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A Appendix

In this section, we present arrays of ablation studies to understand crucial prop-
erties of the source domains. All experiments in this section are performed in
the fully-correlated target domains.

A.1 DiagVib Dataset Configurations

As mentioned in the experiments in section 4, we use datasets based on the
DiagVib framework which allows generation of synthetic datasets with custom
configurations of basic visual factors. We consider five factors whose number of
possible values are listed according to Table 4. It should be noted that DiagVib-
Caltech and DiagVib-Animal have different number of available shapes.

Table 4: Different visual factors, which can be configured in the DiagVib frame-
work

Factor Description No. of Classes

Shape Object boundary defined by a silhouette
Caltech: 50
Animal: 10

Color Hue value in HSV space 12

Lightness Lighting condition (e.g., bright, dark) 4

Texture
Pattern drawn inside the object
(e.g. wooden, checkerboard)

5

Background Background color 3

A.2 Ablation Studies on the Source Domain

Table 5: Accuracies of FactorSRC-IL in the target domain (DiagVib-Animal)
with variations of source domains to demonstrate the impact of their uncorre-
lated factors.

Source Setting Images from
Correlated
Factors

Target
HM Acc.

Uncorrelated DiagVib-Caltech False 33.5 ± 1.0
Correlated DiagVib-Caltech True 2.5± 0.7
Target DiagVib-Animal True 1.7± 0.4

Impact of Uncorrelation of Factors In this study, we aim to investigate
whether the improvement in generalization performance after incorporating the
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source domain stems from uncorrelating visual factors. We compare the follow-
ing source dataset settings: a) Uncorrelated: all factor combinations are available
b) Correlated: shape and color factors are one-to-one correlated c) Target: use
correlated data sampled from the target distribution (DiagVib-Animal) for train-
ing. For a fair comparison, the number of target-associated factors (shape/color)
are reduced to 10 for Uncorrelated and Correlated settings, so as to match the
Target setting. Results in Table 5 indicate that the Uncorrelated setting yields
significantly higher accuracy compared to others. This empirically shows that
this improvement in OOD generalization is indeed due to the uncorrelated na-
ture of the source dataset and not just a mere result of the increased dataset
size.

Impact of Shape Variations We conduct another experiments to understand
if the complexity of the shapes provided in the source domain affects accuracies
in the target domain. We modify the DiagVib-Caltech source domain to use
MNIST shapes and compare it to the original setting with Caltech shapes (we
use 10 shapes in both cases to be comparable). Table 6 shows that the setting
with MNIST shapes has lower accuracies. We believe that this is due to the
fact that MNIST has less intra-class shape variation compared to Caltech. For
example, the shape of the number ones are not much different across different
samples. This degrades the generality of the learned shape representation. This
experiment suggests that a primary concern when constructing a source dataset
should be intra-class variability of each factor.

Table 6: Accuracies of FactorSRC-IL with variations of shape in the source do-
main.

Shape
DiagVib-Animal

HM. Acc
Color-Fruit
HM. Acc

AO-CLEVR
HM. Acc

Caltech 33.5 ± 1.0 56.0 ± 2.7 36.4 ± 1.8
MNIST 31.9± 0.7 46.9± 3.2 29.0± 1.4

Impact of Available Factors In this experiment, we study the effects of
varying the number of basic visual factors represented in the source domain. Ac-
cording to the result in Table 7, while we find that increasing the number visual
factors yields better performance overall, for some factors, the effect on different
target domains is different. For instance, with DiagVib-Animal as a target, in-
cluding the background as a factor in the source domain improves performance
significantly, due to the fact that the target domain has variable background
colors. In contrast, this effect is not observed on Color-Fruit, whose images have
a constant background. Instead, learning lightness and texture can improve gen-
eralization performance since these two factors have high variation in this target
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domain (DiagVib-Animal doesn’t have variations of lightness and texture). We
can infer from this result that the performance in the target domain tends to be
better if the source domain captures basic factors which are represented in the
target domain.

Table 7: HM Accuracies from FactorSRC-IL approach on DiagVib-Caltech source
domain with different presence of factors (S, C, L, T, B correspond to Shape
Color, Lightness, Texture and Background respectively).

Factors DV.-Animal Color-Fruit

S/C 28.6± 1.2 49.5± 5.0
S/C/L 29.3± 1.1 53.2± 3.5

S/C/L/T 31.5± 0.5 57.7±3.3
S/C/L/T/B 41.3±1.6 57.0± 4.7

In summary, we have performed an array of ablation studies to analyze prop-
erties of the source domain which encourage better generalization in target do-
mains. Firstly, we showed that visual factors in the source domain should be
uncorrelated. This facilitates disentanglement of visual factors’ representations,
which in turn leads to less shortcut vulnerability. Secondly, we demonstrated
that intra-factor variability is crucial in order for deep networks to learn gen-
eralizable representations. Lastly, visual factors encoded in the source domain
should cover as many predictive features in the target domain as possible. We
believe that these three aspects are among the most important criteria, which
should guide practitioners towards choosing better source domains for augment-
ing biased training datasets.

