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Abstract. Anomaly detection can be conceived either through gener-
ative modelling of regular training data or by discriminating with re-
spect to negative training data. These two approaches exhibit different
failure modes. Consequently, hybrid algorithms present an attractive re-
search goal. Unfortunately, dense anomaly detection requires transla-
tional equivariance and very large input resolutions. These requirements
disqualify all previous hybrid approaches to the best of our knowledge.
We therefore design a novel hybrid algorithm based on reinterpreting
discriminative logits as a logarithm of the unnormalized joint distri-
bution p̂(x,y). Our model builds on a shared convolutional represen-
tation from which we recover three dense predictions: i) the closed-
set class posterior P (y|x), ii) the dataset posterior P (din|x), iii) un-
normalized data likelihood p̂(x). The latter two predictions are trained
both on the standard training data and on a generic negative dataset.
We blend these two predictions into a hybrid anomaly score which al-
lows dense open-set recognition on large natural images. We carefully
design a custom loss for the data likelihood in order to avoid back-
propagation through the untractable normalizing constant Z(θ). Ex-
periments evaluate our contributions on standard dense anomaly de-
tection benchmarks as well as in terms of open-mIoU - a novel met-
ric for dense open-set performance. Our submissions achieve state-of-
the-art performance despite neglectable computational overhead over
the standard semantic segmentation baseline. Official implementation:
https://github.com/matejgrcic/DenseHybrid

Keywords: Dense anomaly detection, Dense open-set recognition, Out-
of-distribution detection, Semantic segmentation

1 Introduction

High accuracy, fast inference and small memory footprint of modern neural net-
works steadily expand the horizon of downstream applications. Many exciting
applications require advanced image understanding functionality provided by se-
mantic segmentation [17]. These models associate each pixel with a class from
a predefined taxonomy. They can accurately segment two megapixel images in
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real-time on low-power embedded hardware [11,43,26]. However, the standard
training procedures assume the closed-world setup which may raise serious safety
issues in real-world deployments. For example, if a segmentation model miss-
classifies an unknown object (e.g. lost cargo) as road, the autonomous car may
experience a serious accident. Such hazards can be alleviated by complement-
ing semantic segmentation with dense anomaly detection. The resulting dense
open-set recognition models are more suitable for real-world applications due to
ability to decline the decision in anomalous pixels.

Previous approaches for dense anomaly detection either use a generative or
a discriminative perspective. Generative approaches are based on density esti-
mation [6] or image resynthesis [36,4]. Discriminative approaches use classifica-
tion confidence [23], a binary classifier [3] or Bayesian inference [29]. These two
perspectives exhibit different failure modes. Generative detectors inaccurately
disperse the probability volume [41,47,38,53] or rely on risky image resynthesis.
On the other hand, discriminative detectors assume training on full span of the
input space, even including unknown unknowns [25].

In this work we combine the two perspectives into a hybrid anomaly detector.
The proposed approach complements a standard semantic segmentation model
with two additional predictions: i) unnormalized dense data likelihood p̂(x) [6],
and ii) dense data posterior P (din|x) [3]. Both predictions require training with
negative data [25,3,4,10]. Joining these two outputs yields an accurate yet effi-
cient dense anomaly detector which we refer to as DenseHybrid.

We summarize our contributions as follows. We propose the first hybrid
anomaly detector which allows end-to-end training and operates at pixel level.
Our approach combines likelihood evaluation and discrimination with respect
to an off-the-shelf negative dataset. Our experiments reveal accurate anomaly
detection despite minimal computational overhead. We complement semantic
segmentation with DenseHybrid to achieve dense open-set recognition. We re-
port state-of-the-art dense open-set recognition performance according to a novel
performance metric which we refer to as open-mIoU.

SMIYC-ObstacleTrack LostAndFoundFishyscapes Static StreetHazards

Fig. 1. Qualitative performance of the proposed DenseHybrid approach on standard
datasets. Top: input images. Bottom: dense maps of the proposed anomaly score
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2 Related Work

Detecting samples which deviate from the generative process of the training data
is a decades old problem [22]. In the machine learning community this task is also
known as anomaly detection or out-of-distribution (OOD) detection [24]. Early
image-wide approaches utilize max-softmax probability [24], input perturbations
[34] ensembling [31] or Bayesian uncertainty [40]. More encouraging performance
has been reported by discriminative training against a broad negative dataset
[14,25,3,37] or an appropriately trained generative model [32,21,54].

