
TDAM: Top-Down Attention Module for
Contextually Guided Feature Selection in CNNs

Shantanu Jaiswal1, Basura Fernando1,3, and Cheston Tan1,2,3

1 Institute of High Performance Computing, A*STAR, Singapore
jaiswals@ihpc.a-star.edu.sg

2 Institute for Infocomm Research, A*STAR, Singapore
3 Centre for Frontier AI Research, A*STAR, Singapore

Abstract. Attention modules for Convolutional Neural Networks (CNNs)
are an effective method to enhance performance on multiple computer-
vision tasks. While existing methods appropriately model channel-, spatial-
and self-attention, they primarily operate in a feedforward bottom-up
manner. Consequently, the attention mechanism strongly depends on the
local information of a single input feature map and does not incorporate
relatively semantically-richer contextual information available at higher
layers that can specify “what and where to look” in lower-level feature
maps through top-down information flow.

Accordingly, in this work, we propose a lightweight top-down atten-
tion module (TDAM) that iteratively generates a “visual searchlight”
to perform channel and spatial modulation of its inputs and outputs
more contextually-relevant feature maps at each computation step. Our
experiments indicate that TDAM enhances the performance of CNNs
across multiple object-recognition benchmarks and outperforms promi-
nent attention modules while being more parameter and memory effi-
cient. Further, TDAM-based models learn to “shift attention” by local-
izing individual objects or features at each computation step without
any explicit supervision resulting in a 5% improvement for ResNet50
on weakly-supervised object localization. Source code and models are
publicly available at: https://github.com/shantanuj/TDAM_Top_down_
attention_module.

Keywords: Object recognition; Visual attention mechanisms; Top-down
feedback

1 Introduction

The design and incorporation of attention modules in deep CNNs has gained
considerable recognition in computer vision due to their ability to enhance the
representation power and performance of these networks in a task-agnostic man-
ner. These modules typically formulate attention as a mechanism of feature
modulation in outputs of traditional convolutional blocks by learning to inten-
sify activations for deemed salient features and suppress activations for irrele-
vant ones. As a prominent method, Squeeze & Excitation (SE) [18] introduces

https://github.com/shantanuj/TDAM_Top_down_attention_module
https://github.com/shantanuj/TDAM_Top_down_attention_module
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Fig. 1. Illustration of how iterative top-down feedback computation can help increase
feature selectivity and thereby process individual salient features (left) or objects (right)
at each computation step. Green arrows indicate feedforwarded inputs to TD blocks
and red dotted arrows indicate top-down computation within TD block.

channel attention modelling of global-average-pooled (GAP) feature representa-
tions, which is then enhanced by CBAM [47] through additional incorporation
of spatial attention and utilization of both global-max-pooled (GMP) and GAP
representations. Further, recent works [34,44,13] identify how channel attention
can be made more efficient and effective, while a different direction of work
augments convolutional operations with self-attention and calibration methods
[3,27] to learn more effective feature representations.

However, conventional attention modules predominantly operate in a feed-
forward manner, i.e. they only utilize the output feature map of a convolutional
block to both determine attention weights and perform attention modulation.
As a result, the attentional mechanism is constrained to the representational
capacity and local information of a single feature map input to the module. It
does not incorporate relatively semantically-richer or task-specific contextual in-
formation available at higher layers while performing feature attention that can
complement the initial bottom-up processing. This can be effectively facilitated
by introducing top-down information flow between higher-level and lower-level
feature representations within a convolutional block. Such feedback connections
are also prevalent in the primate visual cortex [23] and recognized by neuroscien-
tists as a key component in primate visual attention [24,15]. Hence, in this work,
we explore how top-down feedback computation can be effectively modelled to
enable more contextually-guided feature activations across the CNN hierarchy.

Top-down guided feature attention. A foundational formulation of top-
down computation during visual processing was introduced by Crick in his
“searchlight hypothesis” [9], where he postulated the presence of an internal
“attentional searchlight” in the brain that operates by iteratively selecting lower-
level neurons to “co-fire” with semantically richer higher-level neurons, such that
at any given instance, a sparse and strongly correlated set of selected lower and
higher-level neurons fired together.

