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Abstract. The ability to continuously learn new knowledge is consid-
ered to be one of the most important symbols of strong artificial intel-
ligence. However, deep neural networks suffer from the severe problem
known as catastrophic forgetting when training on new classes. Inspired
by the idea that gradient boosting algorithm continuously creates new
weak classifiers to fit the residuals between the target and the ensemble
model, we propose FOSTER, where we dynamically expand and com-
press the model when new tasks come, empowering the model to learn
new categories adaptively. In the supplementary material, we provide:
(i) Rationality analysis of the substitution (Sec. 1).
(ii) Influence of the initialization of the weight O (Sec. 2).
(iii) Introduction to compared methods (Sec. 3).
(iv) Visualization of detailed performance (Sec. 4).

1 Rationality Analysis of the Substitution.

We argue that our simplification of replacing the sum of softmax with softmax
of logits sum and substituting the distance metric Dis(·, ·) for the Kullback-
Leibler divergence (KLD) KL(· || ·). KLD can evaluate the residual between
the target and the output by calculating the distance between the target label
distribution and the output distribution of categories. KLD is more suitable
for classification tasks, and there are some works [2,6] that point out that the
KLD has many advantages in many aspects, including faster optimization and
better feature representation. Typically, to reflect the relative magnitude of each
output, we use non-linear activation softmax to transform the output logits into

the output probability. Namely, p1, p2, . . . , p|Ŷt|, where 0 ≤ pi ≤ 1,
∑|Ŷt

i=1 pi = 1

and |Ŷt| is the number of all seen categories. In classification tasks, the target
label is usually set to 1, and the non-target label is set to 0. Therefore, we
expect the output of the boosting model can be constrained between 0 and 1.
Simply combining the softmax outputs of the original model Ft−1 and Ft can
not satisfy the constraints. Suppose that the output of Ft−1 and Ft in class i
are poi and pni , the combination of pni and poi is not in line with our expectation
since 0 ≤ poi + pni ≤ 2. By replacing the sum of softmax with softmax of logits
sum, we can limit the output of the boosting model between 0 and 1, and the
judgment of the two models can still be integrated.
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Fig. 1: Influence of different initialization strategies.The red line repre-
sents FT, the blue line represents AZ, and the gray line represents AZB. The
performance of FT is slightly better than AZ and AZB. The performance gap
between AZ and AZB is negligible.

2 Influence of the Initialization of the Weight O

In this section, we discuss the effect of the initialization of the weight O in the
super linear classifier of our boosting model.

W⊤
t =

[
W⊤

t−1 (W(o)
t )⊤

O (W(n)
t )⊤

]
. (1)

In the main paper, we set O to all zero as our default initialization strategy.
Therefore, the outputs of the original model for new categories are zero, thus
having nothing to do with the classification of new classes.

Here, we introduce three different initialization strategies, including fine-
tune (FT), all-zero (AZ), and all-zero with bias (AZB), to further explore the
impact of different initialization strategies on performance. Among them, FT
is directly training O without any restrictions. AZ sets the outputs of the old
model on the new class to all zero, and thus the outputs of the model on the new
class logits only contain the output of the new model, and the old model does not
provide any judgment on the new class. Based on AZ, AZB adds bias learning to
balance the logits of the old and new categories. Fig. 1 illustrates the comparison
of performance on CIFAR-100 [3] B50 with 5 steps with different initialization
strategies. We can see that the performance of using FT initialization strategy
is slightly better than that of using AZ and AZB initialization strategies, but
the difference is not significant. The performance gap between AZ and AZB is
negligible, indicating that the influence of bias is weak.

3 Introduction to Compared Methods

In this section, we will describe in detail the methods compared in the main
paper.
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Fine-tune: Fine-tune is the baseline method that simply updates its parame-
ters when a new task comes, suffering from catastrophic forgetting. By default,
weights corresponding to the outputs of previous classes in the final linear clas-
sifier are not updated.

Replay: Replay utilizes the rehearsal strategy to alleviate the catastrophic for-
getting compared to Fine-tune. We use herding as the default way of choosing
exemplars from the old data.

iCaRL [5]: iCaRL combines cross-entropy loss with knowledge distillation loss
together. It retains an old model to help the new model maintain the discrimi-
nation ability through knowledge distillation on old categories. To mitigate the
classification bias caused by the imbalanced dataset when learning new tasks,
iCaRL calculates the center of exemplars for each category and uses NME as
the classifier for evaluation.

BiC [8]: BiC performs an additional bias correction process compared to iCaRL,
retaining a small validation set to estimate the classification bias resulting from
imbalanced training. The final logits are computed by

qk =

{
ok 1 ≤ k ≤ n
αok + β n+ 1 ≤ k ≤ n+m

, (2)

where n is the number of old categories and m is the number of new ones. the
bias correction step is to estimate the appropriate α and β.