Another line of work detects anomalies by estimating the likelihood with a
generative model. Surprisingly, this research revealed that anomalies may give
rise to higher likelihood than inliers [41,47,53]. Further works suggest that better
performance can be hoped for group-wise anomaly detection [27], however, this
case has less practical importance. Generative models can be encouraged to
assign low likelihood in negative training data [25]. This practice may mitigate
sub-optimal dispersion of the probability volume [38].

Image-wide anomaly detection approaches can be adapted for dense predic-
tion with variable success. None of the existing generative approaches can deliver
dense likelihood estimates. On the other hand, concepts such as max-softmax
and discriminative training with negative data are easily ported to dense pre-
diction. Many dense anomaly detectors are trained on mixed-content images
obtained by pasting negatives (e.g. ImageNet, COCO, ADE20k) over regular
training images [3,10,4]. Discriminative anomaly detections may be produced by
a dedicated OOD head which shares features with the standard classification
head. Shared features improve OOD performance and incur neglectable compu-
tational overhead with respect to the baseline semantic segmentation model [3].
Recent approach [10] encourages large softmax entropy in negative pixels.

Anomalies can also be recognized in feature space [6]. However, this approach
complicates the detection of small objects due to subsampled feature represena-
tions and feature collapse [38,1]. Orthogonally to previous approaches, anomaly
detector can be implemented according to dissimilarity between the input and
a resynthesised image [36,4,50]. The resynthesis is performed by a generative
model conditioned on the predicted labels. However, this approach is suitable
only for uniform backgrounds such as roads [36]. Furthermore, it adds significant
computational overhead making it inapplicable for real-time applications.

Our approach to dense anomaly detection is a hybrid combination of dis-
criminative detection and likelihood evaluation. Discriminative OOD detection
has been introduced in [3,25,14]. Contrary to all these approaches, we improve
discriminative OOD detection through synergy with likelihood testing. Dense
likelihood evaluation has been accomplished by fitting a generative model to
discriminative features [6]. However, their approach is vulnerable to feature
collapse[38,1] due to two-phase training. Moreover, detection of small outliers is
jeopardized due to subsampling. Contrary to their approach, our method allows
joint training with the standard dense prediction model and anomaly detection
at full resolution.
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We perform dense likelihood evaluation by reinterpreting logits as unnormal-
ized joint likelihood [20]. However, the method [20] is completely unsuitable for
dense prediction due to intractability of Langevin sampling at large resolutions.
We reformulate their method in order to allow training on mixed-content images
and show that such adaptation dramatically simplifies the training by precluding
backpropagation through intractable normalizing constant Z(θ). To the best of
our knowledge, the proposed design offers the first approach for dense likelihood
evaluation that is suitable for end-to-end training.

We build an open-set recognition model by thresholding our hybrid anomaly
score and combining it with the standard semantic segmentation predictions [7].
The resulting model is suitable for simultaneous anomaly detection and recogni-
tion of inlier scenery. We note that standard metrics for dense recognition per-
formance [16] do not take into account the accuracy in anomalous samples. This
is not surprising since outlier pixels have been introduced only in recent dense
prediction benchmarks [52,5,9]. Also, previous work on discrimination in pres-
ence of anomalous pixels was more focused on robustness of algorithms rather
than on recognition performance [52]. Hence, we propose a novel anomaly-aware
metric (open-mIoU) which measures the prediction quality both in inliers and
the outliers, similarly to previous image-wide metrics [48,46].

3 Dense Recognition with Hybrid Anomaly Detector

We propose a hybrid algorithm for dense anomaly detection based on unnor-
malized data likelihood and dataset posterior (Sec. 3.1). The proposed hybrid
anomaly detector extends the standard dense classifier to form dense open-set
recognition model (Sec. 3.2). The resulting recognition model trains on mixed
content images.

