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As elaborated in the main paper, our proposed LoRot is a self-supervision
task tailored for supervised learning. Our motivation is that self-supervisions pre-
viously adopted in supervised learning were originally designed for unsupervised
representation learning, thus significant extra computational costs for training
were required to achieve insignificant gains. To maximize the benefits for super-
vised learning, we first introduced three desirable properties of self-supervision
and how can pretext tasks can satisfy these conditions by proposing LoRot. To
learn rich features, LoRot discovers subdiscriminative features within the part of
the image that are not usually considered by current supervised models. Also,
LoRot only rotates a part of the image which does not make much changes within
the image. Lastly, LoRot is utilized in the form of multi-task learning to have
high efficiency. In this supplementary report, we provide ablation and further
studies of LoRot, as following outline.

Part 1: Ablation study on the hyperparameter \

Part 2: Ablation study / analysis on the patch sizes for LoRot-I
Part 3: Ablation study on spatial pooling methods for LoRot-E
Part 4: Detailed results on OOD detection with SupCLR [7]

Part 5: Results on imbalanced classification with the baseline
Part 6: Further study of LoRot on other datasets in OOD detection
Part 7: Implementation details

Throughout this supplementary report, bolds and underlines in tables indicate
the best and the second best scores, respectively. Also note that colored references,
e.g. Tab., Fig. denotes table and figure in the main paper.

1 Effect of A in Objective Function

In Tab. 1, we report the performances with varying A which controls the loss
ratio between the primary objective and our self-supervision task. We found that
A does not lead significant performance variations, while A = 0.2 usually provides
higher scores than the second-best among tested methods in all the tasks. For
the classification tasks on CIFAR datasets, we ran experiments under the same
setting with Tab. 1 in our main paper.

2 Effect of the Patch Sizes in LoRot-1

To investigate the performance variations of our LoRot-I with respect to the
patch sizes, we perform experiments with two configurations, the fixed-sized and
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Table 1: Classification accuracies (%) on CIFAR datasets and AUROC (%) scores
of OOD detection with varying A. The reported classification and OOD results are
averaged over 3 and 5 runs on all the datasets, respectively. Additionally, we report the
performances of a fully supervised baseline for comparison. Results demonstrate that
LoRot is not very sensitive to hyperparameter that it outperforms the baseline by large
margins regardless of the value of A.

A CIFARI10 CIFAR100 00D
Baseline - 95.01 75.07 86.07
0.1 95.92 76.49 94.55
0.2 96.16 76.60 95.20
LoRot-I 0.3 95.72 76.57 94.88
0.4 95.92 75.97 94.98
0.5 95.84 75.95 94.90
0.1 95.77 75.9 94.83
0.2 95.96 76.36 94.83
LoRot-E 0.3 95.75 76.4 94.63
0.4 95.76 76.13 94.56
0.5 95.73 76.13 94.55

Table 2: Classification accuracies (%) on CIFAR datasets and AUROC scores (%) for
OOD detection with various patch configurations. When the Min and Max patch sizes
differs, we randomly sample the patch size within the range, where W denotes the width
of the image. For OOD detection, we follow the standard setting used in the paper
and report average AUROC scores. Note that, the top row in the table is the reported
results of LoRot-I in the paper. All the classification results are averaged over 3 trials,
and OOD experiments are averaged over 5 trials.

Patch Size Settings
Min Max CIFAR10 CIFAR100 OOD
2 W /2 96.16 76.60 94.55
Random Size 2 W /4 95.91 77.01 94.51
W/4 | W/2 95.95 75.78 95.38
2 2 94.93 76.25 93.64
Fixed Size W/4 | W/4 95.68 76.39 94.16
W/2 | W/2 94.45 74.98 95.06

random-sized patches, and the results are reported in Tab. 2. Overall, the random-
sized patches outperform the fixed-sized ones. One interesting finding from Tab. 2
is that there is a trade-off between the robustness and accuracy of the model
depending on the size of the patch. Specifically, the smaller patches lead high
accuracy but lower robustness, and bigger ones bring the opposite tendency. We
think that these are mainly because the bigger patches are highly likely to produce
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Table 3: Comparison of three different spatial feature pooling methods for LoRot-E.
Reported results are the classification accuracies (%) on CIFAR datasets and AUROC
scores (%) for OOD. Note that, wy and hy indicate the width and height of the feature
map, respectively.

