
FOSTER: Feature Boosting and Compression for
Class-Incremental Learning

Fu-Yun Wang , Da-Wei Zhou , Han-Jia Ye� , and De-Chuan Zhan

State Key Laboratory for Novel Software Technology, Nanjing University
wangfuyun@smail.nju.edu.cn,{zhoudw, yehj, zhandc}@lamda.nju.edu.cn

Abstract. The ability to learn new concepts continually is necessary
in this ever-changing world. However, deep neural networks suffer from
catastrophic forgetting when learning new categories. Many works have
been proposed to alleviate this phenomenon, whereas most of them either
fall into the stability-plasticity dilemma or take too much computation
or storage overhead. Inspired by the gradient boosting algorithm to grad-
ually fit the residuals between the target model and the previous ensem-
ble model, we propose a novel two-stage learning paradigm FOSTER,
empowering the model to learn new categories adaptively. Specifically,
we first dynamically expand new modules to fit the residuals between
the target and the output of the original model. Next, we remove re-
dundant parameters and feature dimensions through an effective distil-
lation strategy to maintain the single backbone model. We validate our
method FOSTER on CIFAR-100 and ImageNet-100/1000 under different
settings. Experimental results show that our method achieves state-of-
the-art performance. Code is available at https://github.com/G-U-N/

ECCV22-FOSTER.

Keywords: class-incremental learning, gradient boosting

1 Introduction

The real world is constantly changing, with new concepts and categories con-
tinuously springing up [14,48,35,46]. Retraining a model every time new classes
emerge is impractical due to data privacy [5] and expensive training costs. There-
fore, it is necessary to enable the model to continuously learn new categories,
namely class-incremental learning [44,49,34]. However, directly fine-tuning the
original neural networks on new data causes a severe problem known as catas-
trophic forgetting [11] that the model entirely and abruptly forgets previously
learned information. Inspired by this, class-incremental learning aims to design a
learning paradigm that enables the model to continuously learn novel categories
in multiple stages while maintaining the discrimination ability for old classes.

In recent years, many approaches have been proposed from different aspects.
So far, the most widely recognized and utilized class-incremental learning strat-
egy is based on knowledge distillation [19]. Methods [27,32,1,38,43,47] retain
an old model additionally and use knowledge distillation to constrain output

https://orcid.org/0000-0003-1323-4933
https://orcid.org/0000-0001-7226-7773
https://orcid.org/0000-0003-1173-1880
https://orcid.org/0000-0001-9303-2519
https://github.com/G-U-N/ECCV22-FOSTER
https://github.com/G-U-N/ECCV22-FOSTER

2 Fu-Yun Wang , Da-Wei Zhou , Han-Jia Ye� , and De-Chuan Zhan

for original tasks of the new model to be similar to that of the old one [27].
However, these methods with a single backbone may not have enough plastic-
ity [17] to cope with the coming new categories. Besides, even with restrictions
of KD, the model still suffer from feature degradation [40] of old concepts due
to limited access [5] to old data. Recently, methods [40,28,9] based on dynamic
architectures achieve state-of-the-art performance in class-incremental learning.
Typically, they preserve some modules with their parameters frozen to main-
tain important sections for old categories and expand new trainable modules to
strengthen plasticity for learning new categories. Nevertheless, they have two
inevitable defects: First, constantly expanding new modules for coming tasks
will lead to a drastic increase in the number of parameters, resulting in severe
storage and computation overhead, which makes these methods not suitable for
long-term incremental learning. Second, since old modules have never seen new
concepts, directly retaining them may harm performance in new categories. The
more old modules kept, the more remarkable the negative impact.

In this paper, we propose a novel perspective from gradient boosting to
analyze and achieve the goal of class-incremental learning. Gradient boosting
methods use the additive model to gradually converge the ground-truth target
model where the subsequent one fits the residuals between the target and the
prior one. In class-incremental learning, since distributions of new categories are
constantly coming, the distribution drift will also lead to the residuals between
the target label and model output. Therefore, we propose a similar boosting
framework to solve the problem of class-incremental learning by applying an ad-
ditive model, gradually fitting residuals, where different models mainly handle
their special tasks (with nonoverlapping sets of classes). And as we discuss later,
our boosting framework is a more generalized framework for dynamic structure
methods (e.g., DER[40]). It has positive significance in two aspects: On the one
hand, the new model enhances the plasticity and thus helps the model learn
to distinguish between new classes. On the other hand, training the new model
to classify all categories might contribute to discovering some critical elements
ignored by the original model. As shown in Fig. 1, when the model learns old
categories, including tigers, cats, and monkeys, it may think that stripes are es-
sential information but mistakenly regard auricles as meaningless features. When
learning new categories, because the fish and birds do not have auricles, the new
model will discover this mistake and correct it.

However, as we discussed above, creating new models not only leads to an
increase in the number of parameters but also might cause inconsistency be-
tween the old and the new model at the feature level. To this end, we compress
the boosting model to remove unnecessary parameters and inconsistent features,
thus avoiding the above-mentioned drawbacks of dynamic structure-based meth-
ods, preserving crucial information, and enhancing the robustness of the model.

In conclusion, our paradigm can be decoupled into two steps: boosting and
compression. The first step can be seen as boosting to alleviate the performance
decline due to the arrival of new classes. Specifically, we retain the old model with
all its parameters frozen. Then we expand a trainable new feature extractor and

https://orcid.org/0000-0003-1323-4933
https://orcid.org/0000-0001-7226-7773
https://orcid.org/0000-0003-1173-1880
https://orcid.org/0000-0001-9303-2519

FOSTER: Feature Boosting and Compression for Class-Incremental Learning 3

Original
Model

Feature
Boosting

CNN

CNN (freeze)

CNN (new)

FC

FC

FC

New
Data

Old
Data
+
New
Data

CNN: Stripes are important

but ears are meaningless.

