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Abstract. Novelty detection is a key capability for practical machine
learning in the real world, where models operate in non-stationary condi-
tions and are repeatedly exposed to new, unseen data. Yet, most current
novelty detection approaches have been developed exclusively for static,
offline use. They scale poorly under more realistic, continual learning
regimes in which data distribution shifts occur. To address this critical
gap, this paper proposes incDFM (incremental Deep Feature Modeling),
a self-supervised continual novelty detector. The method builds a statis-
tical model over the space of intermediate features produced by a deep
network, and utilizes feature reconstruction errors as uncertainty scores
to guide the detection of novel samples. Most importantly, incDFM esti-
mates the statistical model incrementally (via several iterations within a
task), instead of a single-shot. Each time it selects only the most confi-
dent novel samples which will then guide subsequent recruitment incre-
mentally. For a certain task where the ML model encounters a mixture
of old and novel data, the detector flags novel samples to incorporate
them to old knowledge. Then the detector is updated with the flagged
novel samples, in preparation for a next task. To quantify and bench-
mark performance, we adapted multiple datasets for continual learning:
CIFAR-10, CIFAR-100, SVHN, iNaturalist, and the 8-dataset. Our ex-
periments show that incDFM achieves state of the art continual novelty
detection performance. Furthermore, when examined in the greater con-
text of continual learning for classification, our method is successful in
minimizing catastrophic forgetting and error propagation.
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1 Introduction

Deep Neural network models excel at learning complex mappings between in-
puts and outputs, so long as the data is drawn from a stationary distribution.
Yet, when these models are deployed in the real-world, they may encounter
out-of-distribution (OOD, "novel") inputs, i.e. input data that does not resem-
ble the training data (in-distribution, "ID"), prompting misleading predictions.
This is a strong limitation because many real world applications require han-
dling non-stationary data. Models deployed in self-driving cars, for instance,
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will inevitably encounter novel out-of-distribution data (e.g. new terrains, ob-
jects, weather) that they have to adapt to. Hence, continual novelty detection
is critical for operating in real-world, non-stationary conditions. However, most
novelty detection methods were developed for and evaluated against a single
fixed split of ID/OOD data. They do not integrate the detected OOD data into
the learnt knowledge and perform poorly in dynamic, non-stationary conditions.
On the other hand, most approaches in continual learning (CL) focus on miti-
gating catastrophic forgetting, a phenomenon in which training a neural network
on a new task with novel data typically destroys the fixed mapping learned from
the previous tasks. Most importantly, they use an oracle to identify novel data,
leaving the question of continual novelty detection largely unaddressed.

We seek to bridge the divide between the continual learning and novelty
detection fields by addressing novelty detection in continual learning, a much
more challenging evaluation and deployment paradigm. Specifically, we focus on
the task-incremental continual learning setting, where the model increasingly
encounters new, additional classes of data without significant distribution shift
for the already-seen classes of previous tasks. In this setting, a novelty detector
is presented with several OOD/ID separation tasks through time. This can bring
about several challenges: (1) Novelty consolidation: integrating detected novel
samples to knowledge (to avoid treating them as novel in subsequent tasks) (2)
Catastrophic forgetting : remembering this cumulative knowledge through tasks,
and (3) Error propagation: minimizing the number of samples falsely flagged as
novel to avoid impairing knowledge consolidation.

Contribution: We propose a novelty detection algorithm, “incremental Deep
Feature Modeling” (incDFM) that addresses these three challenges. It is trained
using only ID data and designed to operate under the continual learning set-
ting. incDFM builds a per-class or per-task statistical model over the space of
intermediate features produced by the deep network and computes a feature re-
construction score to flag the OOD samples. Most importantly, with the goal of
minimizing continual error propagation, incDFM estimates this statistical model
incrementally (via several iterations within a task) for each novel task. At each
iteration within a novel task, it recruits the top most "certain" novel samples
that will then improve subsequent recruitments incrementally. incDFM can be
used to substitute the novelty oracle used in traditional supervised CL. Finally,
we show that incDFM achieves state of the art novelty detection performance
when evaluated on multiple datasets adapted for task-based continual learning,
such as CIFAR-10, CIFAR-100, SVHN, iNaturalist and the 8-dataset.