3.1 Hybrid Anomaly Detection for Dense Prediction

We represent RGB images with a random variable x. Variable y denotes the
corresponding pixel-level predictions, while the binary random variable d models
whether a given pixel belongs to the inliers or outliers. We denote a realization of
a random variable without the underline. Thus, P (y|x) is a shortcut for P (y =
y|x = x). We write din for inliers and dout for outliers. Thus, P (din|x) denotes a
dense posterior probability that a given pixel is an inlier [25,3]. Conversely, p(x)
denotes dense likelihoods of patches centered at a given pixel.

We build upon reinterpretation of logits s produced by a discriminative model
P (y|x) = softmax(fθ2(qθ1(x))) [20]. We reinterpret the logits as unnormalized
joint log-density of input and labels:

p(y,x) =
1

Z
p̂(y,x) :=

1

Z
exp s, s = fθ2(qθ1(x)). (1)

Note that qθ1 produces pre-logits t based on which fθ2 computes logits s. Hence,
qθ1 and fθ2 form the standard discriminative model. p̂(y,x) denotes unnormal-
ized joint density across data x and labels y, while Z denotes the corresponding
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normalization constant. As usual, computing Z is intractable since it requires
evaluating the unnormalized distribution for all realizations of y and x. Through-
out this work we conveniently eschew the evaluation of Z in order to enable
efficient training and inference.

Standard discriminative predictions are easily obtained through Bayes rule:

P (y|x) = p(y,x)∑
y p(y,x)

=
exp s∑
i exp si

= softmax(s). (2)

Hence, we can recover the unnormalized joint density (1) through the standard
closed-world discriminative learning over K classes. Moreover, we can share the
logits with the primary discriminative task and even exploit pretrained classifiers.

We can express the dense likelihood p(x) by marginalizing out y:

p(x) =
∑
y

p(y,x) =
1

Z

∑
y

p̂(y,x) =
1

Z

∑
i

exp si. (3)

One could argue for detecting anomalies with p(x) directly: if a given input is
unlikely under the p(x), it should likely be an anomaly. However, this approach
may not work very well in practice due to tendency of maximum likelihood
optimization towards over-generalization [38]. In simple words, some outliers will
have higher likelihood than the inliers [47,41]. We discourage such behaviour by
minimizing the likelihood of negatives during the training [25].

Besides logit reinterpretation, we define the dataset posterior P (din|x) as a
non-linear transformation based on pre-logit activations qθ1(x) [3]:

P (din|x) := σ(gγ(qθ1(x))). (4)

In our case, the function g is BN-ReLU-Conv1x1 of pre-logits, followed by a
sigmoid non-linearity. Anomalies can be detected solely with P (din|x) [13]: inlier
samples should give rise to high posterior of the inlier dataset. However, our
experiments show that this is suboptimal compared to our hybrid approach.

Fig. 2 illustrates shortcomings of generative and discriminative anomaly de-
tectors on a toy problem. Blue dots designate inlier data. Green triangles des-
ignate the negative data used for training. Red squares denote anomalous test
data. Discriminative detectors which model P (din|x) can’t differentiate inliers if
the negative data seen during the training insufficiently covers the sample space
(left). On the other hand, generative detectors which model p(x) tend to inac-
curately distribute probability volume over sample space [38] (center). Joining
discriminative and generative approach into a hybrid detector we mitigate the
aforementioned limitations (right).

We build our hybrid anomaly detector upon the discriminative dataset poste-
rior P (din|x) and the generative data likelihood p(x). We express a novel hybrid
anomaly score as log-ratio between P (dout|x) = 1− P (din|x) and p(x):

s(x) := ln
P (dout|x)

p(x)
= lnP (dout|x)− ln p̂(x) + lnZ (5)

∼= lnP (dout|x)− ln p̂(x). (6)
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Discriminative Generative Hybrid

Inlier data Negative training data Outlier test data

FPR=11.0% FPR=24.0% FPR=9.5%

Fig. 2. Anomaly detection on a toy dataset. The discriminative approach (left) models
P (din|x). It fails if the negative training dataset does not cover all modes of the test
anomalies. The generative approach (middle) models p(x). It often assigns high likeli-
hoods to test anomalies due to over-generalization [38]. The hybrid approach achieves
a synergy between discriminative and generative modelling

We can neglect Z since ranking performance [24] is invariant to monotonic trans-
formations such as taking a logarithm or adding a constant. Other formulations
of s(x) may also be effective which is an interesting direction for future work.