Spatial Pooling  Spatial Dim | CIFAR10 CIFAR100 00D

Dense wg X hyf 95.76 74.5 94.20
Reduced Dense 2% 2 95.79 76.05 94.70
GAP 1x1 95.96 76.36 94.90

quizzes with regions containing objects that spread out the model’s attention,
while the smaller patches are more like to work as data augmentation. Indeed,
spreading the model’s attention is more advantageous for the model’s robustness
since it forces the model to consider sub-discriminative features. Among various
configurations, we choose one that yields a good balance between the accuracy
and robustness in the paper.

3 Spatial Pooling Methods for LoRot-E

We basically use a global average pooling (GAP) layer to spatially aggregate the
final convolution layer features for the primary and pretext classifiers in LoRot.
However, the task of LoRot-E explicitly includes localizing the rotated region
within the image, since it requires predicting the index of the rotated quadrant.
Therefore, there are more possible choices to aggregate the final convolution layer
features for the pretext task to maintain the spatial information.

We investigate three approaches to figure out the proper spatial pooling
method: Dense, Reduced Dense, and GAP. First, we can keep all the spatial
dimensions of the features, called Dense. This way does not sacrifice any spatial
information but requires a bunch of additional parameters for the pretext classifier.
Second, we can reduce the spatial dimensions to 2 x 2, called Reduced Dense.
We think 2 x 2 is the minimum resolution for LoRot-E since it uses a 2 x 2 grid
layout as default. For example, when we have 4 x 4 feature maps, we can reduce
the dimensions into 2 x 2 by the average pooling. Third, we can collapse the
spatial dimensions to 1 x 1, called GAP, used in the paper. As GAP collapses all
the spatial dimensions, the model may not be able to localize the quadrant with
rotation. However, we claim that the self-supervision task is still solvable since
the features encode the information of the absolute position thanks to the zero
paddings [6]. Moreover, it is not necessary to introduce additional parameters for
the pretext classifier, which avoids the computational overheads.

To validate the effects of each spatial pooling methods, we report the ex-
perimental results of three settings for image classification with CIFAR10/100
and OOD in Tab. 3. We use ResNet50 for classification on CIFAR10/100, and
ResNet18 for OOD as did in the paper. All results are averaged over three
or five trials for classification and OOD, respectively. Note that, the reported
AUROC is the averaged score over all out-distribution datasets described in
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Table 4: Full AUROC (%) results of the averaged OOD scores reported in Tab. 7 in the
paper. Models are trained with CIFAR10 dataset and evaluated on each out distribution
dataset listed in the table. IN denotes ImageNet.

Method Model SVHN LSUN IN LSUN (FIX) IN (FIX) CIFAR-100| Avg
SupCLR [7] ResNet50 | 98.6 97.1  96.2 97.3 97.1 95.6 96.98
+ Rot (MT) [4] | ResNet50 | 98.2 98.0 97.4 95.7 95.0 93.4 96.28
+ Rot (PT) [4] | ResNet50 | 98.0 98.2 97.9 96.1 96.3 94.9 96.90
+ LoRot-I ResNet50 | 99.1 98.6 97.9 98.0 97.7 96.4 97.95
+ LoRot-E ResNet50 | 99.1 98.9 98.4 97.8 97.3 96.0 97.92

Table 5: Imbalanced classification accuracy (%) on CIFAR10/100. Experiments are
conducted with the supervised baseline. The table demonstrates the complementary
benefits of LoRot in the data imbalance settings.

Imbalanced CIFAR10 Imbalanced CIFAR100
Imbalance Ratio 0.01 0.02 0.05 0.01 0.02 0.05
Baseline 70.36 78.06 83.42 38.32 43.80 51.00
+ Rot (DA) 64.78 70.19 77.41 35.15 38.53 50.99
+ Rot (MT) 66.01 71.75 78.18 35.76 39.08 46.24
+ Rot (PT) 71.75 76.31 83.68 38.91 43.62 50.99
+ LoRot-I 74.79 80.40 85.42 39.42 45.71 53.16
+ LoRot-E 77.32 80.67 85.67 | 41.99 47.72 54.97

Sec. 7. Interestingly, GAP consistently outperforms Dense and Reduced Dense.
We conjecture that the learned features have information for the localization
within their channels. Moreover, the additional parameters can cause the over-
fitting or grant too much weights on the pretext task. As a result, GAP is a
proper spatial aggregation method for LoRot-E with higher performances and
less computational cost.

4 OOD Detection with Contrastive Learning

In Tab. 4, we report raw individual results of the averaged OOD detection scores
shown in Tab. 7 in the main paper. We observe performance gains for all datasets
when LoRot used in conjunction with supervised contrastive learning [7]. On
the other hand, the original rotation task hardly improves and even degrades
the performance of SupCLR in either multi-tasking (MT) or parallel-task learn-
ing (PT) strategy. Particularly, although the original rotation task enhances
the performance in LSUN- and ImageNet-resize datasets, it shows the slight
degradations for other OOD datasets.

