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Abstract. Patch attack, which introduces a perceptible but localized
change to the input image, has gained significant momentum in recent
years. In this paper, we present a unified framework to analyze certified
patch defense tasks, including both certified detection and certified re-
covery, leveraging the recently emerged Vision Transformers (ViTs). In
addition to the existing patch defense setting where only one patch is
considered, we provide the very first study on developing certified de-
tection against the dual patch attack, in which the attacker is allowed to
adversarially manipulate pixels in two different regions.
By building upon the latest progress in self-supervised ViTs with masked
image modeling (i.e., masked autoencoder (MAE)), our method achieves
state-of-the-art performance in both certified detection and certified re-
covery of adversarial patches. Regarding certified detection, we improve
the performance by up to ∼16% on ImageNet without training on a single
adversarial patch, and for the first time, can also tackle the more chal-
lenging dual patch setting. Our method largely closes the gap between
detection-based certified robustness and clean image accuracy. Regard-
ing certified recovery, our approach improves certified accuracy by ∼2%
on ImageNet across all attack sizes, attaining the new state-of-the-art
performance.
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1 Introduction

Deep neural networks (DNNs) are vulnerable to adversarial attacks [9, 22]. Re-
searchers have come up with various attacks to craft visually imperceptible ad-
versarial examples that can lead to a model failing in a set of image recog-
nition tasks, including classification [22], object detection [29], semantic seg-
mentation [4,29], etc. Among these attack methods, patch attack [2,8,13,25,30]
considers arbitrarily modifying a small and continuous region in an image, which
utilizes characteristics of physical objects. Due to arbitrary location and small
size of the patch attack, it is more challenging to defend against such an attack.
Existing empirical methods designed for defending against patch attacks [11,20]
reported ∼70% robust accuracy on ImageNet [6]. However, if we consider a
stronger attacker who is aware of the pre-processing step, the robustness of
these defenses will severely drop to ∼50% [3].
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To fix such issues, another series of works focus on designing provable mech-
anisms, which aim to provide a provable defense against adversarial attacks.
Specifically, on account of different levels of provable defense, there are usu-
ally two kinds of tasks: certified detection [10, 14, 17, 28] and certified recov-
ery [15, 18, 21, 26] for adversarial patches. The former task is to detect whether
an image was successfully attacked or not, while the latter one aims to classify
an image correctly under any patch attacks smaller than a particular size. In
general, certified recovery is considered as a much more challenging task than
certified detection in the real-world scenario.

In certified detection, a small mask is applied on a clean image and slides
from upper left to lower right (i.e., acting like a convolution kernel). We have
a partially occluded image for a patch mask applied on each position. All these
different images are sent to a DNN. Finally, the original image can be certifiably
detected for any patch attacks if all the output prediction results are strictly
consistent. Related works include Minority Reports Defense [17], PatchGuard++
[28], and ScaleCert [10]. However, these methods are either computationally
intractable for large-scale data or rely on CNNs with a small reception field to
extract features, restricting their further applications. Recently, Huang et al. [14]
introduces ViTs for certified detection and substantially improves performance,
even for defending against larger patch attacks.

We find that methods for certified recovery based on randomized smoothing
[5, 16] are similar to certified detection. In this setting, we first forward a small
subset of an image each time and then make a majority voting for the outputs
of all these small subsets. Appropriate geometry structures provide that a patch
can only intersect with restricted small subsets. Therefore if the gap between
the majority prediction and the sub-majority prediction is large enough, we can
guarantee that the voting result will not change regardless of where the attacker
put the patch attack.

The current state-of-the-art methods for these two tasks are both achieved
with vision transformers [14, 21]. Interestingly, we find that these two tasks can
actually be solved in a unified framework with vision transformer structures and
a strategy of dropping patches. A patch attack can be certifiably detected if
we drop a few patches each time and all the predictions are strictly consistent.
In comparison, an image can be certifiably recovered if we drop many patches
each time, and the gap between the majority voting predictions and the sub-
majority voting predictions is big enough. Due to the similarity of the two tasks,
we can use the same framework and network structure to solve these problems.
Moreover, in real-world attack settings, we cannot restrict how many patches an
attacker can use, so it is necessary to design general defense algorithms beyond
single-patch attack.