3.2 Dense Open-set Recognition based on Hybrid Anomaly
Detection

Figure 3 illustrates the inference with the proposed open-set recognition setup.
RGB input is fed to a hybrid dense model which produces pre-logit activations t
and logits s. Then, we obtain the closed-set class posterior P (y|x) = softmax(s)
(designated in yellow) and the unnormalized data likelihood p̂(x) (designated
in green). A distinct head g transforms pre-logits t into the dataset posterior
P (dout|x). The anomaly score s(x) is a log-ratio between latter two distributions.
The resulting anomaly map is thresholded and fused with the discriminative
output into the final dense open-set recognition map.

q(x)
Soft
Max

Log
Sigm
g(t)

Log
Sum
Exp

Threshold
Fuse

P(d
out
|x)

P(y|x)

p(x)

RGB Input Closed-set segmentation

Open-set segmentation

Dense anomaly map

DenseHybrid

s(x) = -

f(t)
t s

Dense classifier

Fig. 3. The proposed dense open-set recognition approach. Our anomaly score is a
log-ratio of outputs derived from the hybrid model. We fuse the thresholded anomaly
score with the closed-set segmentation map to obtain the open-set segmentation map
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The developed hybrid model aims at achieving a synergy between generative
and discriminative modelling. However, the proposed hybrid interpretation re-
quires specific training objectives. Dense class posteriors require a discriminative
loss over the inlier data Din:

Lcls(θ) = Ex,y∈Din
[− lnP (y|x)] (7)

= −Ex,y∈Din [sy] + Ex,y∈Din [ln
∑
i

exp si]. (8)

The discriminative loss (7) corresponds to the standard training in the closed
world. We introduce the negative data Dout into the training procedure to ensure
the desired behaviour of P (din|x) and p(x) [25,3]. Both distributions should
yield low probability in negative pixels. We propose to train p(x) to maximize
the likelihood in inliers and to minimize the likelihood in outliers. We derive the
upper bound of the desired loss as follows:

Lx(θ) = Ex∈Din
[− ln p(x)]− Ex∈Dout

[− ln p(x)] (9)

= Ex∈Din
[− ln p̂(x)] +��lnZ − Ex∈Dout

[− ln p̂(x)]−��lnZ (10)

= −Ex∈Din

[
ln
∑
i

exp(si)

]
+ Ex∈Dout

[
ln

∑
i

exp(si)

]
(11)

≤ −Ex,y∈Din
[sy] + Ex∈Dout

[ln
∑
i

exp(si)]. (12)

Note that we eschew the backpropagation into the normalization constant Z,
and derive the upper bound according to the following inequality:

ln
∑
i

exp si ≥ max
i

si ≥ sy. (13)

Proof of inequality (13) can be easily derived by recalling that log-sum-exp is a
smooth upper bound of the max function. By comparing the standard classifica-
tion loss (7) and the upper bound (12) we realize that minimizing the standard
classification loss increases p(x) for inlier pixels. Indeed, minimizing the negative
logarithm of softmax output increases the value of logit for the correct class.

Alternatively, p(x) could be trained only on inliers [45,15,20]. This would
require sample hallucination via MCMC sampling and back-propagation into the
corresponding approximation of Z. Such procedure is infeasible for large images.
Consequently, we choose to deal with negative samples instead of hallucinated
ones and optimize the proposed loss Lx(θ).

