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A Additional Experiments

In this section, we present several additional models and also consider the impact
of embedding dimension on performance.

A.1 RNN Variants

We can vary the input information to both of the recurrent models in three ways.
The notation in parentheses maps to the entries in the later supplementary ta-
bles.

(base): The models only receive the history of images, ground truth class la-
bels, and learner responses

ψrnn(z
k
1:t, y

k
1:t, r

k
1:t)). (1)

(y): In addition to the history, the model receives the ground truth class label
of the image shown to the learner at the current time-step

ψrnn(z
k
1:t, y

k
1:t, r

k
1:t, y)). (2)

(y, z): Finally, as in the main paper, the model can include both the ground
truth class of the image and the representation of the image from the learned
CNN

ψrnn(z
k
1:t, y

k
1:t, r

k
1:t, z, y)). (3)

The results of the variants are presented in Tables A1, A2, and A3.

A.2 DKT

Next, we adapt Deep Knowledge Tracing (DKT) [5] to our setting. We deviate
from the original DKT method in two main ways. First, the types of queries (e.g.
math problems) in educational datasets do not allow for instance-level represen-
tations. Instead, skills (i.e. question types) were jointly encoded with information
about whether the problem was answered correctly by the learner. Second, the
output of DKT was the learner’s probability of being correct for each skill, not
a particular question instance.
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We modify the DKT algorithm to make it appropriate for the setting de-
scribed in our work. We replace skills with the class-level label for an image and
convert the output into a probability distribution over the class labels such that
it can be trained with the cross-entropy loss

ϕdkt(y) = σ(ψrnn(y
k
1:t, r

k
1:t, y))). (4)

At a high-level, this model variant encodes no instance-level (i.e. image) infor-
mation to make it’s predictions.

We observe that this DKT model (ϕdkt) performs slightly worse in all cases,
indicating that image information is valuable to enable the models to better trace
learner performance. The results of the DKT variant are presented in Tables A1,
A2, and A3.

A.3 Cognitive Models

Cognitive models make stronger assumptions on how humans learn. We modify
the prototype and exemplar models described in the cognitive science litera-
ture [4] and evaluate them on our datasets.

Prototype. The prototype model proposes that learners store a prototypical
image for each class. Each new image is compared to the learner’s class proto-
types and the highest similarity class is selected. In our formulation, the class
prototype is the average feature representation of previously seen images of that
class. In the following equations, τ is the current time-step, P k

τ (c) is the proto-
type of class c for learner k at time-step τ , and δ is the dirac-delta function and
acts as a selector for images from class c,

P k
τ (c) =

1

τ − 1
·
τ−1∑
t

zkt ∗ δ(ykτ − c), (5)

r̂kτ (c) =
sim(P k

τ (c), z
k
τ )∑

c sim(P k
τ (c), z

k
τ )
. (6)

Exemplar. The exemplar model proposes that learners store previously seen
images in a memory bank of exemplars. Query images are compared to all of
the exemplars. The learner chooses the class with the highest total similarity
to the query image. In the following equations, Ek

τ (c) is the sum of the class c
similarity scores for learner k at time-step τ with respect to the current image
zkτ . Following [4], we introduce a learnable parameter γ to scale the similarities
(this value is fixed to 1 in the prototype model),

Ek
τ (c) =

τ−1∑
t

sim(zkt , z
k
τ ) · δ(ykτ − c), (7)
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r̂kτ (c) =
sim(Ek

τ (c), z
k
τ )

γ∑
c sim(Ek

τ (c), z
k
τ )

γ
. (8)

Both models compute similarity by using an exponential decay function over
the Euclidean distance between feature representations of the images,

sim(zi, zj) = e−c∗d(zi,zj). (9)

Finally, instead of learning the feature space separately with visual similarity
experiments, we jointly estimate a CNN along with the model parameters to
discover the feature space.

We find that these models perform worse than the models presented in the
main paper. However, simple modifications (like weighting the history of exem-
plars or images in the prototype) may help. Exploring the space of cognitive
models is an interesting direction for future work. The results of these variants
are presented in Tables A1, A2, and A3.