2 Background and Motivation

Novelty Detection: Also known as outlier or out-of-distribution (OOD) detec-
tion, novelty detection is a very active research area. It is typically performed by
making the network provide an uncertainty score (along with the output) for each
input. Common methods include the Softmax score [15] and its temperature-
scaled variants such as ODIN [24]. Bayesian neural networks [12] and ensembles
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of discriminative classifiers [22] can generate high quality uncertainty, but at
the cost of complex model representations, and substantial compute and mem-
ory. Deep generative models learn distributions over the input data, and then
evaluate the likelihood of new inputs with respect to the learnt distributions
[16], [32], [37]. Gradient-based characterization of abnormality in autoencoders
is highlighted in [21]. Finally, there are methods [1], [23] that learn parametric
class-conditional probability distributions over the features and use the likeli-
hoods (w.r.t the learnt distributions) as uncertainty scores.

Continual Learning: This paper focuses on task incremental learning, a paradigm
where a model continually learns from a sequence of tasks that each introduce
novel data but with no or limited access to past, labeled data. The majority
of the CL literature has focused on catastrophic forgetting [11, 33] while mostly
offloading the task transition detection duty to a so-called novelty oracle. Over-
all, [39] proposes that current continual learning algorithms can be grouped
into task-dependent and task-independent models by their reliance on task la-
bels at test time. Task-independent algorithms do not require task labels and
typically employ a single shared classification layer which has as many output
nodes as the number of learned classes over all tasks. One subclass consists of
regularization-based approaches which aim to mitigate forgetting by constrain-
ing the change of learnable parameters. Alternatively, replay-based algorithms
approximate the CL problem to a multi-task setting by either storing [25, 36]
or learning to generate [41, 46, 38] past data. Broadly, task-independent models
solve a more challenging CL formulation since task-specific parameters are not
exploited for test time performance. Task-dependent methods, on the other hand,
require the availability of task labels which are usually provided by a task oracle
and utilize this information by employing task-specific classification heads and
other task-dependent parameters to share the rest of the network for different
tasks, e.g. partitioning with context [48, 47, 5] or mask matrices [27, 9]. Depen-
dence on an oracle limits their applicability as determining tasks and detecting
task transitions are challenging and also prone to forgetting [39].

Continual Novelty Detection: The problem of novelty detection in the con-
tinual learning setting has not been extensively studied or discussed in the lit-
erature. Most CL literature has assumed the use of a novelty oracle to indicate
fully-labeled task transitions. Incipient proposals and discussions for novelty de-
tection have occurred in [42, 3, 28]. Yet, most of these works do not propose novel
OOD algorithms, rather, they adapt existing OOD approaches and to a limited
success. For instance, the closest work, by [3], compares among several existing
OOD detectors. However, their best results occur under a task-oracle-dependent
continual learning setting and using task-dependent CL algorithms to mitigate
novelty detection forgetting. We argue that this limits real-world applicability
since it is not realistic to assume that at deployment, unlabeled test samples will
be accompanied by their respective task IDs, which would obviate the need for
OOD detection in the first place. To our knowledge, no work has yet proposed
a reliable OOD detection solution for oracle-less continual learning over several
tasks, a more realistic but also more challenging setting.
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3 Methodology for Continual Novelty Detection

To bridge the gap between the CL and OOD fields, we first establish a novelty
detection methodology suited to continual learning. In our framework, each in-
coming task t is an unsupervised mixture of unseen IDt samples ("old" classes)
and OODt samples ("new" unseen classes):

IDt = {uold,unseen|uold,unseen ∼ Dk}, k = 1, ..., t− 1

OODt = {unew,unseen|unew,unseen ∼ Dt}

IDt comprises unseen samples that were never used in training, but come from
the same source distributions Dk, k = 1, . . . , t − 1 that were used to train past
tasks, while OODt consists of samples from an entirely new distribution Dt. In
our experiments, we simulate this by using 80% of original training samples as
novel data at each task and leaving the remainder for introduction at later tasks
(at which point they will be old ID data). The goal for the novelty detector is to
accurately differentiate between IDt and OODt to produce an estimate of the
novel samples which we denote as ÔODt. This then becomes the training data
to consolidate knowledge of novel samples.