We train the dataset posterior P (din|x) with the standard discriminative loss
[3]:

Ld(θ, γ) = Ex∈Din [− lnP (din|x)] + Ex∈Dout [− ln(P (dout|x))]. (14)

By joining losses Lcls, Lx and Ld we obtain the final loss:

L(θ, γ) = −Ex,y∈Din [lnP (y|x) + lnP (din|x)]
− β · Ex∈Dout [ln(P (dout|x))− ln p̂(x)]. (15)
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Hyperparameter β controls the impact of negative data to the primary classifi-
cation task. Note that the final loss (15) omits the first term from Lx (12) in
positive pixels. We choose to do so since p̂(x) is implicitly optimized through
Lcls.

Figure 4 illustrates the described training procedure of the proposed open-set
recognition model. We prepare the training images by pasting the negative in-
stances atop the standard training images. The resulting mixed-content image [3]
is fed to the hybrid model. We obtain the classification output P (y|x) with soft-
max. The unnormalized likelihood p̂(x) is obtained through sum-exp operator.
We recover p(din|x) by branching from pre-logit activations. The model outputs
are trained by applying the dicriminative loss Lcls (7), likelihood loss Lx (12)
and dataset posterior loss Ld (14). As proposed, these losses are conveniently
joined into a single loss L(θ, γ) (15).

q(x)

Soft
Max

Sigm
g(t)

Sum
Exp

Road image

L
cls

L
x

L
d

Negative object

Paste

Mixed content image Ground truth

L(Θ,Ɣ)

f(x)
t s

Fig. 4. The training procedure of the proposed open-set recognition model. Mixed-
content images are fed to the open-set model with three outputs. Each output is opti-
mized according to the compound loss (15)

4 Measuring Dense Open-set Performance

Test datasets for anomaly segmentation either exclusively measure the perfor-
mance of anomaly detectors [44,9] or simply report the classification performance
[5]. In the latter case, the reported drop in segmentation performance is usually
negligible and is explained away by allocation of model capacity for the anomaly
detection. We will show that the real impact of anomaly detector on the segmen-
tation performance can be clearly seen only in the open world. Also, the impact
is more severe than the small performance drop visible in the closed world.

To properly measure open-set recognition performance, we first select thresh-
old at which the anomaly detector achieves TPR of 95%. This ensures high safety
standards for the recognition model. Then, we override the classification in pixels
which raise concern according to the thresholded anomaly map. The resulting
recognition map has K + 1 labels. We compute the recognition performance in
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open-world using open intersection over union (open-IoU). For the k-th class we
can compute the proposed open-IoU as:

open-IoUk =
TPk

TPk + FPow
k + FNow

k

, FPow
k =

K+1∑
i̸=k

i=1

FPi
k, FN

ow
k =

K+1∑
i̸=k

i=1

FNi
k (16)

Different that the standard IoU formulation, open-IoU also takes into account
false positives and false negatives caused by imperfect anomaly detector. How-
ever, we still average open-IoU over K inlier classes. This means that a recog-
nition model which uses a perfect anomaly detector would match segmentation
performance in the closed world. This property would not be preserved if we
averaged IoU over K+1 classes.

Figure 5 (right) shows the open world confusion matrix. Imperfect anomaly
detection impacts recognition performance through increased false positives (des-
ignated in yellow) and false negatives (designated in red). Difference between
closed mIoU and averaged open-IoU over K inlier classes reveals the perfor-
mance hit due to inaccurate anomaly detection.
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Fig. 5. The proposed open intersection over union (open-IoU) takes into account miss-
classifications in anomalous pixels to accurately measure dense recognition performance
in open world

Measuring performance using the proposed open-IoU requires datasets with
K+1 labels. Creating such taxonomy requires substantial resources. Currently,
only StreetHazards [23] offers appropriate taxonomy for measuring open-IoU.

5 Experiments

We report dense anomaly detection and open-set recognition performance of the
proposed DenseHybrid approach, and compare them with the state of the art.
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We also explore influence of distance, show computational requirements of the
proposed module, and ablate the design choices.