5 Imbalanced classification with the baseline

In Tab. 4 of the main paper, we explored complementary benefits of LoRot
in the imbalanced image classification with LDAM-DRW [1]| under varying
imbalanced scenarios. In this supplementary report, we additionally show LoRot’s
compatibility to the baseline model. As shown in Tab. 5, we observe that LoRot
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Fig. 1: Dataset-wise averaged confidence scores for in- and out-of-distribution data of
the baseline and LoRot. As used in Fig. 5 in the paper, dotted lines are the averaged
confidence scores of in-distribution (IN-) dataset (CIFAR10) and solid lines represent
the confidence scores (y-axis) for each dataset (x-axis). These results demonstrate that
the benefits of LoRot are consistent across datasets.

Baseline LoRot-I

ImageNet Resize

LSUN Resize

Fig. 2: t-SNE visualization for the baseline, LoRot-I, and LoRot-E on OOD detection
benchmark. Dataset for blue dots (OOD dataset) is indicated on the left.

provides complementary benefits with the baseline model. Note that, LoRot-E
combined with the baseline even outperforms LDAM-DRW in four out of six
scenarios.

6 Further study of LoRot on other datasets in OOD
detection

We further show the results on other datasets observing why LoRot is effective in
detecting unknown samples. To be specific, we measured the average confidence
scores for LSUN and ImageNet datasets in Fig. 1 since their class labels are not
available. These results show that LoRot consistently improves the robustness
of the classifier by encouraging the model to yield lower confidence scores for
unknown OOD datasets. Furthermore, plotted t-SNE in Fig. 2 also implies how
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better separation between in- and out-distribution datasets are achieved on
ImageNet and LSUN dataset. Note that red clusters represent each class in
in-distribution dataset (CIFAR10).

7 Implementation Details

OOD Detection. For the OOD detection, we use the ResNet18 architecture
as the backbone for a fair comparison against the reported performances in
the literature. Therefore, some of the results are reproduced based on their
original implementations to unify the backbone network. We deploy the Adam [3]
optimizer with a batch size 64, and a learning rate of 0.001. We train the network
for 100 epochs and the learning rate is decayed at the middle point of learning
by the factor of 0.1. For Rotations [5] and SLA+SD [10], we set the batch size
to 128 since it shows the better performances as used in their original papers.
As described in the paper Sec. 4.1.1, we use CIFAR-10 as in-distribution data,
while SVHN [15], the resized versions of ImageNet and LSUN [11], the fixed
versions of ImageNet and LSUN [16], and CIFAR-100 [9] are treated as the
out-of-distribution data.

Imbalanced Classification. For a fair comparison, we use the ResNet-32
architecture as the backbone network and follow the settings of the baseline [1].
We set the batch size to 128, and the initial learning rate to 0.1 which is dropped
by 0.01 at the 160-th, and 180-th epochs. SGD is used for the optimizer with a
momentum of 0.9, weight decay of 2x 107%.

Adversarial Perturbations Following previous work [5], we adopted wide
ResNet 40-2 [18] architecture as the backbone network. For more details, we
utilize SGD optimizer with Nesterov momentum of 0.9 and a batch size of 128.
Also, we use an initial learning rate of 0.1 with cosine learning rate schedule [14]
and weight decay of 5x10%.

Standard Image Classification. For ImageNet classification, we train the

model for 300 epochs with a batch size of 256 and initial learning rate of 0.1.
During the training, the learning rate is decayed at every 75 epochs with the
decaying factor of 0.1. The same implementation details are also applied for Tab.
7, where we describe the complementary benefits to data augmentation methods,
e.g., Mixup [19], AutoAugment [2], and RandAugment [3].
For experiments regarding contrastive learning, we follow the protocols from the
SupCLR [7] except for the batch size due to lack of GPU memory. Specifically,
we train ResNet50 for 1000 epochs with the batch size of 512. The initial learning
rate is set to 0.05 and is decayed by cosine decay scheduler. Then, with the
learning rate of 5, the classifier is finetuned for evaluation.

Transfer Learning For instance segmentation, we use real-time SOLOv2 [17]
model where the number of convolution layers in the prediction head is reduced
to two and the input shorter side is 448. We train the model with the 3x schedule
as reported in their paper. To train RetinaNet [12], we use the 1x schedule. For
both experiments, we test on MS COCO 2017 dataset [13] with the ResNet50
architecture as the backbone network.
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