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Appendix: Uncertainty-guided Source-free Domain Adap-
tation

This appendix is organised as follows: Sec. A lists the notation used through-
out the main text. Sec. B provides further details about Laplace approximations
for approximate posterior inference in Bayesian neural networks. Sec. C provides
the algorithm of U-SFAN. Sec. D includes additional summary statistics on the
data sets used for the empirical evaluation and lists additional results on the
Office31 and visda-c data set for the closed-set DA task.

A Notation

The following notation is used throughout the paper:

Notation Description

D[S] = {(x[S]
i ,y[S]

i )}n
[S]

i=1 Source data set

D[T] = {x[T]
i }n

[T]

i=1 Target data set
x[S] 2 X [S] Source inputs
y[S] 2 Y [S] Source class labels
x[T] 2 X [T] Target inputs
L[S]

,L[T] Label sets
f, f

0 Model functions (source and target)
g Feature extractor
h Hypothesis function
�, ✓ Parameterization of f and g

z = g(x) Latent feature of observation x
K Number of classes
�k(·) Softmax function
H Hessian matrix

B Laplace Approximation

In Bayesian neural networks, we aim to incorporate uncertainty about the model
and the model predictions. The standard approach places prior distributions
(p(✓)) onto the network parameters, which induces a probability distribution
over the model predictions. By conditioning the prior (in the weight-space) onto
observed source data (D[S]), we obtain the posterior distribution over the net-
work parameters p(✓ | D[S]), allowing us to perform predictions by computing the
posterior predictive distribution (see Eq. (4) in the main).

Let  (✓) denote the unnormalised posterior distribution, i.e.,

 (✓) = p(✓) p(D[S] | ✓) , (A1)
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then the posterior distribution may be written as

p(✓ | D[S]) =
1

Z 
 (✓) , (A2)

where Z denotes the normalisation constant. However, computing the posterior
distribution and, subsequently, the posterior predictive distribution is intractable
in general. We will, therefore, resort to a Laplace approximation to the posterior
distribution.

Let ✓MAP denote the maximum or a mode of the posterior distribution in
Eq. (A2). Then the second-order Taylor expansion of log (✓) around ✓MAP is
given as:

log (✓) ⇡ log (✓MAP)�
1

2
(✓ � ✓MAP)

>
H (✓ � ✓MAP) , (A3)

where H = �r2
✓ log (✓) | ✓=✓MAP is the negative Hessian of the log joint

(log (✓)) evaluated at ✓MAP. Substituting the value of log (✓) in Eq. (A2)
gives us:

p(✓ | D) =
 (✓)R
 (✓) d✓

⇡
 (✓MAP) exp

�
� 1

2 (✓ � ✓MAP)> H (✓ � ✓MAP)
�

 (✓MAP)
R
exp

�
� 1

2 (✓ � ✓MAP)> H (✓ � ✓MAP)
�
d✓

=
exp

�
� 1

2 (✓ � ✓MAP)> H (✓ � ✓MAP)
�

R
exp

�
� 1

2 (✓ � ✓MAP)> H (✓ � ✓MAP)
�
d✓

. (A4)

The posterior can now be calculated in closed-form, and is given by:

p(✓ | D) ⇡
r

detH

2⇡
exp

✓
�1

2
(✓ � ✓MAP)

>
H (✓ � ✓MAP)

◆

= N(✓ |µMAP,⌃MAP), (A5)

where µMAP = ✓MAP and ⌃MAP = H
�1.

The posterior predictive distribution of an unseen datum x
[T] can now be

approximated through Monte Carlo integration, i.e.,

p(x[T] | D[S]) ⇡ 1

M

MX

j=1

p(x[T] | ✓j) , (A6)

where ✓j ⇠ N(✓ |µMAP,⌃MAP).

C Algorithm

We report the pseudo-code for our U-SFAN in Algo. 1.
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Algorithm 1: Uncertainty-guided Source-free DA
Input : A probabilistic source model f = h � g with parameters

{�[S]
MAP, ✓

[S]
MAP,H

�1}, target data set D[T] containing n
[T] samples,

mini-batch size b, temperature ⌧ , and M MC steps.
Output: Target-specific feature extractor parameters �[T].

1 repeat
2 X sampleMiniBatch(D[T], b)
3 Z g�[T](X)

4 Ŷ  b⇥K matrix of zeros
. Estimate predictive mean

5 for j = 1, . . . ,M do

6 ✓j ⇠ N(✓j | ✓[S]MAP,H
�1)

7 Ŷ  Ŷ + softmax(h✓i
(Z)/⌧)

8 end

9 Ŷ  Ŷ/M

. Compute model uncertainties
10 for i = 1, . . . , b do
11 wi  exp(�H(ŷi))
12 end
13 Compute uncertainty-guided entropy . Eq. (7)
14 Compute divergence term . Eq. (3)
15 Compute U-SFAN loss

16 Update parameters �[T]

17 until converged

D Data Set Details and Experiments

We have summarized the statistics of the SFDA benchmark data sets used for
the comparison against the state-of-the-art in Table A1. To demonstrate the
challenging aspect of having a strong domain-shift between the source and the
target, we used the data set domain-net. Moreover, the high number of semantic
categories (345 classes) in domain-net poses a challenge for the existing IM-
based SFDA methods because of the lack of representative samples from every
class in a given mini-batch.