In this work, we present ViP, a unified analysis framework for certified ro-
bustness including both certified detection certified recovery. Benefited by the
recent progress in self-supervised vision transformers, especially the powerful
masked autoencoder (MAE) [12], we achieve the state-of-the-art performance
on all related tasks. By evaluating certified detection in a zero-shot manner, our
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method improves the certified detection rate by up to ∼16% on ImageNet over
the prior art [14]. Moreover, we develop the first theoretical guarantee for dual-
patch attack detection. As a byproduct of improvement on single-patch attack,
we successfully generalize the dual-patch detection to the large-scale dataset like
ImageNet. In addition, our methods improves the certified accuracy by ∼2% on
all tasks in certified recovery compared to the state-of-the-art [21].

2 Related Works

2.1 Certified Detection

McCoyd et al. [17] is the first work on certified detection for adversarial patches.
Their certification is achieved by generating a prediction grid. However, this
method is computationally infeasible on large-scale dataset like ImageNet. To
reduce computational complexity, Xiang et al . [28] uses CNNs with small recep-
tion field and conducts masking on feature level. However, they still cannot get
a good performance on ImageNet. The performance is restricted due to locality
information. Moreover, Han et al . [10] proposes to only forward the top k of
SIN, Superficial Important Neurons. Recently, Huang et al . [14] proposes to use
vision transformer structures to do certified detection, which improves a lot on
both performance and speed.

2.2 Certified Recovery

Earlier works on certified recovery include [3, 19], which rely on the bound of
activation value. However they are infeasible to extend to large-scale datasets.
Based on traditional randomized smoothing method [5, 16], Levine et al . [15]
first proposes the (de)randomized smoothing method designed for patch attack,
and scales to ImageNet. The follow-up work [21] changes to use vision transform-
ers, but it remains unclear why vision transformers work better than CNNs. If
assuming information of patch size is known, PatchCleanser in [27] designs a
two-stage certification process that enjoys a much better recovery rate.

2.3 Vision Transformers

Application of self-attention blocks in vision transformers has achieved a huge
success these years [7,23]. Due to patchfying an image to be a token sequence, a
vision transformer can accept almost arbitrary subparts of an image as the in-
put. This greatly helps self-supervision, especially using masked-image-modeling
strategy [1, 12, 24, 31]. These works demonstrate the great potential of vision
transformers. Especially for the task of certified detection or recovery of adver-
sarial patches, vision transformers are a better choice compared to traditional
CNNs, because vision transformers intrinsically use patches as their inputs.
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3 Certified Patch Defense

3.1 Problem Setup

We consider the L0 patch attack in this work, which shares the same setting as
many previous works. Specifically, for a classifier F : RC×H×W → {1, · · · , N}
and an image x ∈ RC×H×W with channel C, heightH and widthW , the attacker
can adversarially choose (a, b) as the upper left position, and arbitrarily change
pixels within the corresponding square patch of size p. For an attack set A and
A ∈ A, denote K(A) to be the set of pixels that are changeable by A. Denote Ap

to be the set of attacks that can arbitrarily change pixels inside a p× p square.
So for any A ∈ Ap, K(A) is a p × p square. Since an arbitrary rectangular can
be covered by a larger square, here we only consider a square patch attack.

In our defense framework, the classifier F is based on base classifiers, and
we denote these base classifiers as f1, · · · , fn. Moreover, since the certification
framework relies on mask strategy, here we make some additional notations.
Suppose M is a 0− 1 mask matrix that shares the same height and width with
image x, where masked pixels are 0 and others are 1. Denote O(M) to be the
positions of pixels that are masked. For a classifier f , define fM (x) = f(M

⊙
x).

3.2 Certified Detection for Patch Defense

In this task, our goal is to decide whether an image is successfully attacked or
not. This can be achieved by choosing base classifiers f1, · · · , fn and F properly.
Our algorithms are based on the following theorem.

Definition 1. For an attack set A, the base classifiers f1, · · · , fn are called
compatible to A, if they satisfy that for any image x ∈ RC×H×W and any
attack A ∈ A, there exists 1 ≤ i ≤ n such that fi(x) = fi(A(x)).

