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1 Continual Novelty Detection Additional Results

1.1 Intra-dataset Novelty Detection Results
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Fig. 1: Intra-dataset Novelty Detection - AUROC scores per task using test set. The
test set is equivalent, in proportions (ratio old:new), to unlabeled train data used to
fit to detected old samples. Also, in the case of incDFM, this is evaluated after all
iterations are performed on the unlabeled train data.

We compute AUROC or AUPR scores using the test sets for each subset of
the data corresponding to ID and OOD samples, only for sake of evaluation,
Dtest

t = OODtest
t ∪ IDtest

t . These are the most unbiased scores since the OOD
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detector will not have been exposed to these samples ever before in previous
tasks as holdout ID data (IDt). Also, for fairness, in the case of incDFM we
compute the test set AUROC and AUPR scores after completing all iterations
for novelty estimation with the train set. That is, we use the test set only for
testing after incDFM has completed all of its training and do not use it to
compute incDFM intermediate parameters Tnew

i . We reported the average over
all tasks for the AUROC and AUPR test scores in the main paper Fig 4b table.
All other experiments in the main paper report results using the test sets. Here,
in Figure 1, we show the full per task result curves using test evaluation data
and can observe that incDFM over-performs baselines through all tasks. The
trend observed using test sets and train sets is similar.

1.2 Inter-dataset Novelty Detection Results

8 dataset sequence
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Fig. 2: Inter-dataset Novelty Detection (8 dataset sequence) - AUROC scores per task
using test set equivalent, in proportions (ratio old:new), to unlabeled train data. In the
case of incDFM, this is evaluated after all iterations are performed on the unlabeled
train data.

In figure 2 we show AUROC scores per task for the 8 dataset sequence using
test evaluation data. For Odin and Softmax baselines, we report results for the
task-independent implementation (see section 4.1 of our main paper).

2 Estimating the stopping point for incremental novelty
recruitment in incDFM

To estimate a stopping point to incremental recruitment, we use a validation
set that contains only in-distribution (ID/old) samples and is updated by the
algorithm at every task t, uval

t = F({Vval
k }, k < t) where F is the feature

extractor. In practice, at each task we reserve a small percentage of detected
novel samples for validation and do not use them for fitting any parameters.
The validation set is used to estimate, at each iteration, the total number of
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Pval 95 85 75

cifar10 94.6 94.0 93.4
cifar100 87.4 91.2 90.0
emnist 95.6 95.2 94.3
iNaturalist 89.4 89.7 88.8

Table 1: incDFM F1 Scores - averaged across all tasks in intra-dataset class incre-
mental experiments - when varying Pval

OOD samples left in the unlabeled pool, Nnew
i,left by a principle of exclusion, i.e,

we set high validation threshold Pval on the high percentile range and estimate:

Nnew
i,left = Count(Si > Percentile(Sval

i , P val)) (1)

indicesnewi = argsorti(Si)[: R] if Nnew
i,left > 0 (2)

Incremental recruitment cannot exceed Nnew
i at each iteration. R is the recruit-

ment percent per iteration. Si are the composite scores for the unlabeled train
data and Sval

i are the composite scores for validation data. Note that both Si and
Sval
i are computed equivalently using consolidated {Tk, k < 1} and incDFM’s

previous iterations new task parameters Tt,i−1. For Sval
i this means:

Sval
i,old = min

k
FRE(uval

t , Tk), k < t (3)

Sval
i,new = FRE(uval

t , Tt,i−1) (4)

Sval
i =

Sval
i,old

λSval
i,new

(5)

(6)

Thus, validation scores also are affected by incremental estimation of ÔODt

since its samples, which are all ID, will tend to have increasingly higher Snew,val
i−1

values as the estimation of ÔODt improves.
We show a hyperparameter sweep over a few percentile values from the vali-

dation set in Table 1. Overall, setting a high percentile value (ex: 95th or 85th
percentile) tended to yield best results across datasets even though the difference
between F1 scores in the 95-75 percentile range was subtle. Good results with
high percentile values aligns with the assumption that OOD and ID data tend to
separate over the course of iterations: at high val-ID thresholds, you still obtain
a high precision and recall value for novel (OOD) data.