Taking inspiration from his hypothesis, we illustrate how top-down feedback
can guide feature attention in CNNs by taking an example of fine-grained bird
classification. As shown in the first image input of figure 1, the initial feedforward
computation provides a coarse feature activation which is sufficient to indicate
that a “bird-like” object is present, but is not precise to determine which exact
“bird”. To guide feature attention, this top-level representation, which carries
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higher-level semantic information [52], can be used to obtain an “attentional
searchlight” [9,41] that indicates which lower-level channels should be searched
(in this case the particular beak type) and consequently does feedback computa-
tion to increase activation of the feature maps and spatial locations correspond-
ing to selected lower-level channels. This results in a more precise lower-level rep-
resentation which when consequently feedforwarded lends a more task-relevant
top-level feature activation. The same mechanism for top-down guided feature
attention can also enable the model to localize and process individual objects at
each computation step as shown in second input of figure 1.

While discussed for a single feedback step in the penultimate layer, the same
operation can be done iteratively for multiple computation steps and at lower
levels of the hierarchy. Note, in our discussion, we treat channel activation of
intermediate feature maps to indicate presence of an individual feature and the
corresponding 2D feature map of a channel to indicate the spatial location of a
feature based on the findings in [52].

Designing a top-down attention module with visual searchlights for
feature attention. Based on the above insights, we propose a novel top-down
(TD) attention module that jointly models constituent higher-level and lower-
level features to obtain a “visual searchlight” that carries information on which
lower-level features are of interest for subsequent computation. This searchlight
then does attentional modulation of lower-level features by first performing chan-
nel attention through conventional channel scaling (“highlighting features of in-
terest”) and then performing spatial scaling (“intensifying spatial locations of
highlighted features”) by applying a spatial map obtained through its utilization
in a single pointwise convolution.

Our proposed module is lightweight (in terms of parameters) and
can be conveniently integrated at multiple levels of the CNN hierarchy
as a standard plug-in attention module and trained end-to-end with standard
backpropagation. We discuss more details of our approach in section 3, and
here briefly indicate two distinct advantages of the described operation of the
visual searchlight – (i) it enables task-specific and more informative activation
of features at each computation step by localizing and processing individual
features at each step (ii) it is more robust in performing spatial attention at
changing input resolutions [40] in comparison to static convolutional kernel-
based attention methods [47,37].

Contributions: (i) We introduce a novel lightweight top-down attention
module for CNNs by incorporating appropriate computational and neuroscience
motivations in its design. (ii) We show the effectiveness of our module in enhanc-
ing performance of mainstream CNN models (ResNet, MobileNetV3 and Con-
vNeXt), outperforming state-of-the-art attention modules across multiple object
recognition benchmarks, besides performing extensive ablation analysis to high-
light key factors influencing the module’s performance. (iii) We demonstrate how
our proposed module makes CNNs more robust to input resolution changes dur-
ing inference and enables the emergent property of “attention-shifting” through
appropriate qualitative and quantitative analyses.
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2 Related work

2.1 Attention modules for CNNs and feedforward attention
mechanisms

Initial work in the design of attention modules for CNNs includes the proposal of
stacked attention modules for residual networks [43] and squeeze-and-excitation
(SE) network’s [18] channel attention formulation for feature aggregation and
recalibration of GAP representations through fully connected layers. As exten-
sions to SE, many works have focused on how to enhance the feature aggregation
process by incorporating spatial and graph operations and more effective meth-
ods to estimate channel interactions than GAP. GE [17] introduces a spatial
gather-excite operator to augment channel attention, GSoP proposes second-
order global pooling methods [13], C3 [49] incorporates graph convolutional net-
works for channel interactions and A2-Nets [8] incorporate second-order atten-
tional pooling for long-range dependencies in image/video recognition. Notably,
CBAM [47] along with [31,37] demonstrate the advantage of incorporating spa-
tial attention in conjunction to channel attention, while CBAM also indicates
effectiveness of using GMP and GAP for feature aggregation. Further, AANets
[3] and SCNet[27] demonstrate how self-attention and self-calibration opera-
tions can augment standard convolutions, while GCNet [6] extends non-local
neural networks to augment SE operations. More recently, prominent modules
include ECA[44] which proposes one-dimensional convolutions to efficiently cap-
ture inter-channel interactions for channel attention and FCA[34] which proposes
utilization of discrete cosine transform based frequency compression methods to
effectively perform feature aggregation in SE in place of GAP. Additionally, mod-
ules such as DIANet[21] and RLA[54] propose to apply attention across layers,
with the former applying a shared module across layers while the latter performs
recurrent aggregation of features over layers.

In contrast to modelling attention for CNN architectures, recent works have
studied how purely self-attention based Transformers [42] can be effectively ap-
plied in computer vision tasks. Starting from the first Vision Transformer [11],
refinements in both model design [28,45] and training strategies [39] have made
Vision Transformers emerge as a strong class of vision backbones that utilize
feedforward attention mechanisms for computer-vision tasks.