This methodology leads to the additional challenges of catastrophic forgetting
and error propagation (alluded to in Section 1) that aren’t present in conven-
tional offline OOD detection. First, as more and more classes/tasks are encoun-
tered, incDFM has to increasingly add to its stored representation of what is
ID and remember the cumulative {Dk}, k ≤ t going forward. If past Dk’s are
not properly remembered and represented in knowledge, this can result in catas-
trophic forgetting and failure to identify incoming old samples as ID. incDFM
addresses this by building a per-class or per-task statistical model to detect novel
samples at each task. The per-task parameters once stored are not interfered
with in future tasks, minimizing forgetting (refer to section 3.1.2). Second, as
already mentioned, whenever the novelty detector finalizes its selection of novel
samples ÔODt, these are then used as training data to consolidate knowledge
and expand what is considered as IDt+1 for the following task. However, since
ÔODt can contain misclassified samples, this could result in an inaccurate rep-
resentation of Dt during consolidation, which will lead to error propagation that
grows progressively worse. Cumulatively, these two aspects can lead to severe
performance degradation. We show incDFM’s incremental recruitment strategy
(section 3.1.2) minimizes error propagation.

Lastly, we also evaluate continual OOD detection in an inherently more dif-
ficult experimental paradigm where ID and OOD sets are drawn from different
splits of the same dataset (intra-dataset). In particular, we propose experiments
of intra-dataset class-incremental learning where, at each task, only one novel
class is introduced, up until all classes of a dataset are covered. ID and OOD
splits sampled from the same dataset tend to be close and harder to disentangle
[39]. In contrast, most offline OOD detection literature has focused on OOD/ID
splits between different datasets (inter-dataset, e.g., CIFAR-10 as ID vs. SVHN
as OOD) - these are typically comprised of highly divergent data distributions,
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Fig. 1: incDFM estimates novelty incrementally per task. A tasks’s unlabeled data
mixture is shown here with ID/old samples in blue and OOD/novel samples in orange.
At each iteration within one novel task, incDFM recruits the top most “certain” novel
samples (in red) according to the evaluation function Si. It then removes them from
the unlabeled pool. At iteration 1 we can see new and old distributions are entangled
but tend to separate in later tasks, as incDFM improves its estimate of novelty.

causing the model to first explore accidental low-level statistical differences in-
stead of more meaningful semantic variances. Overall, combining a naturally
harder ID/OOD setting per task with having to remember what is ID through
time makes most conventional OOD detectors underperfom. In incDFM, iter-
ative estimation and recruitment algorithm is better suited to continual and
challenging ID/OOD splits.

3.1 incDFM Model

3.1.1. Deep feature Modeling incDFM is built upon the OOD detection
technique proposed in [1] based on probabilistic modeling of deep features. Con-
sider a deep neural network (DNN) trained on an N -class classification prob-
lem. For an input x, let u ≜ Fl(x) denote the output at an intermediate layer
l of the network. In [1], class-conditional probability densities are learnt on
this set of intermediate deep-features and the likelihood scores from these are
used to discriminate between ID and OOD samples. A principal component
analysis (PCA) transformation, T : H → L, is simultaneously learnt to map
the high-dimensional features onto an appropriate lower-dimensional subspace,
dim(L) ≪ dim(H),prior to density estimation. The PCA transformations are
also learnt on a per-class basis. For incDFM, this implies that a separate PCA
transformation,Tt, is learnt for each task t. In [29], it was shown that the feature
reconstruction error (FRE) score, defined as

FRE(u, T ) = ∥u− (T † ◦ T )u∥2 (1)

is highly effective at discriminating between ID and OOD samples, where T †

is the inverse PCA transformation (computed as the Moore-Penrose pseudo-
inverse of T ) . The intuition behind FRE is that OOD samples will lie outside
the subspace of ID samples and will hence result in higher FRE scores.
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3.1.2. Knowledge consolidation and storage: To obtain deep features,
incDFM employs a frozen feature extractor pre-trained via unsupervised con-
trastive learning on an independent large dataset - e.g., imagenet. Using a frozen
pre-trained deep feature extractor showed superior performance to fine-tuning,
which is in line with recent findings in the adaptive learning field [34, 8]. At each
task t, we process all unlabeled samples, xt = OODt ∪ IDt through the feature
extractor and collect deep features ut = Fl(xt) which are used as input to the
main incDFM algorithm. Further, as mentioned earlier, we learn and store the
parameters for Tt for each task separately (Procedure Consolidate in Algorithm
1 Fig 2). This consolidation approach has two advantages for continual learning.
First, by modeling OODt via isolated per-task (per-class) parameters, we min-
imize catastrophic interference when new classes are introduced later on. The
consolidated per-class parameters are never altered so cannot actually be "for-
gotten", assuming no distribution shift for old tasks. In deep neural networks
(DNNs), by contrast, the majority, if not all, of parameters are shared between
the classes and per-class importance of each weight is not as easily assessed. As
such, when new classes are introduced, it is naturally much more difficult to iso-
late inter-class interference in DNN weight space. This is one of the reasons most
CL approaches tackling single-headed classification require a replay strategy to
not "forget", which can quickly escalate in memory usage. This brings us to the
second advantage: our consolidation approach is both fast and memory-efficient.
More specifically, it is fast because it requires a single PCA fitting operation per
task. Additionally, it entails a low memory usage since it only retains the PCA
transformation Tt per task, which is almost always less memory expensive than
storing raw image samples for replay typical in task-independent CL approaches.