3 Thresholding in Baselines - Hyperparameter Sweep

For all four baselines, we select ÔODt for task t by applying a single threshold on
the corresponding generated uncertainty scores (scoresi), as originally intended
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Pval 95 75 55 35

DFM 40.5 71.0 84.5 79.6
Mahal 42.8 67.7 74.8 73.8

Softmax 23.1 56.1 70.1 68.1
Odin 27.7 59.4 66.4 62.0

(a)

Pval 95 75 55 35

DFM 13.6 54.2 72.8 81.7
Mahal 24.7 49.3 60.4 65.9

Softmax 11.6 43.5 64.4 54.7
Odin 11.4 31.7 56.7 50.6

(b)

Pval 95 75 55 35

DFM 16.9 70.8 84.8 88.4
Mahal 27.0 57.8 66.8 70.0

Softmax 14.3 49.3 57.8 61.9
Odin 18.8 48.1 64.7 66.2

(c)
Pval 95 75 55 35

DFM 22.0 57.6 73.71 70.0
Mahal 20.4 47.8 66.3 59.4

Softmax 36.3 68.2 66.3 65.0
Odin 28.7 68.4 71.77 67.7

(d)

Fig. 3: Average F1 scores for baselines across tasks, when varying the validation thresh-
old used during ÔODt estimate - (a) Cifar10, (b) Cifar100, (c) emnist, (d)
iNaturalist - The threshold is set as a percentile Pval of the validation set, the latter
containing only ID data.

in the original implementation of these baselines. In our case, the threshold
is chosen based on a validation set containing only in-distribution samples. The
threshold is chosen to be equivalent to a certain percentile value of the validation
set, Pval. As such, ÔODt is estimated by:

Scoresi, Scores
val
i = OODMethod(ut,u

val
t ) (7)

ÔODt = indicesnew = {i|Scoresi > Percentile(Scoresvali , P val)} (8)

For fairness, we employ the same validation set uval
t = F({Vval

k }, k < t) used
by incDFM (Main paper section 3.1.3, Supplementary section 2), where F is
the feature extractor. For all baselines we perform a hyperparameter sweep over
thresholds, results are shown in Figure 3. In the main paper we report best results
for each baseline. We show that the single-threshold baseline novelty detectors,
in general, tend to perform better with a low threshold. This is likely because
IDt and OODt scores are very enmeshed and a high threshold will result in very
low recall value, insufficient for novelty characterization going forward.

4 Feature Extraction Network

We experimented with different feature extraction networks. Overall, incDFM
and baselines on average performed best with a frozen Resnet50 backbone pre-
trained using contrastive learning [SWAV - [2]] in comparison to fine-tuning, for
both continual and offline experiments. Table 2 compares amongst feature ex-
traction approaches (plastic/finetune vs frozen) for offline OOD detection (see
main paper section 5.1).

The results on Table 2 are aligned with recent advances in the transfer/adaptive
learning literature suggesting that most features needed for natural-image datasets
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Cifar10 → SVHN incDFM Mahal Softmax

Frozen-Resnet-50-SWAV 99.9 93.1 88.2
Finetune-Resnet-50-SWAV 99.3 95.03 71.4
Frozen-Resnet-50 99.8 60.0 87.3
Finetune-Resnet-50 99.9 87.7 76.0

Table 2: AUROC scores for offline OOD estimation

can be found in rich pre-trained-on-imagenet backbones [4]. Moreover, in a task-
independent CL setting, using a coreset to estimate past data can lead to overfit-
ting. Thus, freezing the backbone has become a common practice in the CL liter-
ature [12, 14]. For OOD methods relying on classification (Odin, Softmax), we use
a plastic/trainable 1-hidden-layer MLP (hidden dimension of 4096 units) to learn
the class mapping. Similarly for the end-to-end unsupervised class-incremental
classification pipeline.