Impact of Variations of the Number of Factor Classes From our ex-
periments, we showed that FactorSRC-IL can learn factor representations from
the source domain, which improve compositional generalization in several target
domains. In this section, we would like to investigate how the number of fac-
tor values in the source dataset affects generalization performance in the target
domain. For this purpose, we vary the number of factor values associated to
each target label (shape and color in our setting) and measure compositional
generalization in the DiagVib-Animal target domain. Results are shown in Fig-
ure 6 and indicate that a higher number of factor values generally leads to the
better performance. This is intuitive since a higher number of classes should
encourage networks to learn more general factor representations. An interesting
observation is that the network needs only around 8 color classes to be close to
optimal performance while around 35 classes are needed in the case of shape.
We believe this is due to the fact that shape, as a basic visual factor, is more
high-dimensional and thus more difficult to model than color.
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(a) Varying the number of colors
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(b) Varying the number of shapes

Fig. 6: Accuracies of FactorSRC-IL on the DiagVib-Animal with different number
of factor classes (color and shape) while maintaining the same configuration for
the other factors on the DiagVib-Caltech source domain.

A.3 Effect of the CI Constraint on the Source Domain

In our experiment section, we stated that the Cross-Factor Independence Con-
straint (CI) promotes independence of factor reresentations in the source domain.
In this section, we provide experimental evidence supporting our claim. To this
end, we compare cross-prediction accuracies with and without the CI constraint,
for each factor among z1, z2, . . . , zK . Results are visualized in Figure 7. We can
see that, while direct-prediction accuracies are comparable with and without the
CI constraint, the cross-prediction performance decreases significantly when the
CI constraint is introduced. This supports our hypothesis that the CI constraint
induces a higher degree of independence among factor representations in the
source domain.

A.4 Importance of Association Matrix Assignment

We hypothesize that the shape is a generic robust factor that can be used to
predict object types. So, we manually associate the shape factor from the source
domain to the object type of target domains in the association matrix A in all
fully-correlated target domain scenarios. To validate this hypothesis, we perform
an ablation study to evaluate network performance when different configurations
of source factors are chosen in association matrix A. Performance of all configu-
rations can be visualized as two-dimensional heatmaps for different datasets as
in Figure 8. The value in each cell Cij of a heatmap represents the average HM
accuracy when target attribute and target object associate to source factor i
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(a) FactorSRC Heatmap
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(b) FactorSRC-CI Heatmap

Fig. 7: Heatmaps displaying direct and cross-factor prediction accuracies using
DiagVib-Caltech and DiagVib-Animal as source and target domain respectively.
Each cell indicates the accuracy attained when a single factor representation (zk
in each row) is used to predict labels (ŷls) with a linear model. A higher degree of
independence among factor representations is expected to yield similar diagonal
values but lower off-diagonal ones (cross-prediction). Factor indices from 1 to 5
correspond to shape, color, lightness, texture and background respectively.

(row of heatmap) and j (column of heatmap) in the source domain respectively.
In this regard, cell C21 in each heatmap represents HM accuracy of a config-
uration setting when target attribute/object associate with source color/shape
factors.

First of all, considering the results from DiagVib-Animal and Color-Fruit
target datasets in Figure 8a and 8b, the highest values of C21 (42% and 58%)
for both datasets empirically support our hypothesis that the shape factor is
a robust factor for predicting object types in the target domain. In the Color-
Fruit dataset, an interesting observation can be made as texture factor is also
a predictive of fruit type in addition to the shape factor (C13 of 40% in Figure
8b). This result shows capability of the texture to predict fruit type which aligns
to the estimated association matrix in Figure 5e. From these results, we can
empirically validate our hypothesis and show that a proper configuration of the
association matrix is important to alleviate model vulnerability to shortcuts.

In a more challenge dataset Color-Fashion, even though our configuration C21

is among the best, there are other configuration settings that reach similar result
(Figure 8c). This behavior can be explained intuitively: considering the target
object type (garment type), models have high performance when associating the
object type to either shape or texture factors (can be seen as cells of high values
on the first and the fourth columns). This behaviour is similar to the case of the
fruit type in Color-Fruit dataset emphasizing the fact that both shape or texture
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Fig. 8: HM Accuracies with different configurations of association matrices in dif-
ferent target datasets. The cell Cij in each heatmap corresponds to the accuracy
when the association matrix associating target attribute and object type to the
i-th and j-th factor respectively. The order of factors is shape, color, lightness,
texture and background color.

can be a predictive factor for object types. For the target attribute type (garment
color), its associations to color or background color produce high accuracies (can
be seen as cells of high values on the second and the fifth rows). This implies
that information of the garment color is contained in factor representations of
both color and background color. The underlying reason can be due to the
design of our source domain. In the DiagVib-Caltech source domain, boundaries
between foregrounds and backgrounds are simple as backgrounds are only plain
colors. However, in the case of the Color-Fashion target domain, its backgrounds
are more complex representing realistic scenes. This suggests redesigning of the
source domain. One possibility is to use more realistic backgrounds such as place
images similar to [1].