A.4 Transformers

Recently, the knowledge tracing community has found the Transformer architec-
ture to be an effective model for tracing human learners in non-visual tasks. We
modify the SAINT model [1] for our visual learning setting. First, we introduce
a CNN-based feature extraction stage to embed images. The encoder receives
the current image’s embedding and its ground truth label. The decoder gets the
previous learner response. The decoder predicts the learner’s response to the
image (also passed to the encoder).

The Transformer model does surprisingly poorly on these datasets. We expect
that future work exploring Transformer architectures designed for this task will
demonstrate performance on par with the recurrent models. The results of the
Transformer model are presented in Tables A1, A2, and A3.

A.5 ResNet Backbone Experiments

We swap out our CNN backbone with a ResNet-18 [2] pre-trained on ImageNet.
We freeze the weights in layers 1, 2 and 3, but leave layer 4 to be learned. The
output of layer 4 is passed to a fully-connected layer that reduces the output of
the layer to the desired dimensionality, as opposed to the final classifier used for
the ImageNet classification task. The results of these experiments are presented
in Table A4.

A.6 Including Per-Class Accuracy as Input

We find that including some meta-information can help with tracing perfor-
mance. To do this, we compute a learner’s accuracy on each class at each time-
step and concatenate this vector to the input of three tracing models (ϕstatic,
ϕdirect and ϕcls pred). We find a boost in performance across all models. The
results are presented in Table A5, where we observe a boost in performance.
It is likely that other sources of meta-information (such as time-taken on an
example) will also help [6].
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A.7 Varying Embedding Dimension

We demonstrate that varying the embedding dimension of the feature extractor
has little effect on the performance of the direct response model (Table A6).

Table A1. Performance of all model variants on the Butterflies dataset. The model
variant is denoted in the subscript corresponding to the same subscripts in A.1. One
can see that ϕdirect(base) performs poorly for a recurrent model. This model does not
have access to any information about the current time-step and is effectively guessing
both the image that will be shown and the associated response. We also show the
per-class average precision scores on the train sequence in addition to the micro and
macro scores from before. These scores show that the benefit of the recurrent models
appear primarily in classes that have large changes in average performance (e.g. Red
Admiral) over the training period. The models with † are models presented in Table 1
of the main paper. The scores are reported with their standard deviations and the top
average performers in each column are in bold.

Butterflies
Train Test

Cabbage
White

Monarch Queen
Red

Admiral
Viceroy Micro Macro Micro Macro

GT Label† 0.94±0.03 0.32±0.01 0.36±0.04 0.65±0.04 0.27±0.01 0.48±0.02 0.51±0.02 0.58±0.02 0.61±0.02

ϕstatic† 0.95±0.01 0.37±0.02 0.34±0.06 0.66±0.03 0.27±0.03 0.63±0.02 0.52±0.02 0.67±0.02 0.58±0.03

ϕstatic time† 0.97±0.01 0.34±0.03 0.29±0.03 0.35±0.03 0.24±0.02 0.52±0.02 0.44±0.01 0.49±0.01 0.40±0.01

ϕdkt 0.95±0.02 0.43±0.02 0.45±0.04 0.72±0.05 0.33±0.06 0.67±0.02 0.57±0.02 0.74±0.02 0.64±0.02

ϕtransformer 0.96±0.01 0.36±0.03 0.34±0.02 0.69±0.06 0.26±0.01 0.62±0.02 0.52±0.02 0.68±0.05 0.58±0.04

ϕprototype 0.95±0.02 0.32±0.03 0.30±0.05 0.59±0.08 0.27±0.03 0.53±0.03 0.48±0.03 0.63±0.01 0.54±0.02

ϕexemplar 0.90±0.03 0.30±0.03 0.27±0.04 0.35±0.13 0.26±0.03 0.44±0.05 0.42±0.04 0.53±0.07 0.45±0.07

ϕdirect(base) 0.34±0.02 0.29±0.03 0.23±0.02 0.26±0.02 0.22±0.03 0.27±0.01 0.27±0.01 0.20±0.01 0.20±0.01

ϕdirect(y) 0.97±0.02 0.43±0.03 0.48±0.05 0.76±0.07 0.38±0.04 0.71±0.02 0.60±0.02 0.78±0.02 0.66±0.01