5.1 Benchmarks and Datasets

We evaluate performance on standard benchmarks for dense anomaly detec-
tion. Fishyscapes [5] considers urban scenarios on a subset of LostAndFound
[44] and on Cityscapes validation images with pasted anomalies (FS Static).
SegmentMeIfYouCan (SMIYC) [9] moves away from anomaly injection. Instead,
appropriate images are collected from the real world and grouped based on the
anomaly size into AnomalyTrack (large) and ObstacleTrack (small). Addition-
ally, the benchmark encapsulates all LostAndFound images. Unfortunately, both
benchmarks only have binary labels which makes them insufficient for measur-
ing the recognition performance as proposed in Sec. 4. StreetHazards [23] is a
synthetic dataset created by CARLA virtual environment. The simulated envi-
ronment enables smooth anomaly injection and low-cost label extraction. Conse-
quently, the dataset contains K+1 labels which makes it suitable for measuring
both anomaly detection and dense recognition.

5.2 Dense Anomaly Detection

Table 1 shows performance of the proposed hybrid anomaly detector on the
SMIYC benchmark [9]. DenseHybrid outperforms contemporary approaches on
both AnomalyTrack and ObstacleTrack by a wide margin. Also, the proposed
anomaly detector achieves the best FPR on LostAndFound.

Table 1. Performance evaluation on the SMIYC benchmark [9]. DenseHybrid outper-
forms contemporary approaches on Anomaly and Obstacle track by a wide margin,
while also achieving the best FPR on LostAndFound

Method Aux Img
AnomalyTrack ObstacleTrack LAF-noKnown

data rsyn. AP FPR95 AP FPR95 AP FPR95

SynBoost [4] ✓ ✓ 56.4 61.9 71.3 3.2 81.7 4.6
Image Resyn. [36] ✗ ✓ 52.3 25.9 37.7 4.7 57.1 8.8
JSRNet [50] ✗ ✓ 33.6 43.9 28.1 28.9 74.2 6.6
Road Inpaint. [35] ✗ ✓ - - 54.1 47.1 82.9 35.8
Embed. Dens. [5] ✗ ✗ 37.5 70.8 0.8 46.4 61.7 10.4
ODIN [34] ✗ ✗ 33.1 71.7 22.1 15.3 52.9 30.0
MC Dropout [29] ✗ ✗ 28.9 69.5 4.9 50.3 36.8 35.6
Max softmax [24] ✗ ✗ 28.0 72.1 15.7 16.6 30.1 33.2
Mahalanobis [33] ✗ ✗ 20.0 87.0 20.9 13.1 55.0 12.9
Void Classifier [5] ✓ ✗ 36.6 63.5 10.4 41.5 4.8 47.0

DenseHybrid (ours) ✓ ✗ 78.0 9.8 87.1 0.2 78.7 2.1
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Table 2 shows performance of the proposed DenseHybrid on Fishyscapes [5].
Our anomaly detector achieves the best results on FS LostAndFound, and the
best FPR on FS Static. We achieve these results while having negligible impact
on classification task in closed-world. However, in the next section we show
that the impact of anomaly detection to recognition performance is much more
significant than in the closed world.

Table 2. Performance evaluation on the Fishyscapes benchmark [5]. DenseHybrid
achieves the best performance on FS LostAndFound and the best FPR on FS Static

Method Aux Img
LostAndFound Static Closed world

data rsyn. AP FPR95 AP FPR95 Cityscapes mIoU

SynBoost [4] ✓ ✓ 43.2 15.8 72.6 18.8 81.4
Image Resyn. [36] ✗ ✓ 5.7 48.1 29.6 27.1 81.4
Standardized ML [28] ✗ ✗ 31.1 21.5 53.1 19.6 80.3
Embed. Dens. [5] ✗ ✗ 4.7 24.4 62.1 17.4 80.3
Max softmax [24] ✗ ✗ 1.77 44.9 12.9 39.8 80.3
Dirichlet prior [39] ✓ ✗ 34.3 47.4 84.6 30.0 70.5
OOD Head [3] ✓ ✗ 30.9 22.2 84.0 10.3 77.3
Void Classifier [5] ✓ ✗ 10.3 22.1 45.0 19.4 70.4
Mutual information [40] ✓ ✗ 9.8 38.5 48.7 15.5 73.8

DenseHybrid (ours) ✓ ✗ 43.9 6.2 72.3 5.5 81.0

Table 3 explores sensitivity of anomaly detection with respect to distance
from the camera. We perform all these experiments on LostAndFound since it
includes disparity maps. Still, due to errors in available disparities, we limit
our analysis to the first 50 meters from the camera. The proposed DenseHybrid
approach achieves accurate results even at large distances from the vehicle.