Theorem 1. For an attack set A, suppose the base classifiers f1, · · · , fn are
compatible to A. For an image x ∈ RC×H×W , an attack from A can be either
certified detected or regarded as “harmless” if no warning is raised under the
following definition of F :

F (x) :=

{
a, if f1(x) = · · · fn(x) = a

warning, else

Proof. Suppose x is an image that satisfies

f1(x) = · · · = fn(x) = a.

For any attack A ∈ A, denote U = unique(f1(A(x)), · · · , fn(A(x))) to be the
deduplication of the set {f1(A(x)), · · · , fn(A(x))}, and #U to be the number of
elements of U . If #U ≥ 2, then obviously x is attacked. If #U = 1, suppose we
have f1(A(x)) = · · · = fn(A(x)) = b. However, there exist 1 ≤ i ≤ n such that
fi(x) = fi(A(x)) because f1, · · · , fn are compatible to A. Since fi(x) = a and
fi(A(x)) = b, we have a = b. So this attack fails to make any changes to the
prediction result.
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(a) (b) (c) (d)

Fig. 1. (a)-(d) is certified detection process. (a) is the original image. We slide a square
mask from upper left to lower right. (b), (c) and (d) are three different positions. The
black patch “A” is an adversarial attack. One of such gray square masks can fully cover
the adversarial patch.

Our theorem is a more general version of previous certification [14, 17]. We
have no restrictions of base classifiers constructions, and can be adapted to any
attack set out of single-patch attack. For example, we can also solve dual-patch
attack or more generally, sparse adversarial attack proposed in [16].

Base Classifiers Design Denote Ap to be the set of square patch attacks with
size smaller than p. When attacks are restricted to Ap, it is not hard to design

the base classifiers. Fixed a known classifier f , we consider classifiers f̃ ∈ F =
{fM ,M : 0-1mask}. So we only need to choose n masked areas M1, · · · ,Mn such
that for any A ∈ Ap, there exists 1 ≤ i ≤ n such that Mi

⊙
x = Mi

⊙
A(x),

which means K(A) ⊂ O(Mi).
Therefore, it is sufficient to assign a Mi for every possible position of p × p

area. Moreover, since we need fM1
(x) = · · · = fMn

(x), we should make O(Mi) as
small as possible, so that the unmasked area is big enough to achieve consistency
for all these classifiers. Based on these analysis and the principles of simplicity,
we first set a proper size m ≥ p and a proper stride s. We can have two straight
solutions. Firstly, we can slide the m×m square area with stride s from upper
left to lower right. Each m×m area acts as O(Mi) for some Mi. Recent works
based on CNNs have similar ideas [10,17,28]. However, the complexity increases
quadratically as image size increases. So it is impractical to make a certification
for high resolution like 224. Second, we can slide a band of width m with stride
s from left to right. Each band acts as O(Mi) for some Mi. This is a linear-
complexity algorithm that hasn’t been explored before for certified detection.

Although the above ideas are restricted to use due to the high complexity,
we find that vision transformers can perfectly solve this problem. Figure 1 and
2 (a)(b) show how we can take advantage of vision transformers for quadratic
and linear complexity respectively. First, the natural square patch structure
can act as the role of a sliding window with a big size and stride. For any
A ∈ Ap, it will only intersect with restricted patches. For example, if we use
regular vision transformers with patch size 16, the attack A only influences r2p
patches, where rp = ⌈(p− 1)/16⌉ + 1. Second, after patchifying the image to
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A A

(a) (b) (c) (d)

Fig. 2. (a) and (b) are the illustration of linear-complexity certification. We slide a
band mask from left to right. At least one gray mask will fully cover the adversarial
patch (Figure (b)). In (c) and (d), we can see that when two adversarial patches are
close enough, we can certainly cover them with a reasonable bigger area. However, they
can distribute arbitrarily far from each other in the image. Our generalized window
solve this problem as shown in (d). Here we mark the start position of a generalized
window with a smiley face.

be a sequence of patches, we can take the tokens that are not influenced by A,
and drop others. This can additionally reduce complexity. Finally, with a large
kernel size and stride, the certification process can be two-magnitude faster than
previous methods. So we can certify ImageNet data with a high speed. This
method using vision transformers with quadratic complexity is also illustrated
in [14].