CNN (freeze): Stripes are important

but ears are meaningless.

CNN (new): Stripes and ears

are both important.

Fig. 1: Feature Boosting. Illustration of feature boosting. When the task comes, we
freeze the old model and create a new module to fit the residuals between the target
and the output. The new module helps the model learn both new and old classes better.

concatenate it with the extractor of the old model and initialize a constrained,
fully-connected layer to transform the super feature into logits, which we will
demonstrate later in detail. In the second step, we aim to eliminate redundant
parameters and meaningless dimensions caused by feature boosting. Specifically,
we propose an effective distillation strategy that can transfer knowledge from the
boosting model to a single model with negligible performance loss, even if the
data is limited when learning new tasks. Extensive experiments on three bench-
marks, including CIFAR-100, ImageNet-100/1000 show that our method Feature
BoOSTing and ComprEssion for class-incRemental learning (FOSTER) ob-
tains the state-of-the-art performance.

2 Related Work

Many works have been done to analyze the reasons for performance degradation
in class-incremental learning and alleviate this phenomenon. In this section, we
will give a brief discussion of these methods and boosting algorithms.

Knowledge Distillation. Knowledge distillation [19] aims to transfer dark
knowledge [24] from the teacher to the student by encouraging the outputs of
the student model to approximate the outputs of the teacher model [27]. LwF [27]
retains an old model additionally and applies a modified cross-entropy loss to
constrain the outputs for old categories of the new model to preserve the capa-
bility for the old one. Bic [38], WA [43] propose effective strategies to alleviate
the bias of the classifier caused by imbalanced training data after distillation.

4 Fu-Yun Wang , Da-Wei Zhou , Han-Jia Ye� , and De-Chuan Zhan

Rehearsal. The rehearsal strategy enables the model to have partial access to
old data. [32,38,43,36] allocate a memory to store exemplars of previous tasks
for replay when learning tasks. [21] preserves low dimensional features instead of
raw instances to reduce the storage overhead. In [39], instances are synthesized
by a generative model [16] for rehearsal. [30] test various exemplar selection
strategies, showing that different ways of exemplar selection have a significant
impact on performance and herding surpass other strategies in most settings.
Dynamic Architectures. Many works [10,15,20,33,37] create new modules to
handle the growing training distribution [41,26] dynamically. However, an ac-
curate task id, which is usually unavailable in real-life, is needed for most of
these approaches to help them choose the corresponding id-specific module. Re-
cently, methods [40,28,9] successfully apply the dynamic architectures into class
incremental learning where the task id is unavailable, showing their advantages
over the single backbone methods. However, as we illustrate in Sec. 1, they have
two unavoidable shortcomings: (i) Continually adding new modules causes un-
affordable overhead. (ii) Directly retaining old modules leads to noise in the
representations of new categories, harming the performance in new classes.
Boosting. Boosting represents a family of machine learning algorithms that
convert weak learners to strong ones [50]. AdaBoost [12] is one of the most famous
boosting algorithms, aiming to minimize the exponential loss of the additive
model. The crucial idea of AdaBoost is to adjust the weights of training samples
to make the new base learner pay more attention to samples that the former
ensemble model cannot recognize correctly. In recent years, gradient boosting [13]
based algorithms [2,23,7] achieve excellent performance on various tasks.

3 Preliminary

In this section, we first briefly discuss the basic process of gradient boosting in
Sec. 3.1. Then, we describe the setting of class-incremental learning in Sec. 3.2.
In Sec. 4, we will give an explicit demonstration of how we apply the idea of
gradient boosting to the scenario of class-incremental learning.

3.1 Gradient Boosting

Given a training set Dtrain = {(xi, yi)}ni=1, where xi ∈ X is the instance and yi ∈
Y is the corresponding label, the gradient boosting methods seek a hypothesis
F : X → Y to minimize the empirical risk (with loss function ℓ(·, ·))

F∗ = argmin
F

E(x,y)∈Dtrain
[ℓ (y,F(x))] , (1)

by iteratively adding a new weighted weak function hi(·) chosen from a specific
function space Hi (e.g., the set of all possible decision trees) to gradually fit
residuals. After m iterations, the hypothesis F can be represented as

F(x) = Fm(x) =

m∑
i=1

αihi(x) , (2)

https://orcid.org/0000-0003-1323-4933
https://orcid.org/0000-0001-7226-7773
https://orcid.org/0000-0003-1173-1880
https://orcid.org/0000-0001-9303-2519

FOSTER: Feature Boosting and Compression for Class-Incremental Learning 5

where αi is the coefficient of hi(·). Then we are supposed to find Fm+1 for further
optimization of the objective

Fm+1(x) = Fm(x) + argmin
hm+1∈Hm+1

E(x,y)∈Dtrain
[ℓ (y,Fm(x) + hm+1(x))] . (3)

However, directly optimizing the above function to find the best hm+1 is typically
infeasible. Therefore, we use the steepest descent step for iterative optimization:

Fm+1(x) = Fm(x)− αm∇Fm
E(x,y)∈Dtrain

[ℓ (y,Fm(x))] , (4)

where −∇Fm
E(x,y)∈Dtrain

[ℓ (y,Fm(x))] is the objective for hm+1(x) to approxi-
mate. Specifically, if ℓ(·, ·) is the mean-squared error (MSE), it transforms into

−∇Fm
E(x,y)∈Dtrain

[
(y − Fm(x))

2
]
= 2× E(x,y)∈Dtrain

[y − Fm(x)] . (5)

Ideally, let αm = 1/2, if hm+1(x) can fit 2αm(y−Fm(x)) = (y−Fm(x)) for each
(x, y) ∈ Dtrain, Fm+1 is the optimal function, minimizing the empirical error.