Table 3. Anomaly detection performance at different distances from camera. Our
DenseHybrid based on DeeplabV3+ with WRN38 backbone [55] accurately detects
anomalies at different ranges

Method Metric
Range in meters

5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

Max-softmax [24]
AP 28.7 28.8 26.0 25.1 29.0 26.2 29.6 31.7 33.7

FPR95 16.4 29.7 28.8 44.2 41.3 47.8 44.7 43.2 45.3

Max-logit [23]
AP 76.1 73.9 78.2 69.6 72.6 70.2 71.0 74.0 73.9

FPR95 5.4 16.2 5.9 12.8 9.5 10.0 9.8 9.8 11.0

SynBoost [4]
AP 93.7 78.7 76.9 70.0 65.6 58.5 59.8 60.0 53.3

FPR95 0.2 17.7 25.0 23.3 18.8 27.4 25.4 25.8 29.9

DenseHybrid (ours)
AP 90.7 89.8 92.9 89.1 89.5 87.7 85.0 85.6 82.1

FPR95 0.3 1.1 0.6 1.4 1.4 2.5 3.7 4.7 6.3
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5.3 Dense Open-set Recognition

By fusing a properly thresholded anomaly detector with the dense classifier, we
obtain a dense open-set recognition model (Fig. 3). The resulting model detects
anomalous scene parts, while correctly classifying the rest of the scene.

To measure the dense recognition performance, we create two test folds based
on towns t5 and t6 from StreetHazards test. Then, we select anomaly threshold
on t6 and use it to measure the proposed open-mIoU on t5. We switch the folds
and repeat the procedure. We compute the weighted average based on image
count to obtain the final test set open-mIoU.

Table 4 shows performance of our dense recognition models on StreetHaz-
ards. The left part of the table considers anomaly detection where DenseHybrid
achieves the best performance. The right part of the table considers dense recog-
nition performance. Our model outperforms other contemporary approaches de-
spite lower classification performance in the closed world. Note that the per-
formance drop between the closed and the open set is significant. The models
achieve over 60% mIoU in closed world while the open world performance peeks
at 46%. Hence, we conclude that even the best anomaly detectors are still in-
sufficient for matching the closed world performance in open-world. Researchers
should strive to close this gap in order to improve the safety of recognition
systems in the real world.

Table 4. Performance evaluation on StreetHazards [23]. DenseHybrid achieves the best
anomaly detection performance. The corresponding open-set recognition model yields
the best performance measured by open-mIoU (Sec. 4)

Method
Aux. Anomaly detection Closed world Open world

data AP FPR95 AUC IoU o-IoU-t5 o-IoU-t6 o-IoU

SynthCP [51] ✗ 9.3 28.4 88.5 - - - -
Dropout [29][51] ✗ 7.5 79.4 69.9 - - - -
TRADI [19] ✗ 7.2 25.3 89.2 - - - -
OVNNI [18] ✗ 12.6 22.2 91.2 54.6 - - -
SO+H [21] ✗ 12.7 25.2 91.7 59.7 - - -
DML [8] ✗ 14.7 17.3 93.7 - - - -
MSP [24] ✗ 7.5 27.9 90.1 65.0 32.7 40.2 35.1
ML [23] ✗ 11.6 22.5 92.4 65.0 39.6 44.5 41.2
ODIN [34] ✗ 7.0 28.7 90.0 65.0 26.4 33.9 28.8
ReAct [49] ✗ 10.9 21.2 92.3 62.7 33.0 36.2 34.0
Energy [37] ✓ 12.9 18.2 93.0 63.3 41.7 44.9 42.7
Outlier Exposure [25] ✓ 14.6 17.7 94.0 61.7 43.7 44.1 43.8
OOD-Head [2] ✓ 19.7 56.2 88.8 66.6 33.7 34.3 33.9
OH*MSP [3] ✓ 18.8 30.9 89.7 66.6 43.3 44.2 43.6

DenseHybrid (ours) ✓ 30.2 13.0 95.6 63.0 46.1 45.3 45.8
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Figure 6 visualises dense anomaly and recognition maps on StreetHazards.
Our recognition model significantly outperforms the max-logit baseline [23].