ϕdirect(y,z)† 0.97±0.01 0.41±0.04 0.44±0.06 0.77±0.07 0.36±0.03 0.70±0.03 0.59±0.02 0.77±0.03 0.64±0.03

ϕcls pred(base) 0.96±0.01 0.41±0.06 0.32±0.05 0.59±0.14 0.25±0.02 0.59±0.06 0.51±0.05 0.61±0.06 0.52±0.05

ϕcls pred(y)† 0.98±0.01 0.46±0.02 0.48±0.04 0.78±0.05 0.38±0.02 0.71±0.02 0.62±0.01 0.77±0.02 0.65±0.02

ϕcls pred(y,z) 0.98±0.01 0.45±0.01 0.47±0.04 0.78±0.05 0.37±0.02 0.70±0.02 0.61±0.01 0.77±0.03 0.66±0.02
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Table A2. Performance of all model variants on the Eyes dataset. Please see the
caption of Table A1 for more details.

Eyes
Train Test

DME Drusen Normal Micro Macro Micro Macro

GT Label† 0.56±0.02 0.54±0.03 0.58±0.02 0.56±0.02 0.56±0.02 0.69±0.02 0.69±0.01

ϕstatic† 0.63±0.03 0.53±0.05 0.62±0.02 0.60±0.03 0.59±0.03 0.67±0.02 0.68±0.02

ϕstatictime† 0.32±0.01 0.35±0.01 0.36±0.01 0.34±0.00 0.34±0.01 0.33±0.01 0.34±0.02

ϕdkt 0.63±0.02 0.60±0.03 0.65±0.02 0.63±0.02 0.63±0.02 0.74±0.03 0.73±0.03

ϕtransformer 0.41±0.09 0.41±0.05 0.42±0.09 0.41±0.08 0.41±0.08 0.37±0.02 0.39±0.02

ϕprototype 0.61±0.04 0.50±0.04 0.56±0.04 0.56±0.03 0.56±0.03 0.65±0.04 0.65±0.05

ϕexemplar 0.57±0.02 0.48±0.02 0.59±0.03 0.54±0.02 0.55±0.02 0.68±0.04 0.67±0.04

ϕdirect(base) 0.38±0.02 0.40±0.01 0.38±0.02 0.38±0.01 0.39±0.01 0.35±0.01 0.34±0.01

ϕdirect(y) 0.65±0.03 0.62±0.03 0.68±0.03 0.66±0.02 0.65±0.02 0.75±0.01 0.73±0.02

ϕdirect(y,z)† 0.64±0.02 0.62±0.03 0.69±0.02 0.66±0.02 0.65±0.02 0.75±0.01 0.74±0.02

ϕcls pred(base) 0.48±0.05 0.39±0.02 0.48±0.05 0.45±0.04 0.45±0.03 0.44±0.02 0.44±0.02

ϕcls pred(y)† 0.65±0.02 0.62±0.03 0.69±0.01 0.65±0.03 0.65±0.02 0.74±0.02 0.74±0.04

ϕcls pred(y,z) 0.64±0.01 0.62±0.03 0.69±0.02 0.65±0.02 0.65±0.02 0.75±0.01 0.74±0.02

Table A3. Performance of all model variants on the Greebles dataset. Please see the
caption of Table A1 for more details.

Greebles
Train Test

Agara Bari Cooka Micro Macro Micro Macro

GT Label† 0.51±0.02 0.37±0.03 0.43±0.03 0.45±0.02 0.44±0.02 0.50±0.01 0.49±0.01

ϕstatic† 0.63±0.03 0.43±0.04 0.55±0.05 0.55±0.03 0.53±0.03 0.64±0.01 0.61±0.01

ϕstatictime† 0.64±0.04 0.39±0.02 0.54±0.04 0.54±0.03 0.52±0.03 0.61±0.01 0.59±0.02

ϕdkt 0.59±0.03 0.41±0.03 0.49±0.05 0.52±0.02 0.50±0.02 0.59±0.02 0.55±0.02

ϕtransformer 0.52±0.11 0.36±0.03 0.45±0.05 0.46±0.07 0.45±0.06 0.44±0.08 0.43±0.08