WA [10]: During the process of incremental learning, the norms of the weight
vectors of new classes are much larger than those of old classes. Based on that,
WA proposes an approach called Weight Alignment to correct the biased weights
in the final classifier by aligning the norms of the weight vectors of new classes
to those of old classes.

Ŵnew = γ ·Wnew, (3)

where γ = Mean(Normold )
Mean(Normnew) .

PODNet [1]: PODNet proposes a novel spatial-based distillation loss that can
be applied throughout the model. PODNet has greater performance on long runs
of small incremental tasks.

DER [9]: DER preserves old feature extractors to maintain knowledge for old
categories. When new tasks come, DER creates a new feature extractor and
concatenates it with old feature extractors to form a higher dimensional feature
space. In order to reduce the number of parameters, DER uses the pruning
method proposed in HAT [7], but the number of parameters still increases with
the number of tasks. DER can be seen as a particular case of our Boosting
model. When we set the weight O of boosting model can be trainable, and
remove feature enhancement and logits alignment proposed in the main paper,
boosting model can be reduced to DER.
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4 Visualization of Detailed Performance

Visualizing Feature Representation. We visualize the feature representa-
tions of the test data by t-SNE [4]. Fig. 2 illustrates the comparison of baseline
method, fine-tune, with our FOSTER in the setting of CIFAR-100 [3] B50 with
5 steps. As shown in Fig. 2a and Fig. 2g, in the base task, all categories can
form good clusters with explicit classification boundaries. However, as shown in
Fig. 2b, Fig. 2c, Fig. 2d, Fig. 2e, and Fig. 2f, in stages of incremental learning,
the result of category clustering becomes very poor without clear classification
boundaries. In the last stage which is shown in Fig.2f, feature points of each
category are scattered. On the contrary, as shown in Fig. 2g, Fig. 2h, Fig. 2i,
Fig. 2j, Fig. 2k, and Fig. 2l. our FOSTER method can make all categories form
good clusters at each incremental learning stage, and has a clear classification
boundary, indicating that our FOSTER method is a very effective strategy in
feature representation learning and overcoming catastrophic forgetting.
Visualizing Confusion Matrix. To compare with other methods, we visualize
the confusion matrices of different methods at the last stage in Fig. 3. In these
confusion matrices, the vertical axis represents the real label, and the horizontal
axis represents the label predicted by the model. Warmer colors indicate higher
prediction rates, and cold colors indicate lower ones. Therefore, the warmer the
point color on the diagonal and the colder the color on the other points, the
better the performance of the model. Fig. 3a shows the confusion matrix of
fine-tune. The brightest colors on the right and colder colors elsewhere suggest
that the fine-tune method has a strong classification bias, tending to classify
inputs into new categories and suffering from severe catastrophic forgetting.
Fig. 3b shows the confusion matrix of iCaRL [5]. iCaRL has obvious performance
improvement compared with fine-tune. However, the columns on the right are
still bright, indicating that they also have a strong classification bias. In addition,
the points on the diagonal have obvious discontinuities, indicating that they
cannot make all categories achieve good accuracy. Fig. 3c shows the confusion
matrices of WA [10]. Benefiting fromWeight Alignment, WA significantly reduces
classification bias compared with iCaRL. The rightmost columns have no obvious
brightness. Nevertheless, its accuracy in old classes is not high enough. As shown
in the figure, most of his color brightness at the diagonal position of the old class
is between 0.2 and 0.4. Fig. 3d shows the confusion matrices of DER [9]. DER
achieves good results in both old and new categories, but the brightness of the
upper right corner shows that it still suffers from classification bias and has room
for improvement. As shown in Fig. 3e, our method FOSTER performs well in
all categories and well balances the accuracy of the old and new classes.
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Fig. 2: t-SNE [4] visualization of CIFAR-100 [3] B50 with 5 steps. Fig-
ure (a)-(g) shows the t-SNE visualization of fine-tune method. Figure (h)-(l)
shows the t-SNE visualization of our method FOSTER. In order to achieve
better results, we normalize each feature and randomly select one cat-
egory in each five categories for visualization.
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(a) Fine-tune

0 10 20 30 40 50 60 70 80 90 100
Predict Label

0
10

20
30

40
50

60
70

80
90

10
0

Tr
ue

 L
ab

el

0.0

0.2

0.4

0.6

0.8

1.0

(b) iCaRL
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(c) WA
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(d) DER
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(e) FOSTER

Fig. 3: Confusion matrices of different methods. The vertical axis repre-
sents the real label, and the horizontal axis represents the label predicted by
the model. The warmer the color of a point in the graph, the more samples it
represents.
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