Certified Detection for Dual-Patch Attack Dual-patch attack is considered
to be challenging for certified defense. In this setting, the attacker is allowed to
attack two arbitrary patches. Naturally, we hope to use what we do in the defense
of a single-patch attack: finding some i such that K(A) ⊂ O(Mi). It is natural
when two adversarial patches are close to each other enough. However, what
if they are far from each other since we allow the attacker to choose patches
arbitrarily? What kind of masks should we choose to make the base classifiers
compatible to the attack set?

Does our theoretical guarantee fail completely? The answer is no. Actually,
we can still certify dual-patch attack cases with slight modification. The first
key is to modify the topological structure of an image. For image size H ×W ,
we define the generalized window as follows:

Definition 2 (Generalized Window). For any 1 ≤ a ≤ H, 1 ≤ b ≤ W , a
generalized window M of size (m1,m2) starting from position (a, b) is defined to
be M = {((a+ i)%H, (b+ j)%W )}m1

i=1
m2
j=1. Here % means taking the remainder.

Obviously, when a, b are small, generalized windows are just the same as
the regular square windows. With generalized windows, we can say the left and
right sides of an image are connected, and the upper and lower sides are also
connected. Our certification is based on generalized windows.
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Theorem 2. For an even number q and a square grid of size q × q, any two
sub-areas of size pn × pn can be covered by a generalized window of size (pn +
q/2, pn + q/2).

Actually the geometric understanding is quite straightforward. Please refer
to Figure 2. We leave the formal proof of Theorem 2 to appendix. Now we
can do certification for dual-patch cases totally same as single-patch case. Here
q is the patch number typically set to be 224/16 = 14, also denote ps is the
patch size. Denote Ap × Ap to be the set of dual-patch attacks of size p. By
Theorem 2, for any A ∈ Ap × Ap, there exists a generalized window M of size
((pn+q/2)ps, (pn+q/2)ps), where pn = ⌈(p− 1)/ps⌉+ 1, that fully covers areas

influenced by A. So let {Mi}q
2

i=1 satisfy that {O(Mi)}q
2

i=1 are all the generalized
windows of size ((pn + q/2)ps, (pn + q/2)ps), which are exact combinations of
some patches. Then define fi = fMi

for 1 ≤ i ≤ n and a known classifier f .
Theorem 1 provides that we can certified detect every successful attack from
Ap ×Ap if the predictions of fi are consistent.

3.3 Certified Recovery for Patch Defense

This task is more challenging because we aim to directly make a correct predic-
tion no matter an adversarial attack is successful or not. This task also highly
relies on the choices of f1, · · · , fn and F .

Definition 3. For an attack set A, the base classifiers f1, · · · , fn are called m-
compatible to A, if

sup
x∈RC×H×W

n∑
i=1

I {fi(x) ̸= fi(A(x))} = m.

Theorem 3. For an attack set A, suppose the base classifiers f1, · · · , fn are m-
compatible to A. For an image x, and all labels Y = {1, · · · , N}, denote nj(x) to
be the number of base classifiers that return label j ∈ Y. Also, denote {nij (x)}Nj=1

to be the descending sort of {nj(x)}Nj=1. Define

F (x) = argmax
1≤j≤N

nj(x).

If ni1(x) > ni2(x) + 2m, then F (x) = F (A(x)) for any A ∈ A
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Proof. Our goal is to prove that if ni1(x) > ni2(x) + 2m, then for any A ∈ A,
ni1(A(x)) = max1≤j≤n nj(A(x)). By definition, we have

ni1(A(x)) =

n∑
i=1

I{fi(A(x)) = i1}

=

n∑
i=1

I{fi(x) = i1}+
n∑

i=1

(I{fi(A(x)) = i1} − I{fi(x) = i1})

= ni1(x)+
n∑

i=1

(I{fi(A(x)) = i1, fi(x) ̸= i1} − I{fi(A(x) ̸= i1, fi(x) = i1)})

≥ ni1(x)−
n∑

i=1

I{fi(A(x)) ̸= i1, fi(x) = i1}

≥ ni1(x)−
n∑

i=1

I{fi(A(x)) ̸= fi(x)}

≥ ni1(x)− sup
x∈RC×H×W

n∑
i=1

I{fi(A(x)) ̸= fi(x)} = ni1(x)−m.