2.2 Top-down feedback computation in CNNs

Integrating top-down feedback computation in CNNs has in general been shown
to improve performance on a variety of computer vision tasks. For instance, in
neural image captioning and visual question answering, multiple methods employ
variants of recurrent neural networks (RNNs) along with visual features from a
CNN in an encoder-decoder setup [7,48,50,1]. Similarly, RNNs have also been
proposed to model visual attention for context-driven sequential computation in
scene labelling [33,4], object recognition [53,51] and “glimpse” based processing
[2,30] for multi-object classification. Finally, approaches also model top-down
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feedback to iteratively localize salient features [12], keypoints [19] or objects [5]
and improve performance for fine-grained classification and object classification
with cluttered inputs. While these approaches propose novel top-down feedback
formulations, they are specifically formulated for target tasks and applied on
existing ImageNet-1k pretrained backbone CNN models. In contrast, our top-
down formulation serves a more general function of contextually-informed feature
modulation of intermediate features across the CNN hierarchy and is integrated
internally as a standard plug-in attention module trained with standard back-
propagation. Consequently, we provide all together new ImageNet-1k pretrained
backbones that we show to be effective on multiple object-recognition tasks.

3 Top-down (TD) attention module

We are given a convolutional block B comprising of N convolutional layers,
each denoted by Ln where n ∈ {1..N}, that maps an input feature map X0 ∈
RC0×H0×W0 to an output feature map XN ∈ RCN×HN×WN through feedforward
operation denoted by LN(LN−1..(L1(X

0))). We denote the output of the top-
down feedback operation in the block B for a given t number of computational
steps by XN

t where t ∈ {1..T}. Similarly, X0
t is the input at computational

step t. We infer a 1D attentional searchlight St ∈ RC0×1×1 that is used to
sequentially perform channel and spatial attention of X0

t to obtain the next
computational step input X0

t+1, which is subsequently feedforwarded to obtain
XN

t+1 as illustrated in figure 2. The operations for each computational step t can
be summarized as follows:

XN
t = LN(LN−1..(L1(X

0
t ))) (1)

St =

{
g(XN

t ,X0
t ) if joint attention

g(XN
t ) if top attention

(2)

X0
t+1 = att(X0

t ;St) (3)

where g(.) is a learnable transformation and att(.) denotes channel and spatial
attention. We provide more details for both below. The computation is repeated
for T computational steps and the final output of the block is XN

T .
Obtaining the attentional searchlight. In our proposed module, the at-

tentional searchlight St aims to specify which channels and spatial locations in
a lower-level feature map should be emphasized for the next computational step
and is derived from joint modelling of a higher-level feature map that captures
a higher degree of semantic information [52] and lower-level feature map that
contains local feature information. Hence, we model the generation of St as a
joint learnable transformation of the higher-level feature mapXN

t and lower-level
feature map X0

t . To perform the transformation, we first individually estimate
channel activations by squeezing [18] the spatial dimensions of respective feature
maps with an unparameterized pooling operation for both feature maps resulting
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Fig. 2. Left: Overview of our proposed top-down attention module with
“joint” bottom and top attention (eq. 4). Given an input bottom feature map and
feedforwarded top feature map, an “attentional searchlight” St is inferred to perform
channel and spatial attention of the existing input to obtain its next computational
step representation, which is subsequently feedforwarded. This is repeated for T com-
putational steps to obtain the final output XN

t=T (N and T=2 in figure). ‘m’ denotes
the feedback distance between top and bottom representations. Right: Integration
of top-down (TD) module using “top” attention (eq. 5) in a ResNet [14]
bottleneck block. As shown, TD operates before the residual connection for preset
computational steps T and its output is added to the ResNet block input.

in corresponding 1D channel vectors, for higher-level ∈ RCN and for lower-level
∈ RC0 . These vectors are then individually passed through distinct single hidden
layer multi-layer perceptrons (MLP) and subsequently concatenated and passed
through another single layer MLP to obtain a target 1D vector which we coin as
Attention Searchlight (i.e. St given by equation 2). This computation is shown
to be effective and efficient and also allows us to perform top-down feedback
independent of the channel and spatial dimensions of top and bottom feature
maps (i.e. XN

t and X0
t can be of different dimensions). The specific computation

to obtain Attention Searchlight is summarized as follows:

St = g(XN
t ,X0

t ) = Ws(ReLU[Wt(X
N
t,p);Wb(X

0
t,p)] (4)

where Wt ∈ RCN/r×CN , Wb ∈ RC0/r×C0 and Ws ∈ RC0×(CN+C0)/r are weights
of the MLP with ReLU activation applied after Wt and Wb , r is a reduc-
tion ratio to reduce parameter complexity (we use 16), σ is the sigmoid ac-
tivation function and pooled representations are indicated by subscript p, i.e.,
XN

t,p = Pool(XN
t ) and we utilize spatial average-pooling for the Pool() operator.