3.2 Class-Incremental Learning Setup

Unlike the traditional case where the model is trained on all classes with all
training data available, in class-incremental learning, the model receives a batch
of new training data Dt = {(xt

i, y
t
i)}ni=1 in the tth stage. Specifically, n is the

number of training samples, xt
i ∈ Xt is the input image, and yti ∈ Yt is the

corresponding label for xt
i. Label space of all seen categories is denoted as Ŷt =

∪t
i=0Yi, where Yt ∩ Yt′ = ∅ for t ̸= t′. In the tth stage, rehearsal-based methods

also save a part of old data as Vt, a limited subset of ∪t−1
i=0Di. Our model is

trained on D̂t = Dt ∪ Vt and is required to perform well on all seen categories.

4 Method

In this section, we give a description of FOSTER and how it works to prompt
the model to simultaneously learn all classes well. Below, we first give a full
demonstration of how the idea of the gradient boosting algorithm is applied to
class-incremental learning in Sec. 4.1. Then we propose novel strategies to further
enhance and balance the learning, which greatly improves the performance in
Sec. 4.2. Finally, in order to avoid the explosive growth of parameters and remove
redundant parameters and feature dimensions, we utilize a straightforward and
effective compression method based on knowledge distillation in Sec. 4.3.

4.1 From Gradient Boosting to Class-Incremental Learning

Assuming in the tth stage, we have saved the model Ft−1 from the last stage.
Ft−1 can be further decomposed into feature embedding and linear classifier:

Ft−1(x) = (Wt−1)
⊤Φt−1(x), where Φt−1(·) : RD → Rd and Wt−1 ∈ Rd×|Ŷt−1|.

6 Fu-Yun Wang , Da-Wei Zhou , Han-Jia Ye� , and De-Chuan Zhan

When a new data stream comes, directly fine-tuning Ft−1 on the new data will
impair its capacity for old classes, which is inadvisable. On the other hand, sim-
ply freezing Ft−1 causes it to lose plasticity for new classes, making the residuals
between target y and Ft−1(x) large for (x, y) ∈ Dt. Inspired by gradient boost-
ing, we train a new model to fit the residuals. Specifically, the new model Ft con-

sists of a feature extractor ϕt(·) : RD → Rd and a linear classifier Wt ∈ Rd×|Ŷt|.

Wt can be further decomposed into
[
W(o)

t ,W(n)
t

]
, where W(o)

t ∈ Rd×|Ŷt−1| and

W(n)
t ∈ Rd×|Yt| . Accordingly, the training process can be represented as

Ft(x) = Ft−1(x) + argmin
Ft

E(x,y)∈D̂t
[ℓ (y,Ft−1(x) + Ft(x))] . (6)

Similar to Sec. 3.1, let ℓ(·, ·) be the mean-squared error function, considering
the strong feature representation learning ability of neural networks, we expect
Ft(x) can fit residuals of y and Ft−1(x) for every (x, y) ∈ D̂t. Ideally, we have

y = Ft−1(x) + Ft(x) = S
([

W⊤
t−1

O

]
Φt−1(x)

)
+ S

([
(W(o)

t)⊤

(W(n)
t)⊤

]
ϕt(x)

)
, (7)

where S(·) is the softmax operation, O ∈ Rd×|Yt| is set to zero matrix or fine-
tuned on D̂t with Φt−1 frozen, and y is the corresponding one-hot vector of y.
We set O to zero matrix as default in our discussion.

Denote the parameters of Ft as θt and Dis(·, ·) as a distance metric (e.g.,
euclidean metric), this process can be represented as the following optimization
problem:

θ∗t = argmin
θt

Dis

(
y,S

([
W⊤

t−1

O

]
Φt−1(x)

)
+ S

([
(W(o)

t)⊤

(W(n)
t)⊤

]
ϕt(x)

))
. (8)

We replace the S(·) + S(·) with S(· + ·) and substitute the Dis(·, ·) for the
Kullback-Leibler divergence (KLD), then the objective function changes into:

θ∗t = argmin
θt

KL

(
y

∥∥∥∥∥ S

([
W⊤

t−1 (W(o)
t)⊤

O (W(n)
t)⊤

] [
Φt−1(x)
ϕt(x)

]))
. (9)

We provide an illustration about the reasons for this substitution in the sup-
plementary material. Therefore, Ft can be further decomposed as an expanded
linear classifier Wt and a concatenated super feature extractor Φt(·), where

W⊤
t =

[
W⊤

t−1 (W(o)
t)⊤

O (W(n)
t)⊤

]
, Φt(x) =

[
Φt−1(x)
ϕt(x)

]
. (10)

Note that W⊤
t−1, O, and Φt−1 are all frozen, the trainable modules are the

ϕt,W(o)
t ,W(n)

t . Here we explain their roles. Eventually, logits of Ft is

W⊤
t Φt(x) =

[
W⊤

t−1Φt−1(x) + (W(o)
t)⊤ϕt(x)

(W(n)
t)⊤ϕt(x)

]
. (11)

https://orcid.org/0000-0003-1323-4933
https://orcid.org/0000-0001-7226-7773
https://orcid.org/0000-0003-1173-1880
https://orcid.org/0000-0001-9303-2519

FOSTER: Feature Boosting and Compression for Class-Incremental Learning 7

The lower part is the logits of new classes, and the upper part is that of old
ones. As we claimed in Sec. 1, the lower part requires the new module Ft to
learn how to correctly classify new classes, thus enhancing the model’s plasticity
to redeem the performance on new classes. The upper part encourages the new
module to fit the residuals between y and Ft−1, thus encouraging Ft to exploit
more pivotal patterns for classification.