Due to ni1(x) > ni2(x) + 2m, this gives for any j ̸= i1,

ni1(A(x)) ≥ ni1(x)−m > ni2(x) +m ≥ nj(x) +m.

Moreover,

ni1(A(x)) > nj(x) +m =

n∑
i=1

I{fi(x) = j}+m

=

n∑
i=1

I{fi(A(x)) = j}+
n∑

i=1

(I{fi(x) = j} − I{fi(A(x)) = j}) +m

= nj(A(x))+
n∑

i=1

I{fi(x) = j, fi(A(x)) ̸= j} −
n∑

i=1

I{fi(x) ̸= j, fi(A(x)) = j}+m

≥ nj(A(x))−
n∑

i=1

I{fi(x) ̸= j, fi(A(x)) = j}+m

≥ nj(A(x))− sup
x∈RC×H×W

n∑
i=1

I{fi(x) ̸= j, fi(A(x)) = j}+m = nj(A(x)).

Hence, for any j ̸= i1, we have

ni1(A(x)) > nj(A(x)).

Therefore, for any A ∈ A, we have ni1(A(x)) = max1≤j≤n nj(A(x)) and f(x) =
f(A(x)).
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(a) (b) (c) (d)

AA A

Fig. 3. Certification process using derandomized smoothing. (a) is the original full
image. We slide the band of size (224, w) from left to right with stride s. (b), (c), (d)
are three positions. The black patch “A” is an adversarial patch with size p. The band
in (c) intersect with the adversarial patch, and the adversarial patch only intersects
bands close to (c).

Similar to Theorem 1, Theorem 3 is also very flexible. Actually for any base
classifiers, at least we have f1, · · · , fn is m−compatible for m = n. So all we
need to do is to make m small enough.

Base Classifiers Design When it comes to square patch attack set Ap, we
also choose base classifiers based on the mask strategy. The goal is different from
the first task. Previously, we want a consistency so we keep as many as possible
unmasked area. Now we need the gap between ni1 and ni2 is bigger than the
‘inconsistency’ of predictions between clean image and attacked image, which
means we need to minimize the influence of any attack A ∈ Ap. Therefore, we
need to mask as large as possible areas. Notice that there exists a trade-off since
masking more area will reduce m in Theorem 3, but decrease the accuracy of a
single classifier.

Because the mask is big here, we also need to use generalized windows oth-
erwise there will be only limited areas to choose. However, square masks do not
work in recovery, we show this through an example. Considering patch attack
that can change about 32× 32 pixels of a 224× 224 image (approximately 2%).
For m ≥ 32, there are [(m − 32 + 1)/s]2 masks that can fully cover a 32 × 32
attack. This means for stride s, about(

224

s

)2

−
(
m− 31

s

)2

base classifiers could be influenced by 32 × 32 attack. Suppose m is approxi-
mately 200, then the above term is approximately 20000/s2. But the number
of total base classifiers is only 2242/s2 ≈ 50000/s2. So it is hard to make the
gap larger than 40000/s2. Therefore, if we use mask-based classifiers, we should
consider choices out of squares. Actually rectangular mask whose either height
or width equals to the original image works. That’s what recent works focusing
on (de)randomized smoothing did. Figure 3 shows this process. Let M1, · · · ,Mn

be generalized windows of size (H,m) (or similarly, (m,W )) and stride s. In
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this case, the masked area only slides along one dimension instead of two. Each
p× p square is fully covered by [(m− p+1)/s] of them. Finally, we let fi = fMi

for 1 ≤ i ≤ n. When it comes to vision transformer backbones, we only take
patches that are not fully covered, which bring less complexity with reduced
input tokens.