ϕprototype 0.58±0.03 0.42±0.01 0.54±0.05 0.52±0.02 0.51±0.02 0.58±0.02 0.57±0.02

ϕexemplar 0.59±0.02 0.43±0.03 0.52±0.05 0.52±0.03 0.51±0.03 0.63±0.01 0.60±0.01

ϕdirect(base) 0.37±0.02 0.35±0.02 0.36±0.01 0.36±0.00 0.36±0.00 0.34±0.02 0.34±0.02

ϕdirect(y) 0.59±0.02 0.41±0.03 0.51±0.04 0.52±0.02 0.50±0.03 0.59±0.02 0.55±0.02

ϕdirect(y,z)† 0.62±0.03 0.42±0.03 0.55±0.05 0.55±0.03 0.53±0.03 0.60±0.02 0.57±0.03

ϕcls pred(base) 0.63±0.03 0.40±0.02 0.56±0.06 0.55±0.02 0.53±0.03 0.61±0.02 0.60±0.03

ϕcls pred(y)† 0.62±0.03 0.41±0.03 0.54±0.03 0.54±0.02 0.52±0.03 0.60±0.02 0.57±0.03

ϕcls pred(y,z) 0.63±0.03 0.41±0.03 0.55±0.03 0.55±0.02 0.53±0.01 0.61±0.02 0.59±0.02

Table A4. Performance of models trained using a pre-trained ResNet with partially
frozen weights (as described in Sec. A.5). We only compare model variants that appear
in the main text. Similar to the original experiment results the classifier prediction
model (ϕcls pred) performs the best. However, the overall performance decreases slightly
across the board. We observe a larger decrease for the direct response model (ϕdirect),
likely due to the larger dependence that it has on the feature space.

Butterflies
Train Test

Cabbage
White

Monarch Queen
Red

Admiral
Viceroy Micro Macro Micro Macro

GT Label 0.94±0.03 0.32±0.01 0.36±0.04 0.65±0.04 0.27±0.01 0.48±0.02 0.51±0.02 0.58±0.02 0.61±0.02

ϕstatic 0.95±0.01 0.36±0.02 0.32±0.04 0.65±0.04 0.27±0.03 0.62±0.02 0.51±0.02 0.67±0.03 0.57±0.03

ϕstatic time 0.44±0.02 0.25±0.02 0.22±0.01 0.33±0.03 0.19±0.02 0.28±0.01 0.29±0.00 0.27±0.02 0.34±0.02

ϕdirect 0.97±0.01 0.41±0.03 0.38±0.06 0.74±0.07 0.28±0.03 0.66±0.03 0.55±0.02 0.70±0.03 0.58±0.04

ϕclspred 0.97±0.01 0.39±0.02 0.49±0.02 0.75±0.06 0.32±0.03 0.69±0.01 0.59±0.01 0.75±0.01 0.65±0.02
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Table A5. Performance of models after concatenating per-class accuracy information
to the input vector for the tracing model (Sec. A.6). We only compare model variants
that appear in the main text. We observed a boost for all models.

Greebles Eyes Butterflies
Train Test Train Test Train Test

Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

ϕstatic† 0.63 0.52 0.67 0.58 0.60 0.59 0.67 0.68 0.55 0.53 0.64 0.61

ϕstatic+perClAcc 0.65 0.54 0.69 0.58 0.63 0.62 0.69 0.70 0.59 0.57 0.66 0.65

ϕdirect† 0.70 0.59 0.77 0.64 0.66 0.65 0.75 0.74 0.55 0.53 0.60 0.57

ϕdirect+perClAcc 0.71 0.62 0.78 0.67 0.69 0.69 0.78 0.78 0.53 0.51 0.61 0.57

ϕclspred† 0.71 0.62 0.77 0.65 0.65 0.65 0.74 0.74 0.54 0.52 0.60 0.57

ϕcls pred+perClAcc 0.71 0.61 0.79 0.67 0.69 0.69 0.79 0.79 0.53 0.51 0.60 0.58

Table A6. We train the ϕdirect tracing model on the butterflies dataset with dif-
ferent embedding dimensions. We find that embedding dimension has no impact on
performance.