Accordingly, we term the formulation in eq. 4 as joint attention as it depends
on both top and bottom feature-maps.

For cases where more parameter efficiency is desired (e.g. relatively large
number of bottom channels), we model the generation of St based on the hidden
layer MLP representation of only the top feature map XN

t . We coin the below
formulation as top attention:

St = g(XN
t ) = Ws[ReLU(Wt (XN

t,p)]) (5)

where Wt ∈ RCN/r×CN and Ws ∈ RC0×CN/r are weights of the MLP with
ReLU activation applied after Wt, and σ is the sigmoid activation function.
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Performing channel and spatial attention. We interpret the obtained
attentional searchlight St to first be a channel attention vector signifying which
channels of X0

t should be “highlighted” for the next computation step. Conse-
quently, as a first step, we scale the existing representation X0

t through element-
wise multiplication with St (broadcasted spatially to match dimensions) to ob-
tain its channel-scaled representation X′0

t . We then perform pointwise convolu-
tion of St and X′0

t with St treated as a single 1x1 filter ∈ R1×1×C0 to obtain a
2D spatial map A ∈ RH0×W0 that specifies salient spatial locations in the scaled
feature map X′0

t . Then, X′0
t is scaled spatially through element-wise multipli-

cation with the sigmoidal activation of A (broadcasted channel-wise to match
dimensions) to obtain the next computational-step input representation X0

t+1.
We denote these set of operations as att(X0

t ;St) and summarize it as:

X′0
t = X0

t ⊗ σ(St) (6)

A = St ∗X′0
t (7)

X0
t+1 = X′0

t ⊗ σ(A) (8)

where ⊗ denotes element-wise product and ∗ denotes pointwise convolution.
The intuition to perform pointwise convolution to obtain A is that the chan-

nel weights in St and increased activations for selected channels in X′0
t ensure

that only those spatial locations that correspond to selected channels are ac-
tivated with convolution behaving as a spatial “search” operation of selected
lower-level features. A benefit of this formulation is that it can enable the model
to be more robust to changes in input resolution that may occur during model
inference and that can impact activation statistics of pooling layers [40] and
spatial attention techniques that utilize fixed convolutional kernels [47,37].

Integration in existing CNN models. As mentioned previously, our pro-
posed module does not require the bottom inputX0

t to be of the same dimensions
as the top output XN

t . Hence, it can be integrated into many CNN models as a
standard attention module at multiple levels of the processing hierarchy and be
trained end-to-end with standard backpropagation. Further, the formulation can
be generalized to be a single block spanning the entire CNN model with the bot-
tom input X0

t = image input and XN
t = pre-classifier feature map. However, we

empirically find that having a large feedback-distance (number of feedforward
convolutional layers) denoted by ‘m’ between bottom representation X0

t and
the top representation XN

t leads to unstable training and significantly worsen
the performance. This is possibly due to a radical shift in input distributions
over computational-steps for intermediate convolutional layers (i.e. the layer re-
ceives two radically different inputs over computational-steps) due to changes
accumulated over previous layer outputs that amplify with higher number of
previous layers. Hence, for our experiments, we study ‘m’ between 1 to 3 within
a standard convolutional block, and specifically apply multiple instantiations of
the module at deeper semantically-richer [52] levels of a CNN model. Further,
we use unique batch normalization layers for each computation step to stabi-
lize training as suggested in findings of [25]. We denote our proposed top-down
module which operates for T computational steps and over feedback-distance M
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Method BB. Param. FLOPs Mem.(Gb) FPS/gpu ImageNet-V2 ImageNet-V1

- - - - Trn Val Trn Val Top1 Top5 Top1 Top5

ResNet [14]

R
es

n
et

5
0 25.56 M 4.12 G 29.5 16.1 704 2143 66.39 86.59 77.51 93.64

SE [18] 28.07 M 4.13 G 32.4 16.0 615 1911 66.92 86.88 78.03 93.88
CBAM [47] 28.07 M 4.14 G 37.6 20.7 420 1442 67.28 87.04 78.59 93.95
ECA [44] 25.56 M 4.13 G 31.5 16.1 652 1989 66.72 86.95 78.11 93.85
FCA-TS [34] 28.07 M 4.13 G 32.4 16.3 590 1876 67.19 87.02 78.70 94.01
TDjoint (t=2, m=1) 27.65 M 4.59 G 31.9 16.2 601 1890 67.66 87.02 78.96 94.19
TDtop (t=2, m=1) 27.06 M 4.59 G 31.8 16.0 612 1905 67.21 86.98 78.82 93.98
TDtop (t=2, m=3) 27.66 M 5.98 G 35.3 16.3 498 1539 67.70 87.08 78.90 94.23