3.4 Similarities of Certified Detection and Certified Recovery

Recently, both tasks achieve the state-of-the-art result using vision transformer
structures, but it remains unclear why vision transformers work well. From the
above analysis, we can find that there does exist many similarities in these two
tasks. In both, we find a masked area and slide them around the image. After
obtaining predictions using masked part, we either analyze consistency or vote.
Since our model either does zero-shot certification or slightly finetunes with
target size of unmasked area, the training recipe acts an important role. The
recent progress of self-supervised vision transformers inspires us to choose vision
transformers pretrained with the mask-image-modeling (MIM) method as our
backbone, to additionally generate base classifiers in both tasks.

4 Results

In this section, we compare ViP and previous methods for various certified
robustness tasks on ImageNet, which is challenging for most of the previous
certification methods. Our methods with masked autoencoder (MAE) achieves
state-of-the-art performance on all related tasks.

4.1 Certified Detection

Single-Patch Detection We first evaluate our certified detection methods on
single-patch detection in a zero-shot manner.Results are shown in Table 1. We
range the possible influenced patch number from 2 × 2 to 8 × 8 following [14].
We also compare with methods based on CNNs [10, 28] on pixel level. Results
are shown in Table 2.

Both DeiT and MAE surpass results in [14] a lot. Although DeiT and the
original ViT model in [14] shares similar accuracy on clean images, we find that
DeiT has a very big improvement about 3 ∼ 11% over the original ViT model.
This illustrates that data augmentation in training helps a lot. Additionally,
MAE makes further improvement, about 6 ∼ 16% compared to [14]. At the first
time, detection-based certified robustness is approaching the clean accuracy, even
with a zero-shot manner.

We also show the results of linear-complexity certified detection in the last
line of Table 1. This new linear time detection algorithm produces slightly worst
results compared to our original quadratic time algorithm, yet being much faster.
Furthermore, our linear time algorithm outperforms the quadratic algorithm in
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Table 1. Results of single-patch certified detection on ImageNet. Here 2 × 2 means
that an adversarial patch attack can at most influence 2 × 2 square patches of size
16× 16. So 2× 2 actually corresponds to patch attack of size not larger than 17× 17
in the original 224× 224 image. The same is true for 3× 3 to 8× 8. For example, 3× 3
corresponds to patch attack of size 18× 18 ∼ 33× 33, and so on.

methods complexity speed
clean certified robustness
acc. 2×2 3×3 4×4 5×5 6×6 7×7 8×8

PatchVeto [14] quadratic 0.92s 81.8 72.0 67.2 61.9 56.4 50.5 44.1 37.1
ViP DeiT base quadratic 0.92s 81.9 75.0 71.4 67.4 63.2 58.6 53.8 48.4
ViP MAE base quadratic 0.92s 83.7 77.7 74.6 70.9 67.2 62.9 58.4 53.4
ViP MAE base linear 0.11s 83.7 74.5 70.6 66.2 61.6 56.8 52.1 46.7

[9] with an improvement about 3 ∼ 9%. Our certification time for one image
against 2× 2 attack is reduced from 0.92 seconds to 0.11 seconds.

We then compare on pixel level. Here we choose patch size from {24, 32, 40},
which corresponds to 1 ∼ 3% pixels respectively.

Table 2. Results of single-patch certified detection compared to previous CNN-based
methods on ImageNet. MRD [17] cannot scale to ImageNet.

methods
1% pixels 2% pixels 3% pixels
acc rob acc rob acc rob

MRD [17] - - - - - -
PatchGuard++ [28] 61.8 36.3 61.6 33.9 61.5 31.1

ScaleCert [10] 62.8 60.4 58.5 55.4 56.4 52.8
ViP MAE base 83.66 74.56 83.66 74.56 83.66 70.9

Dual-Patch Detection This task of detecting attacks with two patches is much
more challenging and was never demonstrated in prior works. We are the first
to make this practical on large-scale dataset like ImageNet as far as we know.
Table 3 compares different training recipe with certification in our framework.
Conclusions are similar as the single-patch case. MAE-based model improves
about 20% under two 2×2 adversarial patches. This also illustrates the effect of
MIM-based pretraining methods; when the adversarial patch sizes are bigger, the
detection rate is lower however the MAE-based model is consistently better. The
low detection rate is reasonable since two big patches like 6×6 can actually cover
most of the key information of an image. Note that these results are also obtained
without additional training and we can potentially further improve performance
by finetuning on target image size.
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Table 3. Results of dual-patch certified detection on ImageNet. This setting is much
more challenging and is not handled by existing works. Here 2× 2 means each of these
two patches can at most influence 2× 2 square patches of size 16× 16. So are 3× 3 to
6× 6.