Butterflies
Train Test

Cabbage
White

Monarch Queen
Red

Admiral
Viceroy Micro Macro Micro Macro

ϕdirect dim8 0.98±0.01 0.41±0.03 0.45±0.06 0.77±0.07 0.35±0.03 0.70±0.03 0.59±0.03 0.77±0.03 0.65±0.04

ϕdirect dim16 0.98±0.01 0.42±0.05 0.46±0.04 0.77±0.07 0.37±0.03 0.70±0.02 0.60±0.02 0.78±0.03 0.66±0.03

ϕdirect dim32 0.98±0.01 0.43±0.04 0.46±0.03 0.77±0.06 0.35±0.02 0.70±0.02 0.60±0.01 0.78±0.02 0.67±0.02

ϕdirect dim64 0.97±0.01 0.43±0.03 0.48±0.04 0.78±0.06 0.37±0.03 0.71±0.02 0.61±0.02 0.79±0.01 0.66±0.01
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B CNN Architecture Details

In Table B7 we describe the architecture of the CNN used to encode images for
all of the models.

Table B7. Structure of the CNN backbone used to learn the image representation. The
bolded and italicized entries are variable and depend on the experiment and dataset.
The number of image channels (img chns) is three for the Butterflies and Greebles
dataset, but is one for Eyes. The Butterflies and OCT datasets contain larger images
(144 x 144), and so img feats is set to 1296. For the Greebles dataset, the images are
(128 x 128) and img feats is set to 1204. Finally, the output of the model is the size
of the embedding dimension and is set to 16 for all experiments.

CNN backbone

layer in channels out channels k s p activation

conv1 img chns 8 5 1 2 PReLU

maxpool1 - - 4 - - PReLU

conv2 8 16 5 1 2 PReLU

maxpool2 - - 4 - - -

flatten - - - - - -

linear img feats 512 - - - PReLU

linear 512 256 - - - PReLU

linear 256 256 - - - PReLU

linear 256 16 - - - PReLU
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C Additional Results

We recreate Fig. 4 for all datasets and include results from the Direct Response
and Time-Sensitive Model. For the Greebles dataset, we include the histograms
of the features of the classes to demonstrate the difficulty of the task.
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Fig. C1. (Top) The smoothed average human learner accuracy for each class over
time on the Butterflies dataset. The shadowed regions indicate confidence intervals as
the number of samples in each time and class bin are not guaranteed to be the same.
(Bottom) The average probability of getting a class correct predicted by the static
ϕstatic model (orange), ϕstatic time model (green), the direct response ϕdirect model
(purple), and the classifier prediction ϕcls pred model (red). At each time-step, for each
learner in the test set, the models predict class probabilities for ∼ 50 images per class.
The probabilities are averaged (solid line) and the shadows indicate one standard devi-
ation. While both recurrent models have similar traces, the ϕdirect produces smoother
average probabilities.
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Fig. C2. Human and model performance on the Eyes dataset. See Fig. C1 for a detailed
caption.
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Fig. C3. The Greebles dataset was inspired by the one used in [7]. In our version, the
three classes vary in Head Width and Size (top row), Body Width and Size (middle
row), and the Red and Green channel for the RGB color (bottom row). The histograms
overlap completely for Head Width, Head Size, and Body Width. These variations
serve as distractors since they provide no information about which class an image
belongs to. The other features, Body Size, the Red channel, and the Green channel
have different distributions and can be used to estimate the class. Agara and Bari are
most separable by Body Size, Cooka is most separable from both Agara and Bari in
the two color channels. However, note that they are not perfectly separated and it
is possible, although less likely, for two images from different classes to take on the
same properties. This makes the Greebles dataset particularly challenging, since the
important features are both subtle and imperfect for distinguishing between classes.
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Fig. C4. Human and model performance on the Greebles dataset. See Fig. C1 for a
detailed caption.
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D Learned Representations

Here we explore the representations learned by the the classifier prediction model
(ϕcls pred) on the Butterflies dataset. In Fig. D5 we visualize the internal state
of the model and in Fig. D6 we provide an in depth comparison for two different
learners.