ResNet [14]

R
es

n
et

1
0
1 44.55 M 7.85 G 39.2 16.6 460 1376 69.64 89.09 80.36 95.31

SE [18] 49.29 M 7.86 G 45.5 16.9 368 1201 69.88 89.17 80.84 95.42
CBAM [47] 49.29 M 7.88 G 53.3 21.4 269 862 70.03 89.35 81.20 95.64
FCA-TS [34] 49.29 M 7.86 G 47.0 17.1 312 1164 70.12 89.42 81.15 95.59
TDjoint (t=2, m=1) 46.75 M 8.37 G 41.0 16.8 396 1237 70.56 89.44 81.62 95.76
TDjoint (t=2, m=1, L4) 45.94 M 8.01 G 40.3 16.8 413 1258 70.28 89.39 81.12 95.49

Table 1. Top1 & Top5 single-crop classification accuracy (%) of ResNet50 and
ResNet101 integrated with our TD module in comparison to baselines on original
ImageNet-V1 [10] and recent ImageNet-V2 [35] validation sets. All models are repro-
duced and trained with same experimental setup and selected on best ImageNet-V1
performance. Further backbones and baselines in supplemental for better readability.

with TD (t=T, m=M) where TD is further specified as top attention (eq. 5)
or joint attention (eq. 4).

An example integration of the module in a ResNet [14] block is shown in
figure 2(right).

4 Experimental results and discussion

We evaluate our proposed top-down (TD) attention module on the standard
benchmarks: ImageNet-1k [10] for large-scale object classification and localiza-
tion, CUB-200 [46] and Stanford Dogs [22] for fine-grained classification and
MS-COCO [26] for multi-label image classification.

We perform experiments with three mainstream CNN model types – ResNet
[14], MobilenetV3 [16] and the recent ConvNeXt [29]. We compare performance
with the original models and prominent attention modules including Squeeze
& Excitation networks (SE) [18], CBAM [47], ECA [44] and FCA [34]. To our
knowledge, FCA is the most recent attention module shown to effectively en-
hance performance of multiple CNN variants. For ResNet models, we apply our
module at all blocks of layers 3 and 4 (with exception of ResNet101 wherein we
either simply apply only at layer 4 or at layer 4 and 10 alternating blocks in layer
3 to preserve computational complexity in comparison to baselines). Similarly,
for ConvNeXt, we apply at blocks of stages 3 and 4. For MobileNetV3 large,
we apply our module at the final three layers, replacing the existing SE blocks
in those layers. We choose penultimate model layers as they generally consti-
tute semantically-richer activations [52] where our described top-down attention
mechanism can be most beneficial with marginal parameter overhead. For fair
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Model (RNet50) ImageNet-V1 Top1 Acc.

- Best 2242 1682 4482

ResNet [14] 78.24 77.51 74.53 75.64
SE [18] 78.75 78.03 75.52 76.78
CBAM [47] 78.86 78.59 75.10 75.21
ECA [44] 78.80 78.11 75.46 76.85
FCA-TS [34] 79.02 78.70 75.74 76.99
TDjoint(t2,m1) 79.52 78.96 76.03 77.41
TDtop(t2,m3) 79.46 78.90 76.12 77.57

Table 2. Performance of models with
ResNet50 backbone on ImageNet-V1
single crop object classification at differ-
ent testing resolutions (all models were
trained on 2242 resolution). Most models
obtain best accuracy at 2802 resolution
as shown in fig. 3.

Fig. 3. Performance of models (ResNet50
backbone) on ImageNet-V1 (ILSVRC-12
[10]) at different test resolutions with best
accuracy reported in plot legend and ta-
ble 2. TD models obtain better results at
higher resolutions in comparison to base-
lines.

comparison, we reproduce all experiments in PyTorch [32] with the same training
strategy used for all models. Training details and hyperparameter configurations
for all experiments are provided in supplemental.