4.2 Calibration for Old and New

When training on new tasks, we only have an imbalanced training set D̂t = Dt∪
Vt. The imbalance on categories of Dt will result in a strong classification bias in
the model [22,43,38,1]. Besides, the boosting model tends to ignore the residuals
of minor classes due to insufficient supervision. To alleviate the classification
bias and encourage the model to equally learn old and new classes, we propose
Logits Alignment and Feature Enhancement strategies in the following sections.
Logits Alignment. To strengthen the learning of old instances and mitigate
the classification bias, we add a scale factor to the logits of the old and new
classes in Eq. 11 respectively during training. Thus, the logits during training
are:

γW⊤
t Φt(x) =

[
γ1

(
W⊤

t−1Φt−1(x) + (W(o)
t)⊤ϕt(x)

)
γ2(W(n)

t)⊤ϕt(x)

]
, (12)

where 0 < γ1 < 1, γ2 > 1, and γ is a diagonal matrix composed of γ1 and γ2.
Through this scaling strategy, the absolute value of logits for old categories is
reduced, and the absolute value of logits for new ones is enlarged, thus forcing
the model Ft to produce larger logits for old categories and smaller logits for
new categories.

We get the scale factors γ1, γ2 trough the normalized effective number En [4]
of each class, which can be seen as the summation of proportional series, where
n equal to the number of instances and β is an adjustable hyperparameter

En =

{
1−βn

1−β , β ∈ [0, 1)

n, β = 1
, (13)

concretely, (γ1, γ2) =
(

Enold

Enold
+Ennew

,
Ennew

Enold
+Ennew

)
. Hence the objective is formu-

lated as:
LLA = KL

(
y
∥∥ S

(
γW⊤

t Φt(x)
))

. (14)

Feature Enhancement. We argue that simply letting a new module Ft(x) fit
the residuals of Ft−1(x) and label y is sometimes insufficient. At the extreme,,
for instance, the residuals of Ft−1(x) and y is zero. In that case, the new module
Ft can not learn anything about old categories, and thus it will damage the
performance of our model for old classes. Hence, we should prompt the new
module Ft to learn old categories further.

Our Feature Enhancement consists of two parts. First, we initialize a new

linear classifier W
(a)
t ∈ Rd×|Ŷt| to transform the new feature ϕt(x) into logits of

8 Fu-Yun Wang , Da-Wei Zhou , Han-Jia Ye� , and De-Chuan Zhan

all seen categories and require the new feature itself to correctly classify all of
them:

LFE = KL
(
y
∥∥∥ S

(
(W

(a)
t)⊤ϕt(x)

))
. (15)

Hence, even if the residuals of Ft−1(x) and y is zero, the new feature extractor ϕt

can still learn how to classify the old categories. Besides, it should be noted that
simply using one-hot targets to train the new feature extractor in an imbalanced
dataset might lead to overfitting to small classes, failing to learn a feature rep-
resentation with good generalization ability for old categories. To alleviate this
phenomenon and provide more supervision for old classes, we utilize knowledge
distillation to encourage Ft(x) to have similar output distribution as Ft−1 on
old categories,

LKD = KL
(
S (Ft−1(x))

∥∥∥ S
(
Ft−1(x) + (W(o)

t)⊤ϕt(x)
))

. (16)

Note that this process requires only one more time matrix multiplication compu-
tation because the forward process of the original model Ft−1 and the expanded
model Ft are shared, except for the final linear classifier.
Summary of Feature Boosting. To conclude, feature-boosting consists of
three components. First, we create a new module to fit the residuals between
targets and the output of the original model, following the principle of gradi-
ent boosting. With reasonable simplification and deduction, the optimization
objective is transformed into the minimization of KL divergence of the target
and the output of the concatenated model. To alleviate the classification bias
caused by imbalanced training, we proposed logits alignment (LA) to balance
the training of old and new classes. Moreover, we argued that simply letting
the new module fit the residuals is sometimes insufficient. To further encourage
the new module to learn old instances, we proposed feature enhancement, where
LFE aims to make the new module learn the difference among all categories by
optimizing the cross-entropy loss of target and the output of the new module,
and LKD utilize the original output to instruct the expanded model through
knowledge distillation. The final FOSTER loss for boosting combines the above
three components:

LBoosting = LLA + LFE + LKD . (17)

4.3 Feature Compression

Our method FOSTER achieves excellent performance through gradient boosting.
However, gradually adding a new module F to our model Ft will lead to the
growing number of parameters and feature dimensions of our model Ft, making it
unable to be applied in long-term incremental learning tasks. Do we really require
so many parameters and feature dimensions? For example, we create the same
module F to learn tasks with 2 classes and 50 classes and achieve similar effects.

https://orcid.org/0000-0003-1323-4933
https://orcid.org/0000-0001-7226-7773
https://orcid.org/0000-0003-1173-1880
https://orcid.org/0000-0001-9303-2519

FOSTER: Feature Boosting and Compression for Class-Incremental Learning 9

CNN (freeze) CNN (new)

CNN (compressed)

Feature Compression
CNN (freeze)

FC

FC

CNN (new)

CNN (compressed)

FC

Tensor Product
𝒘

Distillation

Update

Fig. 2: Feature Compression. Left: the process of feature compression. We remove
insignificant dimensions and parameters to make the distribution of the same categories
more compact. Right: the implementation of feature compression. Outputs of the dual
branch model are used to instruct the representation learning of the compressed model.
Different weights are assigned to old and new classes to alleviate the classification bias.

Thus, there must be redundant parameters and meaningless feature dimensions
in the task with 2 classes. Are we able to compress the expanded feature space
of Ft to a smaller one with almost no performance degradation?