A.5 Implementation Details

In this section, we provide details of our network design and training hyperpa-
rameters.
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Table 8: Accuracies on DiagVib-Animal, Color-Fruit, AO-CLEVR and Color-
Fashion target domains with the similar experiment setup as in Table 1. However,
calibrated bias terms are incorporated before computing seen, unseen and HM
accuracies.

Approach
Use

Source?

DiagVib-Animal Color-Fruit Color-Fashion

Seen Unseen HM Seen Unseen HM Seen Unseen HM

LabelEmbed+ ✗ 96.3 10.3 13.2 100 19.7 12.5 90.0 13.4 16.9

TMN ✗ 95.7 7.0 12.2 100 17.9 29.2 89.4 7.0 8.9

CGE ✗ 92.8 11.8 15.0 100 24.9 32.9 88.1 20.8 21.0

For all variants of the factorized architecture illustrated in Figure 2b (Factor-
0, FactorSRC, FactorSRC-CI and FactorSRC-IL), the encoder G is a fully-
connected network with 2 hidden layers, which outputs multiple factor repre-
sentations, each one of length 64. All branches of Hs and Ht (i.e., all prediction
heads in {hk

s}Kk=1 ∪ {ho
s, h

a
s}) consist of a fully-connected network with 1 hidden

layer. We set the hyperparameter λ equal to 10 when we include the source
dataset for all experiments for fair comparison. In section 3.4, we introduce
strategy to learn the factor association matrix with additional regularization
constraints. Hyperparameters α, β and τ used for the regularization constraints
are 5, 20 and 0.33 respectively.

For training we use Adam as an optimizer, a learning rate of 0.01 and weight
decay equal to 5e−5. The optimal network is selected based on the loss on a
validation split over 100 epochs.

A.6 Bias Terms for Adjusting Likelihood of Unseen Combinations

As mentioned earlier in section 4, unlike some prior works [23, 21], we evalu-
ate compositional generalization without bias terms to adjust the likelihood of
unseen combinations (using higher bias makes the model more likely to pre-
dict unseen combinations). The reason is that tuning of the bias terms requires
availability of samples from unseen combinations. This violates the zero-shot
assumption. Additionally, bias terms are designed to be applicable only with
certain baselines based on compatability scores (such as LabelEmbed+, TMN
and CGE) but not the others leading to unfair comparison.

For completeness, we will also provide results when the calibrated bias terms
are incorporated during evaluation for LabelEmbed+, TMN and CGE. The seen,
unseen and HM accuracies reported here correspond to their maximum values
when their optimal bias terms are used (maximum seen and maximum unseen
accuracies usually employ different optimal values of bias terms). Adopting the
same experiment setup similar to Table 1, baseline performance with calibrated
bias terms is presented in Table 8. According to the results, the accuracies are
higher when the calibrated biases are incorporated. However, the overall HM
accuracies are still lower than results from our approaches. This still highlights
vulnerability of these baselines to shortcuts.
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Fig. 9: Seen/Unseen Accuracies of TMN and CGE baselines evaluated with dif-
ferent bias terms.

Here, we also investigate why seen accuracies of certain baselines are low
in Table 1 (e.g., CGE on Color-Fashion). We can understand this behavior by
observing seen/unseen accuracies using different bias terms. According to Figure
9a, the seen accuracy of CGE on Color-Fashion can be as high as 88.1 (similar to
Table 8) when low bias term is used. However, in our experiment, we choose not
to use bias terms for evaluation as per the reasons described above. Therefore,
the reported seen accuracies on Table 1 are computed with bias terms of zero
values. From Figure 9a, the seen accuracy of CGE on Color-Fashion is reduced
to 21.6 (similar to Table 1). In contrast to CGE, the seen accuracy of TMN with
zero bias term is already high (see Figure 9b). Therefore, we do not see low seen
accuracy of TMN on Table 1.