4.1 Large-scale object classification (ImageNet-1k)

We first perform experiments on large-scale object classification with the ImageNet-
1k dataset and evaluate our module on ResNet variants (ResNet18, ResNet34,
ResNet50 and ResNet101) and ConvNext-Tiny. For comprehensive evaluation,
we consider two distinct validation sets – the original ILSVRC-12 set comprising
50,000 images [10] and the recent more challenging ImageNet V2 [35] “Matched-
Frequency” set with 10,000 new images. We hereafter refer them as ImageNet-V1
and ImageNet-V2 respectively. We assess models based on their top1 and top5
single crop validation accuracy. Additionally, for models with our TD module,
which output localized object predictions at each computation step (as shown
in fig. 4), we only consider the most confident prediction during both training
and evaluation with exception of a minority of images that comprise multiple
objects, for which we consider only predictions with unique localization maps
(having an IOU < 0.5).

We summarize our experimental results for ResNet50 and ResNet101 in table
1, and compare the top configurations of our TD module with aforementioned
baselines. We report results for other backbones in supplemental to not overload
the reader and discuss ablations of our module in section 4.4. We find that
our optimal formulation is TDjoint(t=2, m=1), which achieves a top1
accuracy of 78.96% on ImageNet-V1 and 67.66% on ImageNet-V2 for ResNet50,
improving performance of the original model by 1.5% and 1.3% respectively.
For ResNet101, it achieves a 0.8% higher top1 accuracy on ImageNet-V1 in
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comparison to SE when applied at both layers 3 and 4. Further, it outperforms
feedforward attention modules on both validation sets for both ResNet50 and
ResNet101 while having lesser parameters and comparable or higher training
and inference speed in most cases (with exception of ECA). We find similar
increments for TDtop(t=2, m=1), a lighter variant of our module utilizing only
top attention, and TDtop(t=2, m=3), a computationally expensive variant with
larger feedback distance.

Overall, our method outperforms all prior state-of-the-art attention modules
including the recent FCA-TS [34], suggesting the effectiveness of the top-down
attention mechanism of our module, which becomes more prominent for chal-
lenging tasks such as weakly supervised localization as shown later.

Computation cost comparison: Since our modules perform iterative top-
down computation, they have a higher associated number of FLOPs than exist-
ing feedforward modules. Further, the number of FLOPs grows as the feedback
distance (‘m’) increases – growing by 20% in case of ResNet50 from m=1 to
m=3. However, we find that this limitation can be managed in practice during
both training and inference in comparison to baseline modules since our models
(specifically with m=1) require lesser parameters and memory operations, and
hence have comparable or higher FPS (speed). As shown in table 1, TD models
with m=1 have higher FPS than both CBAM and FCA for ResNet50, and higher
FPS than SE as well for ResNet101.

Evaluation of models at different input resolutions. The activation
statistics of the global pooling in CNNs have been shown to be strongly impacted
by changes in input resolutions [40], thereby making performance of CNNs sus-
ceptible to variations in input resolution. Hence, in this experiment, we study
whether attention modules including TD can enhance robustness of CNNs by
evaluating ResNet50 models at different resolutions for ImageNet-V1. We plot
results for all models in fig. 3 for testing resolutions from 168x168 to 448x448
with increments of 28 (further lower resolutions provided in supplemental). Ad-
ditionally, in table 2, we indicate each model’s performance at lowest resolution
of 168x168 (denoted by 1682), performance at highest resolution of 448x448, best
testing performance and original 224x224 performance.

We find that: (i) TD-models largely prevent performance from dropping dras-
tically at higher resolutions, particularly obtaining a 2% better performance than
the original ResNet model at 448x448. (ii) CBAM, which utilizes a fixed convo-
lutional kernel to model spatial attention, has a significant drop in performance
at higher resolutions. (iii) Other attention modules have appreciable robustness
in comparison to original ResNet, but have lesser benefits at higher resolutions
in comparison to TD-models, with the best performing module (FCA) having a
0.5% lesser performance than TD-models at best resolution setting.

4.2 Attention visualization and weakly-supervised object
localization

To better understand the workings of our proposed TD module, we utilize Grad-
CAM maps [38] to visualize the model’s attention at each computation step for
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images drawn from the aforementioned validation sets. As shown in figure 4,
we find that the model implicitly learns to shift its attention over computation
steps. We conjecture that this imparts the model two important capabilities
– one, choosing which object to “focus” on at each computational step when
multiple objects (known to the model) are present and two, which feature to
“focus” on at a given computational step when a more ambiguous or “difficult”
object is present as the input. As an example of the first case, consider the
second image input in fig. 4, wherein the model at its first computational step
accurately locates a ‘vine snake’ to be present in the scene (which the original
model gets incorrect) and then shifts its attention to the radiator. In contrast,
in input five (of same fig. 4), the model iteratively attends to different features
to make a more informed prediction. At its first computational step, it identifies
water as a primary feature and has an initial prediction of a ‘water-ouzel’, but
in the second computational step, it shifts its attention to the head of the bird
and consequently predicts the correct category – ‘goldfinch’. In comparison, the
original Resnet50’s prediction (‘water-ouzel’) is based on a less selective and
conjoined feature map of the bird and water.