Knowledge distillation [19] is a simple yet effective way to achieve this goal.
Since our model Ft can handle all seen categories with excellent performance, it
can give any input a soft target, namely the output distribution on all known
categories. Therefore, except for the current training set D̂t, we can sample
other unlabeled data from a similar domain for further distillation. Note that
these unlabeled data can be obtained from the Internet during distillation and
discarded after that, so it does not occupy additional memory.

Here, we do not expect any additional auxiliary data to be available and
achieve remarkable performance with only the imbalanced dataset D̂t.

Balanced Distillation. Suppose there is a single backbone student model

F
(s)
t to be distilled. To mitigate the classification bias caused by imbalanced train-

ing datasets D̂t, we should consider the class priors and adjust the weights of
distilled information for different classes [42]. Therefore, the Balanced Distilla-
tion loss is formulated as:

LBKD = KL
(
w ⊗ S (Ft(x))

∥∥∥ S(F(s)
t (x))

)
, (18)

where ⊗ means the tensor product (i.e., automatically broadcasting to different
batchsizes.) and w is the weighted vector obtained from Eq. 13 to make classes
with fewer instances have larger weights.

10 Fu-Yun Wang , Da-Wei Zhou , Han-Jia Ye� , and De-Chuan Zhan

0 20 40 60 80 100
Number of classes

40

60

80

100

A
cc

ur
ac

y
(%

)
1.71

Replay
iCaRL
BiC
WA

DER
PodNet
FOSTER B4
FOSTER

(a) CIFAR-100 B0 5 steps

0 20 40 60 80 100
Number of classes

40

60

80

100

A
cc

ur
ac

y
(%

)

3.06

Replay
iCaRL
BiC
WA

DER
PodNet
FOSTER B4
FOSTER

(b) CIFAR-100 B0 10 steps

0 20 40 60 80 100
Number of classes

40

60

80

100

A
cc

ur
ac

y
(%

)

1.86

Replay
iCaRL
BiC
WA

DER
PodNet
FOSTER B4
FOSTER

(c) CIFAR-100 B50 5 steps

Fig. 3: Incremental Accuracy on CIFAR-100. Replay is the baseline with naive
rehearsal strategy. FOSTER B4 records the accuracy of the dual branch model after
feature boosting. FOSTER records the accuracy of the single backbone model after
feature compression. The performance gap is annotated at the end of each curve.

5 Experiments

In this section, we compare our FOSTER with other SOTA methods on bench-
mark incremental learning datasets. We also perform ablations to validate the
effectiveness of FOSTER components and their robustness to hyperparameters.

5.1 Experimental Settings

Datasets.We validate our methods on widely used benchmark of class-incremental
learning CIFAR-100 [25] and ImageNet100/1000 [6]. CIFAR-100: CIFAR-100
consists of 50,000 training images with 500 images per class, and 10,000 testing
images with 100 images per class. ImageNet-1000: ImageNet-1000 is a large
scale dataset composed of about 1.28 million images for training and 50,000 for
validation with 500 images per class. ImageNet-100: ImageNet-100 is com-
posed of 100 classes randomly chosen from the original ImageNet-1000.
Protocol. For both the CIFAR-100 and ImageNet-100, we validate our method
on two widely used protocols: (i)CIFAR-100/ImageNet-100 B0 (base 0): In
the first protocols, we train all 100 classes gradually with 5, 10, 20 classes per step
with the fixed memory size of 2,000 exemplars. (ii) CIFAR-100/ImageNet-
100 B50 (base 50): We also start by training the models on half the classes.
Then we train the rest 50 classes with 2, 5, 10 classes per step with 20 exem-
plars per class. For ImageNet-1000, we train all 1000 classes with 100 classes
per step (10 steps in total) with a fixed memory size of 20,000 exemplars.
Implementation Details. Our method and all compared methods are imple-
mented with Pytorch [31] and PyCIL [45]. For ImageNet, we adopt the standard
ResNet-18 [18] as our feature extractor and set the batch size to 256. The learn-
ing rate starts from 0.1 and gradually decays to zero with a cosine annealing
scheduler [29] (170 epochs in total). For CIFAR-100, we use a modified ResNet-
32 [32] as the most previous works as our feature extractor and set the batch
size to 128. The learning rate also starts from 0.1 and gradually decays to zero
with a cosine annealing scheduler (170 epochs in total). For both ImageNet and

https://orcid.org/0000-0003-1323-4933
https://orcid.org/0000-0001-7226-7773
https://orcid.org/0000-0003-1173-1880
https://orcid.org/0000-0001-9303-2519

FOSTER: Feature Boosting and Compression for Class-Incremental Learning 11

Table 1: Average incremental accuracy on CIFAR-100 for FOSTER vs. state-of-the-
art. DER uses the same number of backbone models as incremental sessions, while the
other methods, including FOSTER, retain only one backbone after each session.

Methods
Average accuracy of all sessions (%)

B0 10 steps B0 20 steps B50 10 steps B50 25 steps

Bound 80.40 80.41 81.49 81.74

iCaRL [32] 64.42 63.5 53.78 50.60
BiC [38] 65.08 62.37 53.21 48.96
WA [43] 67.08 64.64 57.57 54.10
COIL[47] 65.48 62.98 59.96 -

PODNet [8] 55.22 47.87 63.19 60.72
DER [40] 69.74 67.98 66.36 -

Ours 72.90 70.65 67.95 63.83
Improvement (+3.06) (+2.67) (+1.59) (+3.11)

CIFAR-100, we use SGD with the momentum of 0.9 and the weight decay of 5e-4
in the boosting stage. In the compression stage, we use SGD with the momen-
tum of 0.9 and set the weight decay to 0. We set the temperature scalar T to 2.
For data augmentation, AutoAugment [3], random cropping, horizontal flip, and
normalization are employed to augment training images. The hyperparameter β
in Eq. 18 is set to 0.97 in most settings, while the β in Eq. 14 on CIFAR-100
and ImageNet-100/1000 is set to 0.95 and 0.97, respectively.