0 10
0

10

Hi
dd

en
 S

ta
te

Cabbage White Monarch Queen Red Admiral Viceroy

0 5 10

5

10

Ce
ll 

St
at

e

Fig.D5. The hidden states and cell states of the LSTM for ϕcls pred while tracing
25 test-set learners are plotted in 2D using the UMAP dimensionality reduction algo-
rithm [3]. (Top) The hidden state representations are colored according to the probabil-
ity (purple to yellow) that a response produced with that hidden state would correctly
classify an image of the class in the panel title. We can see that the classes that cor-
respond to the best average performance by humans are in well-defined clusters (e.g.
Cabbage White), whereas the classes that are commonly mistaken for each other are
grouped together and have much weaker probabilities of being correct. (Bottom) The
cell states are visualized in the same manner. For the cell states, we can see that the
clusters seem to be dragged across a single dimension. The Cabbage White and Red
Admiral cluster is split in two pieces in the cell state, which we explore in Fig. D6.
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Fig.D6. (Top) The sequence of correct and incorrect responses made by two human
learners during training. We selected these two learners as they demonstrate different
learning behaviors. It seems Learner B may already be familiar with butterflies. (Bot-
tom) We overlay each learners’ trajectory through the hidden and cell states. The
colors represent the time-step, where dark blue is the beginning of training, light-grey
is the middle, and dark red is the end. We see that Learner B’s trajectory quickly skips
to the left of the cell state, suggesting the LSTM encodes the learners skill level on all
classes in certain dimensions of the cell state and uses the hidden state to translate the
skill level into an appropriate response for the image shown to the learner.



Visual Knowledge Tracing 13

E Feature Space

In Fig. E7 we visualize the feature space learned by the CNN for the classifier
prediction model (ϕcls pred) on the Butterflies dataset.
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Fig. E7. The feature space learned by the CNN must support several types of behav-
iors, since behavior changes between learners and over time. We use PCA to reduce
the learned feature space into two dimensions. (Left) We show a subset of images
in the Butterflies dataset colored by the ground truth label. Aside from the Cabbage
White class, which is the easiest to identify, the representations are difficult to separate.
(Right) We use the hyperplanes predicted while tracing a single learner X to induce a
subspace and visualize the features in that subspace. Within the subspaces, the classes
are much better separated. Each row shows a subspace induced by a hyperplane for
different time-steps - where the time-step is indicated on the left. The colors repre-
sent the class and the labelled color is the target class for the image being evaluated
in that time-step. We see that, over time, the target class is pushed further to the
right and is better separated from the other classes (see orange cluster in time-step 15
vs. 25). Classes that are confused for each other have less separation, whereas classes
like Cabbage White, that are rarely confused, are extremely well-separated from the
other classes. Also, note that the subspace orientation (target class moved to the right)
matches how the dot product between the hyperplanes and features is translated into
probabilities in the model.
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F Additional Implementation Details

F.1 Types of Learner Responses

There are several ways to request information from the learner: they can provide
their best guess, a ranked list of guesses, or confidence scores for each class. In
these datasets, we ask for a ranking of each learner’s top 3 classes as a balance
between time-spent and informativeness. While our models are trained on their
top choice (equivalent to their best guess), we hypothesize that the extra infor-
mation available in the ranked responses can be leveraged to improve response
prediction performance. We leave this to future work.

F.2 Recurrent Neural Networks

Here we elaborate on the details of the recurrent neural network based models.
Direct Response Model. At each time-step, this model receives the hid-

den states, cell states, the learner’s response to the previous interaction, the
embedding of the current image, and the true label of the current image. The
model predicts the response of the learner with respect to the input image.

Classifier Prediction Model. At each time-step, this model receives the
hidden state, cell state, the embedding of the image from the previous inter-
action, the learner’s response to the previous interaction, and the true label of
the current image. The model predicts a classifier that is used to classify the
embedding of the input image such that it matches the response of the learner
to that input image at that time-step.

Ground truth labels and learner responses are represented as one-hot-encoded
vectors. For both models, at the first time-step, some of the values that make up
the input vector are not available to the model. For example, the hidden state,
cell state, the response to previous interaction, etc. These vectors are initialized
to zeros.
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