpenTAP achieves better results than CLIP on both seen/unseen set in both
experiments by a clear margin. Despite CLIP having been trained on enormous
image-text data and shown to be successful for object recognition [14, 13], the
results here suggest that CLIP is lacking in terms of attribute understanding.
Note that OpenTAP and CLIP still use the same text embeddings as classi-
fiers, and the higher accuracy of OpenTAP is attributed to its architecture and
training algorithm to allow OpenTAP to detect better visual cues for attributes.

The results in LSA common→rare experiment show that OpenTAP can
recognize both seen (common) and unseen (rare) attributes better than CLIP.
However, the gap between seen and unseen in this case is not small (10% gap),
which suggests there’s still room for improvement. When evaluating TAP in LSA
common, the gap between seen and unseen is less as expected. This result also
shows that TAP can extrapolate and recognize unseen but common ones.

Qualitative results: We show in Fig. 3 example of attribute prediction results.
We can see that OpenTAP can predict even attributes that are rare (loitering,
buff, sprawling). In addition, we present in Fig. 4 top image retrieval results
for some unseen attributes. The unseen attributes excited and fishing from our
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salmon-coloredexcited fishing

Fig. 4. Qualitative results. Top image retrieval results for several unseen classes.

Table 4. Ablation on class embeddings

Methods APs APu AP

OpenTAP-ViCo 11.40 3.75 7.98
OpenTAP-BERT 14.00 4.81 9.90
OpenTAP-Phrase BERT 14.66 4.80 10.26
OpenTAP-CLIP 15.39 5.37 10.91

Table 5. Ablation on training portion

Methods APs APu AP

VG 9.59 3.88 7.04
VG+Flickr 11.00 4.64 8.16
VG+Flickr+COCO 13.27 4.98 9.56
VG+Flickr+COCO+LNar 15.39 5.37 10.91

LSA common experiment provide good results, presumably by extrapolating
from near seen classes (e.g ., yelling and laughing for excited ; holding rod and
near water for fishing). Similarly, for LSA common→rare, salmon-colored is
rare and unseen but the model is also able to extrapolate based on all common
color classes that it has seen during training, such as orange, pink.

5.3 Ablation studies

We conduct ablation study on the LSA common→rare split to investigate how
our choice of attribute embeddings and our constructed dataset LSA is helpful.

Class embeddings: We investigate other text embeddings to be used with
OpenTAP: (1) ViCo [17], word embedding learned from object-attributes co-
occurrences in Visual Genome, (2) BERT embeddings [10] that has been used
for open-vocabulary object detection in [65, 22], and (3) PhraseBERT [57]. The
results are presented in Table 4, which show that OpenTAP is not dependent
solely on CLIP since even BERT embeddings help OpenTAP outperform CLIP
baselines on unseen classes. ViCo, even though is trained on object-attributes in
VG, results in low mAP. CLIP text embeddings result in the highest mAP.

Training data portion: Because LSA is an aggregation of multiple datasets
with different levels of grounding, we ablate each one to see their contribution to
the final performance. We present the results in Table 5, where we can see that all
datasets contribute positively, even ungrounded (COCO) and weakly grounded
(LNar) one. This shows that with additional ungrounded image-caption (e.g .,
SBU [43], Conceptual Captions [54]), OpenTAP could achieve even better.
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5.4 Closed-set human-object interaction classification

We further show the generalizability of OpenTAP on the human-object interac-
tion dataset HICO [6] which contains image-level interaction labels (e.g . boarding
plane, riding boat) that are similar to what OpenTAP has learned from LSA.
Dataset: HICO [6] contains 600 human-object interaction (HOI) labels of 117
verbs and 80 object categories. Every image in the dataset contains one or more
HOI classes that need to be predicted, making this a multi-label prediction prob-
lem. HICO training set contains 38,116 images, while the test set comprises 9,658
images. Following prior work, we use 10% of the training images for validation.
Baselines and Setup: We compare with PastaNet [35] and HAKE [34] which
are SOTA models on HICO that additionally use object detection and human
keypoints. We also compare with DEFR [24], a SOTA model that uses ResNet
as image backbone and CLIP text embedding as initialization for the classifiers
which are later finetuned. For our OpenTAP model, we also finetune the CLIP-
initialized classifiers. One difference between DEFR and OpenTAP is the image
backbone. While DEFR uses backbone pretrained on CLIP 400M image-text
pairs, OpenTAP uses ImageNet- and LSA-pretrained backbone. For fair compari-
son, we compare with DEFR-RN50 that uses CLIP ResNet-50 as backbone. More
implementation details in this experiment are presented in the supplementary.

Table 6. Results on HICO image
classification
Methods Bbox Pose CLIP text mAP

PastaNet ✓ ✓ 46.3
HAKE ✓ ✓ 47.1
DEFR-RN50 ✓ 49.7
OpenTAP ✓ 51.7

Results: We report results in Table 6,
showing that OpenTAP outperforms Pas-
taNet and HAKE without having to use
object detector and human keypoints.
OpenTAP also surpasses DEFR-RN50 by
a clear margin. These are evidence that
our proposed architecture and training al-
gorithm for OpenTAP are effective for
learning attributes of objects that can
even generalize to HOI classes.

6 Conclusions

In this paper, we propose a Transformer-based model for attribute prediction
that can predict a large number of unique attributes, and can be extended
to learn open-vocabulary attribute by leveraging image-text datasets and pre-
trained text embeddings. We expand the definition of attributes to include things
that a given object interacts with, which we argue to be a part of the object
property as well. Our proposed pretrained TAP model not only achieves a new
SOTA on a strongly supervised setting after finetuning, but also shows good
performance without any finetuning. Our TAP model can be extended to Open-
TAP, which is capable of predicting novel attributes unseen during training, with
greater accuracy than CLIP.
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