5.2 Quantitative results

CIFAR-100. Table 1 and Fig. 3 summarize the results of CIFAR-100 bench-
mark. We use replay as the baseline method, which only uses rehearsal strategy to
alleviate forgetting. Experimental results show that our method outperforms the
other state-of-the-art strategies in all six settings on CIFAR-100. Our method
achieves excellent performance on both long-term incremental learning tasks
and large-step incremental learning tasks. Particularly, we achieve 3.11% and
2.67% improvement under the long-term incremental setting of base 50 with 25
steps and base 0 with 20 steps, respectively. We also surpass the state-of-the-art
method by 1.71% and 3.06% under the large step incremental learning setting of
20 classes per step and 10 classes per step. It should also be noted that although
our method FOSTER expands a new module every time, we compress it to a
single backbone every time. Therefore, the parameters and feature dimensions of
our model do not increase with the number of tasks, which is our advantage over
methods [40,28,9] based on dynamic architecture. From Fig. 3, we can see that
the compressed single backbone model FOSTER has a tiny gap with FOSTER
B4 in each step, which verifies the effectiveness of our distillation method.
ImageNet. Table 2 and Fig. 4 summarize the experimental results for ImageNet-
100 and ImageNet-1000 benchmarks. Our method, FOSTER, still outperforms
the other method in most settings. In the setting of ImageNet-100 B0, we surpass
the state-of-the-art method by 1.26, 1.63, and 0.7 percent points for, respectively,

12 Fu-Yun Wang , Da-Wei Zhou , Han-Jia Ye� , and De-Chuan Zhan

0 20 40 60 80 100
Number of classes

40

60

80

100

A
cc

ur
ac

y
(%

)
1.26

Replay
iCaRL
BiC
WA

DER
PodNet
FOSTER B4
FOSTER

(a) ImageNet-100 B0 5 steps

0 20 40 60 80 100
Number of classes

40

60

80

100

A
cc

ur
ac

y
(%

)

1.63

Replay
iCaRL
BiC
WA

DER
PodNet
FOSTER B4
FOSTER

(b) ImageNet-100 B0 10 steps

0 20 40 60 80 100
Number of classes

40

60

80

100

A
cc

ur
ac

y
(%

) 2.65

Replay
iCaRL
BiC
WA

DER
PodNet
FOSTER B4
FOSTER

(c) ImageNet-100 B50 5 steps

Fig. 4: Incremental Accuracy on ImageNet-100. Replay is the baseline with naive
rehearsal strategy. FOSTER B4 records the accuracy of the dual branch model after
feature boosting. FOSTER records the accuracy of the single backbone model after
feature compression. The performance gap is annotated at the end of each curve.

Table 2: Average incremental accuracy on ImageNet for FOSTER vs. state-of-the-art.
DER uses the same number of backbone models as incremental sessions, while the
other methods, including FOSTER, retain only one backbone after each session. The
left three columns are experimental results on ImageNet-100. The rightmost column is
the results of ImageNet-1000 with 100 classes per step (10 steps in total).

Methods
Average accuracy of all sessions (%)

B0 20 steps B50 10 steps B50 25 steps ImageNet-1000

Bound 81.20 81.20 81.20 89.27

iCaRL [32] 62.36 59.53 54.56 38.4
BiC [38] 58.93 65.14 59.65 -
WA [43] 63.2 63.71 58.34 54.10

PODNet [8] 53.69 74.33 67.28 -
DER [40] 73.79 77.73 - 66.73

Ours 74.49 77.54 69.34 68.34
Improvement (+0.7) (−0.19) (+2.06) (+1.61)

5, 10, and 20 steps. The results shown in Fig. 4 again verify the effectiveness of
our distillation strategy, where the performance degradation after compression
is negligible. The results on ImageNet-1000 benchmark is shown in the right-
most column in Tabel 2. Our method improves the average top-1 accuracy on
ImageNet-1000 with 10 steps from 66.73% to 68.34% (+1.61%), showing that
our method is also efficacious in large-scale incremental learning.

5.3 Ablation Study

Different Components of FOSTER. Table 5 demonstrates the results of
our ablative experiments on CIFAR-100 B50 with 5 steps. Specifically, we re-
place logits alignments (LA) with the post-processing method weight align-
ment (WA) [43]. The performance comparison is shown in Fig. 5a, where LA
surpasses WA by about 4% in the final accuracy. This shows that our LA is a
more efficacious strategy than WA in calibration for old and new classes. We re-
move feature enhancement and compare its performance with the original result

https://orcid.org/0000-0003-1323-4933
https://orcid.org/0000-0001-7226-7773
https://orcid.org/0000-0003-1173-1880
https://orcid.org/0000-0001-9303-2519

FOSTER: Feature Boosting and Compression for Class-Incremental Learning 13

0 20 40 60 80 100
Number of classes

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Logits Alignment
Weight Alignment

(a) Logits alignment

0 20 40 60 80 100
Number of classes

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Feature Enhancement
w/o Feature Enhancement

(b) Feature enhancement

0 20 40 60 80 100
Number of classes

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Balanced Distillation
Normal Knowlede Distillation

(c) Balanced distillation

Fig. 5: Ablations of the different key components of FOSTER. (a): Performance com-
parison between logits alignment and weight alignment [43]. (b): Performance com-
parison with or without Feature Enhancement. (c): Performance comparison between
balanced distillation and normal knowledge distillation [19].

in Fig. 5b, the model suffers from more than 3% performance decline in the last
stage. We find that, in the last step, there is almost no difference in the accu-
racy of new classes between the model with feature enhancement and the model
without that. Nevertheless, the model with feature enhancement outperforms
the model without that by more than 4 % on old categories, showing that fea-
ture enhancement encourages the model to learn more about old categories. We
compare the performance of balanced knowledge distillation (BKD) with that of
normal knowledge distillation (KD) in Fig. 5c. BKD surpasses KD in all stages,
showing that BKD is more effective when training on imbalanced datasets.