RGB Input DenseHybrid-anomaly DenseHybrid-recognition Max logit Ground truth

Fig. 6. Visualisation of dense open-set recognition performance on StreetHazards.
DenseHybrid significantly outperforms the max-logit baseline [23]

5.4 Inference speed

Table 5 shows computational overhead of the proposed DenseHybrid anomaly
detector over the baseline segmentation model on two megapixels images. Dense-
Hybrid has negligible computational overhead of 0.1 GFLOPs and 2.8ms. Our
results are averaged over 200 runs on NVIDIA RTX3090. These experiments also
suggest that image resynthesis is not applicable for real-time inference.

Table 5. Computational overhead of the proposed DenseHybrid anomaly detector
when inferring with RTX3090 on two megapixel images

Method Resynth. Infer. time (ms) Frames per sec. GFLOPs

SynBoost [4] ✓ 1055.5 <1 -
SynthCP [51] ✓ 146.9 <1 4551.1
LDN-121 [30] ✗ 60.9 16.4 202.3
LDN-121 + SML [28] ✗ 75.4 13.3 202.6
LDN-121 + DenseHybrid (ours) ✗ 63.7 15.7 202.4

5.5 Impact of anomaly detector design

Table 6 compares the proposed DenseHybrid approach with its generative and
discriminative components – p̂(x) and P (din|x). The hybrid anomaly score based
on the ratio of these two distributions outperforms each of the two components.
The results are averaged over the last three epochs.
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Table 6. Validation of DenseHybrid components on Fishyscapes validation set

Anomaly detector
FS LostAndFound FS Static
AP FPR95 AP FPR95

Discriminative (1− P (din|x)) 42.9 ± 4.2 42.1 ± 7.0 47.8 ± 5.0 41.6 ± 8.3
Generative p̂(x) 60.5 ± 2.6 7.4 ± 0.8 54.2 ± 2.1 6.2 ± 0.7
Hybrid (1− P (din|x))/p̂(x) 63.8 ± 2.9 6.1 ± 0.7 60.0 ± 2.0 4.9 ± 0.6

5.6 Implementation details

We adapt the standard segmentation networks [30,55] to enable co-operation
with our hybrid anomaly detector. We append an additional branch gγ which
is in our case BN-ReLU-Conv1x1. The additional branch computes the discrim-
inative anomaly output. We obtain generative anomaly output by computing
sum of exponentiated logits. We build our recognition models based on dense
classifiers. We fine-tune all our models on mixed content images with pasted neg-
ative instances from ADE20k. In the case of SMIYC we fine-tune LDN-121 [30]
for 10 epochs on images from Cityscapes [12], Vistas [42] and Wilddash2 [52].
In the case of Fishyscapes we use DeepLabV3+ with WideResNet38 [55]. We
fine-tune the model for 10 epochs on Cityscapes. We train LDN-121 on Street-
Hazards for 120 epochs in closed world and then fine-tune the recognition model
on mixed-content images. Other details are available in the supplement.

6 Conclusion

Discriminative and generative approaches to dense anomaly detection assume
different failure modes. We propose to achieve a synergy of these two approaches
by fusing the data posterior and the data likelihood derived from the stan-
dard discriminative model. The proposed hybrid setup relies on unnormalized
distributions. Hence, we try to eschew evaluation of the intractable normaliza-
tion constant both during training and inference. The proposed DenseHybrid
architecture yields state-of-the-art performance on the standard anomaly seg-
mentation benchmarks as well as competitive dense recognition performance in
the open world. The latter is measured with the novel open-mIoU score which
takes into account classification in both inliers and anomalous pixels. Future
work should focus on reducing the revealed performance gap between closed-
world and open-world recognition in order to improve the progress toward safe
autonomous driving systems.
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