To quantitatively assess the model’s attention capability and resulting en-
hancement in feature selectivity, we evaluate it on weakly supervised ImageNet-
1k localization challenge [10], which requires models to provide bounding boxes
in addition to classification labels. For all models, we follow the same strat-
egy as [38] to generate bounding boxes for output predicted classes, and report
top-1 and top-5 localization accuracy on ImageNet-V1 in table 3. We find that
both top performing TD configurations for object classification improve per-
formance of ResNet50, with TDtop(t=2,m=3) notably increasing accuracy by
5%, and being 3% over the best baseline model – CBAM. Interestingly, channel
attention methods of SE, ECA and FCA obtain worse performance than origi-
nal ResNet50, suggesting strong importance of spatial attention in localization
tasks. The resulting improvement also highlights the importance of the top-down
searchlight-driven feedback mechanism introduced in this paper for obtaining a
better attention module.

4.3 Fine-grained and multi-label classification

To demonstrate the general applicability of our TD module across different tasks
and assess its capability as a robust feature extractor, we evaluate its perfor-
mance as a backbone for existing state-of-the-art methods for fine-grained clas-
sification and multi-label object classification. We use the “Weakly Supervised
Data Augmentation” method [20] for fine-grained classification and “Asymmet-
ric loss” method [36] for multi-label classification, and simply replace the model
backbone in both methods with our pretrained ImageNet-1k models. For fine-
grained classification, we consider the Caltech-birds (CUB) and Stanford Dogs
(Dogs) datasets and assess models on top-1 validation accuracy. For multi-label
classification, we use MS-COCO and assess models on mAP and overall F1.

As shown in table 4, using TD models (denoted as TDj for TDjoint and TDt
for TDtop) as a backbone leads to a notable improvement in all three tasks com-
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Fig. 4. Representative examples of “attention shifting” over computational
steps of our model based on Grad-CAM analysis. In the first 4 examples, the
TD model iteratively attends to distinct objects and has a more selective and complete
feature activation at each computation step compared to original ResNet50. In the next
4 examples, it iteratively attends to relevant features for better discrimination of finer
classes. See supplemental for more types and code to generate arbitrary examples.

pared to a baseline ResNet50, specifically achieving 1.5% increment on CUB-200
and 2 points better mAP on MS-COCO. The relative improvement over CBAM,
which performs purely feedforward channel and spatial attention, suggests the
benefits of feedback-driven channel and spatial attention in enabling iterative
task-specific refinement of constituent feature-maps within the backbone.

4.4 Ablative analysis of feedback computation

As indicated in Sec. 3, our proposed TD module has four primary factors –
(i) choice of attention “TDjoint” or “TDtop” (ii) feedback distance ‘m’, (iii)
feedback channel and spatial attention technique, and (iv) feedback steps ‘t’.
Accordingly, we assess the impact of each factor by evaluating resulting module
configurations on ImageNet classification. To evaluate factors (i), (ii) and (iii),
we utilize ResNet50. For factor (iv), we utilize relatively shallower models of
MobileNetV3-large and ResNet18 and evaluate on a hierarchically reduced sub-
set of ImageNet with 200 classes due to the high computation cost and training
time associated with models with more than 3 feedback steps.

Impact of feedback distance ‘m’ and “joint” vs “top” attention In
the left plot of fig.5, we see that having a feedback distance of at least 1 improves
the performance of the module, i.e. the module requires distinct top and bottom
feature maps, and applying top-down attention on the same single feature map as
done in existing attention modules provides negligible performance benefit over
the baseline ResNet50 while introducing high number of parameters. Next, the
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Model ImageNet(V1)
- Top1 Top5
RNet50 57.04 68.67
RNet101 58.54 69.86
RNet50 + SE 56.62 67.88
RNet50 + CBAM 58.91 70.54
RNet50 + ECA 56.94 68.38
RNet50 + FCA-TS 56.88 67.86
RNet50 + TDjoint(t=2,m=1) 61.55 72.10
RNet50 + TDtop(t=2,m=3) 61.97 72.37

Table 3. Weakly supervised object local-
ization accuracy (%) on ImageNet (V1).
TD models and CBAM that incorporate
spatial attention increase performance of
ResNet50 while purely channel attention
methods reduce performance.