Sensitive Study of Hyper-parameters. To verify the robustness of FOSTER,
we conduct experiments on CIFAR-100 B50 5 steps with different hyperparame-
ters β ∈ (0, 1). Typically, β is set to more than 0.9. We test β = 0.93, 0.95, 0.97,
0.99, 0.995, 0.999 respectively. The experimental results are shown in Fig. 6a.
We can see that the performance changes are minimal under different βs.

Effect of Number of Exemplars. In Fig. 6b, We gradually increase the num-
ber of exemplars from 5 to 200 and record the performance of the model on
CIFAR-100 B50 with 5 steps. The accuracy in the last step increases from 53.53%
to 71.4% as the number of exemplars for every class changes from 5 to 200. From
the results, we can see that with the increase in the number of exemplars, the
accuracy of the last stage of the model gradually improves, indicating that our
model can make full use of more exemplars to improve performance. In addition,
notice that our model achieves more than 60% accuracy in the last round, even
when there are only 10 exemplars for each class, surpassing most state-of-the-art
methods using 20 exemplars shown in Fig. 3c. This indicates that FOSTER is
more effective and robust; it can overcome forgetting even with fewer exemplars.

Visualization of Grad-CAM. We visualize the grad-CAM before and after
feature boosting. As shown in Fig. 7 (left), the freeze CNN only focuses on the
head of the birds, ignoring the rest of their bodies, while the new CNN learns
that the whole body is important for classification, which is consistent with our
claim in Sec. 1. Similarly, the middle and right figures show that the new CNN
also discovers some essential but ignored patterns of the mailbox and the dog.

14 Fu-Yun Wang , Da-Wei Zhou , Han-Jia Ye� , and De-Chuan Zhan

0 20 40 60 80 100
Number of classes

60

65

70

75

80

A
cc

ur
ac

y
(%

)

=0.999
=0.995
=0.99

=0.97
=0.95
=0.93

(a) Sensitive study of hyper-parameters

0 20 40 60 80 100
Number of classes

50

55

60

65

70

75

80

A
cc

ur
ac

y
(%

)

5
10
20

50
100
200

(b) Influence of number of exemplars

Fig. 6: Robustness Testing. Left: Performance under different hyperparameter βs.
Right: Performance with different numbers of exemplars. Both of them are evaluated
on CIFAR-100 B50 with 5 steps.

Input freeze CNN new CNN Input freeze CNN new CNN Input freeze CNN new CNN

Fig. 7: Grad-CAM before and after feature boosting. The freeze CNN only
focuses on some areas of an object and is not accurate enough, but the new CNN can
discover those important but ignored patterns and correct the original output.

6 Conclusions

In this work, we apply the concept of gradient boosting to the scenario of class-
incremental learning and propose a novel learning paradigm FOSTER based on
that, empowering the model to learn new categories adaptively. At each step, we
create a new module to learn residuals between the target and the original model.
We also introduce logits alignment to alleviate classification bias and feature
enhancement to balance the representation learning of the old and new classes.
Furthermore, we propose a simple yet effective distillation strategy to remove
redundant parameters and dimensions, compressing the expanded model into a
single backbone model. Extensive experiments on three widely used incremental
learning benchmarks show that our method obtains state-of-the-art performance.

Acknowledgments. This research was supported by National Key R&D Pro-
gram of China (2020AAA0109401), NSFC (61773198, 61921006,62006112), NSFC-
NRF Joint Research Project under Grant 61861146001, Collaborative Innova-
tion Center of Novel Software Technology and Industrialization, NSF of Jiangsu
Province (BK20200313), CCF-Hikvision Open Fund (20210005). Han-Jia Ye is
the corresponding author.

https://orcid.org/0000-0003-1323-4933
https://orcid.org/0000-0001-7226-7773
https://orcid.org/0000-0003-1173-1880
https://orcid.org/0000-0001-9303-2519

FOSTER: Feature Boosting and Compression for Class-Incremental Learning 15

References

1. Castro, F.M., Maŕın-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end
incremental learning. In: ECCV. pp. 233–248 (2018)

2. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: KDD. pp.
785–794 (2016)

3. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning
augmentation strategies from data. In: CVPR. pp. 113–123 (2019)

4. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: CVPR. pp. 9268–9277 (2019)

5. Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh,
G., Tuytelaars, T.: A continual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR. pp. 248–255. Ieee (2009)

7. Dorogush, A.V., Ershov, V., Gulin, A.: Catboost: gradient boosting with categor-
ical features support. arXiv preprint arXiv:1810.11363 (2018)

8. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: Podnet: Pooled outputs
distillation for small-tasks incremental learning. In: ECCV. pp. 86–102. Springer
(2020)

9. Douillard, A., Ramé, A., Couairon, G., Cord, M.: Dytox: Transformers for continual
learning with dynamic token expansion. arXiv preprint arXiv:2111.11326 (2021)

10. Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A.A., Pritzel,
A., Wierstra, D.: Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734 (2017)

11. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cogni-
tive sciences 3(4), 128–135 (1999)

12. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting (with discussion and a rejoinder by the authors). The annals of
statistics 28(2), 337–407 (2000)

13. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. An-
nals of statistics pp. 1189–1232 (2001)