5 End-to-end Unsupervised class-incremental
classification Pipeline

5.1 Memory Coreset

We employ a similar memory coreset building scheme as in [11]. We keep a
small memory coreset with embeddings and pseudolabels C + 1 corresponding
to past tasks’ ÔODk, k < t (novelty detections - see main paper section 3.2). At
each task, a selection method is employed to choose which samples detected as
novel will go into the coreset, with the aim to maximize sample heterogeneity
since the coreset has a fixed size. We use K-means clustering per pseudolabel
to select samples for storage and for removal. At each task, when ÔODt is
detected, we run k-means clustering, super-labeling the embeddings of ÔODt as
one of K clusters. At the time of insertion into the memory coreset, we select
equal numbers of samples from each cluster. Additionally, if the coreset is full
we compute the space needed for new samples and remove an equivalent number
of old embeddings. We do this by assessing their stored super-cluster labels and
removing equal amounts of samples per novelty pseudolabel and per cluster,
thereby preserving heterogeneity. By storing the per-novelty, cluster assignment
superlabels we also avoid repeating the clustering operation.

5.2 Experience replay

At each task, our model is trained using the current tasks’s predicted ÔODt and
select memory embeddings of past tasks’ ÔODk, k < t present in the memory
coreset. This forms an extended training set St that is used to minimize the
cross-entropy loss for classification (equations 9,10). Note that we use the novelty
pseudolabels as targets for the classifier.
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St = OODt ∪ λmemOODmemory
t−1 (9)

θ∗t = min
θt

L(θ, St) (10)

The memory component can be given a weighted importance, λmem. We
typically set λmem to reflect the proportion of classes present in the coreset.

Observation - OOD baselines that rely on classification: We employ
the same procedure described in 5.1. and 5.2. to train Odin and Softmax novelty
detectors in intra-dataset class incremental experiments.

6 Inter-Dataset novelty detection using the 8 datasets -
Experimental Clarification

In this experiment, we wanted to analyze the ability of incDFM and baselines
to detect novelty continually in the setting where each novelty is an entire new
dataset. This proposed CL scenario is closer to the traditional offline OOD/ID
detection, which typically also consider an entire novel dataset as OOD data. In
the main paper we compare this inter-dataset experiment with our intra-dataset
continual learning. For the inter-dataset experiment we consider a sequence of
eight tasks each being one of 8 object recognition datasets as in [1]. Each of the
8 datasets in the order presented: 1. Oxford Flowers [9] for fine-grained flower
classification with 102 classes; 2. MIT Scenes [10] for indoor scene classification
with 67 classes; 3. Caltech-UCSD Birds [13] for fine-grained bird classification
with 200 classes; 4. Stanford Cars [6] for fine-grained car classification with
196 classes; 5. FGVC-Aircraft [7] for fined-grained aircraft classification with 70
classes; 6. VOC actions [5], the human action classification subset of the VOC
challenge 2012 with 10 classes; 7. Letters, the Chars74K datasets [3] for character
recognition in natural images with 62 classes; and 8. the Google Street View
House Number SVHN dataset [8] with 10 classes. The total 8 dataset sequence
contains a total of 227,597 pictures in 717 classes.

References

1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory
aware synapses: Learning what (not) to forget. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 139–154 (2018)

2. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems 33, 9912–9924 (2020)

3. De Campos, T.E., Babu, B.R., Varma, M., et al.: Character recognition in natural
images. VISAPP (2) 7 (2009)

4. Evci, U., Dumoulin, V., Larochelle, H., Mozer, M.C.: Head2toe: Utilizing interme-
diate representations for better transfer learning. arXiv preprint arXiv:2201.03529
(2022)



incDFM - Incremental Continual Novelty Detection 7

5. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman,
A.: The pascal visual object classes challenge: A retrospective. International journal
of computer vision 111(1), 98–136 (2015)

6. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-
grained categorization. In: Proceedings of the IEEE International Conference on
Computer Vision Workshops. pp. 554–561 (2013)

7. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

8. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011)

9. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image
Processing. pp. 722–729. IEEE (2008)

10. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition. pp. 413–420. IEEE (2009)

11. Rios, A., Itti, L.: Closed-loop memory gan for continual learning. arXiv preprint
arXiv:1811.01146 (2018)

12. Rios, A., Itti, L.: Lifelong learning without a task oracle. In: 2020 IEEE 32nd
International Conference on Tools with Artificial Intelligence (ICTAI). pp. 255–
263. IEEE (2020)

13. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset (2011)

14. Wen, S., Rios, A., Ge, Y., Itti, L.: Beneficial perturbation network for designing
general adaptive artificial intelligence systems. IEEE Transactions on Neural Net-
works and Learning Systems (2021)