model
clean robustness
acc. 2×2 3×3 4×4 5×5 6×6

ViP ViT base 81.8 22.2 12.5 4.3 0.6 0.03
ViP DeiT base 81.9 35.5 26.4 16.6 6.3 0.4
ViP MAE base 83.66 42.0 33.3 23.9 14.1 4.8

4.2 Certified Recovery

Finally, we evaluate different certified recovery methods compared with previ-
ous CNN-based methods (Figure 2) and current state-of-the-art method [21]
when adversarial patch size is unknown. Following the same setting in [21], we
choose same training parameters and test with same width of unmasked area.
In detail, for width w ∈ {19, 25, 37}, we randomly choose an unmasked area of
size (224, w). After patch embedding, we drop tokens that are fully masked. We
train for 30 epochs, using SGD optimizer with momentum 0.9, fixed learning
rate 1e-3 for batch size 256, with a weight decay 1e-4. We only use random re-
sized crop, horizontal flip and color jitter for data augmentation. Our method
using MAE base all achieve a better performance with about 2% improvement
over all different width and stride.

Moreover, we test the influence of fintuning epoch and model size for width
19. If we train for longer epochs like 60, the recovery rate can additionally gain
for about 1%. So we have not achieved the limit. Also, we test MAE large with
30-epoch finetuning. This can further give about 5% improvement compared with
MAE base, and nearly 10% improvement compared with DeiT base. Compared
with about 2% improvement over MAE base and 5% improvement over DeiT
on clean accuracy, we find that certified robustness benefits more from larger
model.

Table 4. Results of certified recovery compared to previous CNN-based methods on
ImageNet. Here we use ViP MAE base with width 19 and stride 1.

methods
1% pixels 2% pixels 3% pixels
acc rob acc rob acc rob

DS [15] 44.4 17.7 44.4 14.0 44.4 11.2
PatchGuard [26] 55.1 32.3 54.6 26.0 54.1 19.7
ViP MAE base 70.4 45.0 70.4 40.3 70.4 35.6
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Table 5. Results of certified recovery.

method epoch width stride
clean adversarial robustness
acc. 24× 24 32× 32 40× 40

ViP DeiT base [21] 30

19
10 68.3 36.9 36.9 31.4
5 69.0 40.6 37.7 32.0
1 69.3 43.8 38.3 34.3

25
10 70.3 40.9 35.2 29.8
5 70.8 41.6 36.0 33.0
1 72.1 44.0 38.8 34.8

37
10 72.6 41.3 36.1 30.8
5 73.1 41.9 36.4 33.5
1 73.2 43.0 38.2 34.1

ViP MAE base 30

19
10 69.5 38.8 38.8 33.1
5 70.1 42.5 39.6 33.7
1 70.4 45.0 40.3 35.6

25
10 71.1 42.8 37.3 31.6
5 72.3 43.7 37.8 34.9
1 72.5 45.6 40.9 36.2

37
10 75.3 43.9 38.3 32.8
5 75.7 44.5 38.7 32.9
1 75.8 45.1 40.4 35.7

ViP MAE base 60 19
10 69.9 39.8 39.8 34.2
5 70.4 43.5 40.6 34.8
1 70.8 46.0 41.4 36.7

ViP MAE large 30 19
10 73.6 44.6 44.6 38.6
5 74.1 48.3 45.4 39.3

5 Conclusion

In this work, we propose a unified analysis framework for certified robustness
tasks including both certified detection and certified recovery. For L0 patch at-
tack, these two tasks both rely on the choices of the masks. Our work illustrate
the great potential of using recent progress on vision transformers, especially
cutting-edge self-supervised masked-image-modeling methods, to promote patch
defense. With our defense framework, certified robustness for both tasks are
approaching the clean accuracy. Compared with earlier works which only have
about 20 ∼ 30% certified robustness, we make a progress on making certification
practical in real world.
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