A.7 Sweeping Weight of Loss for the Source Domain

The hyperparameter λ is used to weight the importance of Lsource during train-
ing. Here we investigate its impact on the generalization performance attained in
the target domain. Results of our analysis are shown in Figure 10. We note that,
for FactorSRC and FactorSRC-CI, the harmonic mean of seen and unseen accu-
racies increases with higher λ values. This suggests that these two models are
less sensitive to biases in the target dataset when λ is increased. High values of λ
encourage FactorSRC and FactorSRC-CI to be more similar to FactorSRC-IL as
Ltarget becomes less important to update G relative to Lsource. FactorSRC-IL,
on the other hand, performs consistently when λ > 0. This result is reasonable
since, when the IL constraint is introduced, Lsource and Ltarget are indepen-
dently used to update different parts of the network (they update {G,Hs} and
{Ht} respectively). We note that, even though the higher λ leads to better per-
formance, we reserve to use λ at 10 in our experiment so that we can study
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effects from other loss terms. It should be noted that changing the value of λ
here does not play a major role in our analysis since the key trends would be
the same.
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Fig. 10: HM Accuracies using the DiagVib-Animal target domain and the
DiagVib-Caltech source domain with different λ values to weight the impor-
tance of Lsource. Notice that, higher λ values encourage models to behave closer
to FactorSRC-IL. We sample λ on the low values with higher frequency to better
highlight the faster increasing trends.

A.8 Cross-Factor Independence Constraint Algorithm

The Cross-Factor Independence constraint is implemented as a two-step opti-
mization approach. In the first step, we update H ′ by minimizing the sum of
cross entropy loss terms for all cross-factor predictions, i.e.,

LH′ =
∑

∀k1,k2;k1 ̸=k2

CE(H ′
k1k2

(zk1), y
k2
s ) . (3)

Subsequently, we update the whole network by minimizing the combination of
Ltarget, Lsource, and an additional independence loss LCI . In principle, LCI could
be formulated as −LH′ but we found that this leads to training instabilities due
to the fact that such a loss is unbound. Instead, we minimize the cross entropy
between the predictions of H ′ and a uniform label distribution. This encourages
each factor representation to be uninformative with respect to all other factors.
Mathematically, LCI can be written as follows:

LCI = γ
∑

∀k1,k2;k1 ̸=k2

CE

(
H ′

k1k2
(zk1),

1
N

Fk2
s

NFk2
s

)
(4)

, where 1N indicates a vector of ones with length N , NFk
s
is the number of factor

values of the k-th factor and γ ≥ 0 is a hyperparameter (we use γ = 5).

A.9 Seen Accuracy form FactorSRC-IL on DiagVib-Animal

According to the result from Table 1, we notice that, on DiagVib-Animal, even
though the HM accuracy of FactorSRC-IL is significantly higher than all other
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(a) Training samples (b) Test samples

Fig. 11: Examples of Color-Fruit dataset images. (a) Training samples contain-
ing images of fully-correlated attribute-object combinations denoted with green-
bordered boxes (One object type always has one color and vice versa). (b) Test
samples are, on the other hand, uncorrelated i.e., consisting of images with any
attribute-object combinations (i.e., each object (fruit type) can appear with any
attributes (color)). Fruit images whose colors are not available in the original
Fruits 360 dataset are obtained by using the recolorization technique in [29]

approaches, the seen accuracy is dropped significantly (to 56.3%). The drop of
the seen accuracy only presents in the case of DiagVib-Animal but not other
target domains. We suspect that this behavior could stem from the lower ran-
dom chance accuracy (1% on DiagVib-Animal compared to 4% and 4.7% on
other target domains) or just the complexity of the DiagVib-Animal (with high
intra-class variations and various backgrounds). In this regard, we conduct an
experiment with reduced number of attribute/object labels from 10 to 5 so that
it has the random chance accuracy of 4% which is the same as the one of Color-
Fruit. In this regard, seen, unseen and HM accuracies on this reduced version
of the DiagVib-Animal target domain are 74.2%, 52.6% and 61.4% respectively.
Notice that, the seen accuracy is higher than the one on the original version
but it is still relatively lower compared to the seen accuracies on other target
domains. We can, therefore, conclude that the lower of the seen accuracy on
DiagVib-Animal stems not only from its lower random chance accuracy but also
from the complexity of the target domain itself.

A.10 Color-Fruit Dataset Generation

In order to generate the Color-Fruit dataset, used in our experiments, we use
fruit images from the Fruits 360 dataset [20]. Five fruits (Apple, Banana, Blue-
berry, Pepper and Raspberry) are selected as they have distinct colors (red, yel-
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low, blue, green and magenta), which facilitate the evaluation of compositional
generalization in the case of fully-correlated seen combinations.

During evaluation, however, fruits with different colors are required. Thus, we
perform recolorization of images in the test split using the approach described in
[29]. Basically, an original test image is recolorized into median colors of all other
fruits (e.g. a banana image is transformed such that it has a color similar to that
of an apple, a blueberry, a pepper and a raspberry). More detailed visualization
of the dataset is presented in Figure 11.