14. Golab, L., Özsu, M.T.: Issues in data stream management. ACM Sigmod Record
32(2), 5–14 (2003)

15. Golkar, S., Kagan, M., Cho, K.: Continual learning via neural pruning. arXiv
preprint arXiv:1903.04476 (2019)

16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural infor-
mation processing systems 27 (2014)

17. Grossberg, S.: Adaptive resonance theory: How a brain learns to consciously attend,
learn, and recognize a changing world. Neural networks 37, 1–47 (2013)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

19. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531 2(7) (2015)

20. Hung, C.Y., Tu, C.H., Wu, C.E., Chen, C.H., Chan, Y.M., Chen, C.S.: Compact-
ing, picking and growing for unforgetting continual learning. Advances in Neural
Information Processing Systems 32 (2019)

21. Iscen, A., Zhang, J., Lazebnik, S., Schmid, C.: Memory-efficient incremental learn-
ing through feature adaptation. In: ECCV. pp. 699–715. Springer (2020)

16 Fu-Yun Wang , Da-Wei Zhou , Han-Jia Ye� , and De-Chuan Zhan

22. Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., Kalantidis, Y.:
Decoupling representation and classifier for long-tailed recognition. arXiv preprint
arXiv:1910.09217 (2019)

23. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.:
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems 30 (2017)

24. Korattikara Balan, A., Rathod, V., Murphy, K.P., Welling, M.: Bayesian dark
knowledge. Advances in Neural Information Processing Systems 28 (2015)

25. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

26. Lesort, T., Caselles-Dupré, H., Garcia-Ortiz, M., Stoian, A., Filliat, D.: Generative
models from the perspective of continual learning. In: IJCNN. pp. 1–8. IEEE (2019)

27. Li, Z., Hoiem, D.: Learning without forgetting. IEEE transactions on pattern anal-
ysis and machine intelligence 40(12), 2935–2947 (2017)

28. Li, Z., Zhong, C., Liu, S., Wang, R., Zheng, W.S.: Preserving earlier knowledge in
continual learning with the help of all previous feature extractors. arXiv preprint
arXiv:2104.13614 (2021)

29. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

30. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Wei-
jer, J.: Class-incremental learning: survey and performance evaluation on image
classification. arXiv preprint arXiv:2010.15277 (2020)

31. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

32. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. In: CVPR. pp. 2001–2010 (2017)

33. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv
preprint arXiv:1606.04671 (2016)

34. Wang, L., Yang, K., Li, C., Hong, L., Li, Z., Zhu, J.: Ordisco: Effective and efficient
usage of incremental unlabeled data for semi-supervised continual learning. In:
CVPR. pp. 5383–5392 (2021)

35. Wang, L., Zhang, M., Jia, Z., Li, Q., Bao, C., Ma, K., Zhu, J., Zhong, Y.: Afec:
Active forgetting of negative transfer in continual learning. NeurIPS 34, 22379–
22391 (2021)

36. Wang, L., Zhang, X., Yang, K., Yu, L., Li, C., Lanqing, H., Zhang, S., Li, Z.,
Zhong, Y., Zhu, J.: Memory replay with data compression for continual learning.
In: ICLR (2022)

37. Wen, Y., Tran, D., Ba, J.: Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. arXiv preprint arXiv:2002.06715 (2020)

38. Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Fu, Y.: Large scale incre-
mental learning. In: CVPR. pp. 374–382 (2019)

39. Wu, Z., Baek, C., You, C., Ma, Y.: Incremental learning via rate reduction. In:
CVPR. pp. 1125–1133 (2021)

40. Yan, S., Xie, J., He, X.: Der: Dynamically expandable representation for class
incremental learning. In: CVPR. pp. 3014–3023 (2021)

41. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically ex-
pandable networks. arXiv preprint arXiv:1708.01547 (2017)

42. Zhang, S., Chen, C., Hu, X., Peng, S.: Balanced knowledge distillation for long-
tailed learning. arXiv preprint arXiv:2104.10510 (2021)

https://orcid.org/0000-0003-1323-4933
https://orcid.org/0000-0001-7226-7773
https://orcid.org/0000-0003-1173-1880
https://orcid.org/0000-0001-9303-2519

FOSTER: Feature Boosting and Compression for Class-Incremental Learning 17

43. Zhao, B., Xiao, X., Gan, G., Zhang, B., Xia, S.T.: Maintaining discrimination and
fairness in class incremental learning. In: CVPR. pp. 13208–13217 (2020)

44. Zhou, D.W., Wang, F.Y., Ye, H.J., Ma, L., Pu, S., Zhan, D.C.: Forward compatible
few-shot class-incremental learning. In: CVPR. pp. 9046–9056 (2022)

45. Zhou, D.W., Wang, F.Y., Ye, H.J., Zhan, D.C.: Pycil: A python toolbox for class-
incremental learning. arXiv preprint arXiv:2112.12533 (2021)

46. Zhou, D.W., Yang, Y., Zhan, D.C.: Learning to classify with incremental new class.
IEEE Transactions on Neural Networks and Learning Systems (2021)

47. Zhou, D.W., Ye, H.J., Zhan, D.C.: Co-transport for class-incremental learning. In:
ACM MM. pp. 1645–1654 (2021)

48. Zhou, D.W., Ye, H.J., Zhan, D.C.: Learning placeholders for open-set recognition.
In: CVPR. pp. 4401–4410 (2021)

49. Zhou, D.W., Ye, H.J., Zhan, D.C.: Few-shot class-incremental learning by sampling
multi-phase tasks. arXiv preprint arXiv:2203.17030 (2022)

50. Zhou, Z.H.: Ensemble methods: foundations and algorithms. CRC press (2012)

	FOSTER: Feature Boosting and Compression for Class-Incremental Learning