Hyperparameter Selection. We re-use the hyperparameters from the base-
line of [6], e.g., the standard optimization technique for training such as SGD
with an initial learning rate of 10�2 and 10�3 for ResNet-50 and ResNet-101,
respectively. The learning rate is decayed by power decay [2]. We used the a
batch size of 64 and we set ↵ = 0.1 and � = 0.5. Exclusive to our method, we
set the prior precision in LA equal to the weight decay, i.e. 5 · 10�4, and set the
temperature ⌧ = 0.4 for all our experiments.

Additionally, we have reported the results of the experiments on office31
in Table A2. Similar to the results obtained on the other data sets reported
in the main paper, U-SFAN outperforms SHOT-IM on office31. It must be
noted that for data sets like office31, the performance is already saturated,
and the performance improvements of U-SFAN over SHOT-IM are minor. More-
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Table A1. Data set summary for source-free domain adaptation

Data set #domains #classes #images

Office31 3 31 4,652
Office-Home 4 65 15,500
Visda-C 2 12 ⇠ 200K
Domain-Net 6 345 ⇠ 0.6M

over, the data set shift is mild in most adaptation directions, evident from the
saturated numbers. Thus, as discussed in the main paper, U-SFAN does not yield
remarkable improvement when the domain-shift is milder, and is most e↵ective
when much of the target data resides outside the source manifold. Nevertheless,
when our method is combined with nearest centroid pseudo-labelling (like in
SHOT), U-SFAN+ further improve the performance. Through these extensive
experiments on several SFDA benchmarks, we presented the advantages of our
proposed method for the task of SFDA.

Table A2. Comparison of the classification accuracy on theOffice31 for the closed-set
SFDA using ResNet-50. Results on the small-scale office31 are known to be saturated.
The visual appearance between the domains do not vary much, thus making the domain
shift milder. The improvement of U-SFAN upon SHOT is moderate, but competitive
w.r.t. A2Net[11], which requires complex training objectives

Method A!D A!W D!A D!W W!A W!D Avg.

ResNet-50 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN [3] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
DAN [7] 78.6 80.5 63.6 97.1 62.8 99.6 80.4
SAFN [12] 90.7 90.1 73.0 98.6 70.2 99.8 87.1
CDAN [8] 92.9 94.1 71.0 98.6 69.3 100. 87.7
SHOT-IM [6] 90.6 91.2 72.5 98.3 71.4 99.9 87.3
U-SFAN (Ours) 91.8 92.3 75.8 97.7 74.4 99.8 88.6
A2Net[11] 94.5 94.0 76.7 99.2 76.1 100.0 90.1
SHOT [6] 94.0 90.1 74.7 98.4 74.3 99.9 88.6
U-SFAN+ (Ours) 94.2 92.8 74.6 98.0 74.4 99.0 88.8

Due to lack of space in the main paper, in Table A3 we report the class-wise
accuracy on the visda-c data set, whose average accuracy has been reported
in the Table 4 (a) of the main paper. While our U-SFAN is competitive with
SHOT-IM and SHOT, it underperforms with respect to A2Net[11]. Nevertheless,
U-SFAN does not optimize a multitude of loss functions, making it more intuitive
than the A2Net.
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Table A3. Comparison of the classification accuracy on the Visda-C for the closed-
set DA, pertaining to the Synthetic ! Real direction, using ResNet-101. † indicates
the numbers of [6] that are obtained using the o�cial code from the authors. Note
that several SFDA methods perform equally well for visda-c, hinting at saturating
performance
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ResNet-101 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [3] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
ADR [10] 94.2 48.5 84.0 72.9 90.1 74.2 92.6 72.5 80.8 61.8 82.2 28.8 73.5
CDAN [8] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
CDAN+BSP [1] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SAFN [12] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD [4] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
DANCE [9] - - - - - - - - - - - - 70.2
SHOT-IM† [6] 94.2 87.6 78.6 48.6 92.1 92.9 76.4 76.2 89.4 86.6 88.8 52.7 80.3
U-SFAN (Ours) 95.1 87.0 76.8 50.1 92.9 94.3 79.0 78.0 88.4 87.5 87.7 57.3 81.2
3C-GAN [5] 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
A2Net[11] 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
SHOT† [6] 94.9 87.1 76.9 55.0 94.2 95.4 80.8 80.0 89.5 88.7 85.6 60.5 82.4
U-SFAN + (Ours) 94.9 87.4 78.0 56.4 93.8 95.1 80.5 79.9 90.1 90.1 85.3 60.4 82.7
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