Model (ResNet50) CUB Dogs MS-COCO
- Top1 Top1 mAP F1-O

ResNet 88.26 85.97 77.58 75.45
SE 88.89 86.55 78.21 76.37
CBAM 89.37 86.98 79.17 77.15
FCA-TS 88.94 86.76 79.05 77.08
TDjoint(t=2,m=1) 89.61 87.08 79.61 77.71
TDtop(t=2,m=3) 89.75 87.30 79.56 77.62

Table 4. Performance of models as back-
bones for fine-classification (val. acc. % for
CUB and Stanford Dogs) and multi-label
classification (val. mAP and overall F1
for MS-COCO). TD-based ResNet50 back-
bones outperform baselines in both tasks.

performance is most improved at m=1 and m=3 for both TDjoint and TDtop.
However, note this does not indicate that m=2 is an inferior option in general,
as in the case of ResNet50, the bottom representation at m=2 is the bottleneck
block input, which may not sufficiently benefit from attentional modulation.
Finally, TDjoint(m=3) and TDjoint(m=1) are the top-2 performing modules
configurations indicating the enhanced representation capacity offered in joint
modelling of top and bottom feature maps. However, while TDjoint(m=3) has
the highest performance, it has 8% higher parameters than TDjoint(m=1) and
TDtop(m=3). Hence, other variants are more preferable, and in particular, we
recognize TDjoint (t=2, m=1) as our primary TD attention module.

Impact of feedback steps ‘t’. As shown in center plot of fig. 5, the perfor-
mance peaks at 2 feedback steps, and thereafter declines, but still retains higher
performance than both a purely feedforward (t=1) model and single feedback
(t=2) model. We conjecture that this decline at higher computation steps may
be a result of possibly reduced value of gradients while training of the model
(akin to “vanishing gradients”), leading to a less effective attentional searchlight
at each feedback step. Note that in case of MobileNet, models with TD exhibit
higher performance than the original model while having 15% lesser parameters
and smaller model size, suggesting TD attention is useful for low-end devices.

Impact of feedback attention technique. To study the individual contri-
butions of channel and spatial attention, as well as the applied order of attention
operations, we consider six variants of the feedback operation in our TD module
– (i) channel then spatial attention (as described in sec. 3), (ii) spatial then chan-
nel attention, (iii) channel and spatial attention performed independently and
parallely, (iv) only channel attention, (v) only spatial attention, and (vi) use of a
recurrently-applied convolutional layer to map output feature maps to next com-
putation step input feature maps (instead of explicitly performing attention). As
shown in the right plot of fig. 5, we find that performing channel and spatial
attention independently has lesser performance than our searchlight’s intended
operation of first performing channel attention and then spatial attention. Ad-
ditionally, only doing channel attention led to a noticeable drop in performance
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Fig. 5. Ablative analysis of our TD module. Left: choice of attention operation
(TDjoint or TDtop) and feedback distance ‘m’ (with ResNet50 on ImageNet-1k). Cen-
ter: number of feedback steps ‘t’ (for MobileNetV3 large and ResNet18 on a hierarchi-
cally reduced subset of ImageNet with 200 classes). Right: Impact of feedback atten-
tion technique (with ResNet50) where Chn→ Sp denotes spatial attention performed
after channel, Chn||Sp denotes independent parallel channel and spatial attention, and
Conv Map denotes a feedback convolution. Numerical reports in supplemental.

indicating the contribution of spatial attention in the searchlight’s operation.
Similarly, iteratively applying a convolutional layer on the output feature map
to obtain next computation step inputs had lesser performance indicating the
benefit of the iterative top-down attention method utilized in our work. For only
spatial attention and spatial followed by channel attention, we found the network
did not converge while training and had significantly worse performance. Apart
from the above-mentioned primary factors of our module, we also quantitatively
study how our module impacts selectivity of channels in its output feature maps,
and report other ablations in the supplemental.

5 Conclusions

We introduced a lightweight module for CNNs that iteratively generates a “visual
searchlight” to perform top-down channel and spatial attention of its constituent
representations and outputs more selective feature activations. We performed
extensive experiments with mainstream CNNs and showed that integrating our
module outperforms baseline attention modules on large-scale object classifica-
tion, fine-grained and multi-label classification. Further, we demonstrated the
effectiveness of TD-models in increasing robustness to changes in image reso-
lutions during inference and also illustrated the emergent “attention shifting”
behaviour and quantitatively assessed it on weakly supervised object localiza-
tion, finding that it outputs significantly more precise localization maps. This
can be especially beneficial for applications with varying input resolutions or
requiring fine-resolution processing such as ego-centric action anticipation.
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