3.1.3. Novelty Detection and Selection: Incremental recruitment
When a new task arrives, the stored consolidation parameters ({Tk} for k =

1 : t− 1) are used to initialize an incremental recruitment of novel samples. We
express the unlabeled deep features from incoming task t as ut = Fl(xt),xt =
IDt ∪OODt. For all unlabeled samples ut, we first compute the FRE scores for
all k = t− 1 stored sets of transforms and then take the minimum FRE:

Sold(ut) = min
k

(FRE(ut, Tk)), k = 1, ..., t− 1 (2)

Intuitively, this indicates which of the older classes/tasks each sample is closest
to. We sort the set of unlabeled samples by their FRE scores with the intu-
ition that IDt samples will tend to yield lower values of FRE than OODt. We
could presumably set a threshold and select samples whose scores exceed that
to constitute ÔODt and then estimate Tt from those. A relaxed threshold could
result in ÔODt containing a large number of ID samples misclassified as novel,
whereas a high threshold might result in very few novel samples being available
for computation of Tt. Either way, this could lead to poor estimates of Tt and the
error from this would propagate and progressively worsen for subsequent tasks.

Hence, we propose an iterative method to estimate the novel samples in an
incremental fashion as outlined in Fig 2. In the first iteration, i = 0, we compute
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Algorithm 1: incDFM - Incremental Novelty Recruitment per Task
Input : ut - Deep Features of current Task
Require : I - Maximum Number of iterations; R - Recruitment per

iteration;
Initialize : Sold ← KnowledgeScores(Xt, {Tk}for k < t);

i← 1; Nnew
1,left ← length(Xt); S1 ← Sold;

Indicest = [1, ..., length(Xt)]; Indicesnew
1 = [];

// Select most certain novel samples per iteration until stopping criterion
1 while (i < I) and (Nnew

i,left > 0) do
// Concatenate newly selected indices to previously selected

2 Indicesnew
i , Nnew

i,left ← SelectTop(Si, R)
// Remove selected indices from unlabeled pool

3 Indicesnew ← [Indicesnew
i , Indicesnew]

4 Indicest ← Indicest − Indicesnew
i

5 Ti ← Consolidate(Indicesnew, Xt)
6 Snew

i ← FRE(ut, Ti)
7 Si ← Sold

λSnew
i

8 i← i+ 1

9 {Tk}, k = 1, .., t← Store(Tt,I)

Fig. 2: Procedures KnowledgeScores and SelectTop are described in section 3.1.3;
Consolidate in 3.1.2

Sold(ut) as previously described in equation 2 (Procedure KnowledgeScores) and
select only the highest R percent of the Sold scores, corresponding to the most
confident "novel" samples until now (farthest from old). These samples constitute
a first estimate, ÔODt,0, of what is OOD. They are used to consolidate knowl-
edge by computing Tt,0 and using the latter to obtain Snew

0 ≜ FRE(ut, Tt,0).
For all subsequent iterations i ≥ 1, we compute a composite evaluation score
function Si which combines Sold and the previous iteration’s Snew

i−1

Si =
Sold

λSnew
i−1

, Snew
i−1 ≜ FRE(ut, Ti−1) (3)

and use this composite score to select the next R top percent, indicesnewi (Pro-
cedure SelectTop in Algorithm 1), which are then concatenated to all previous
iteration’s indices, indicesnew, and used to compute the next estimate of Tt,i.
The idea behind this algorithm is to increasingly separate hard ID/OOD splits
(Fig 1). At each iteration, OOD (novel) samples will tend to have low scores Snew

i−1

and high Sold, resulting in the highest composite Si values. To minimize errors,
we set R conservatively to recruit only the most confident OOD detections. Mo-
roever, as more and more confident OOD estimated samples are recruited, i.e.
Indicesnew grows in size, the better will be the subsequent estimate of PCA
parameters Ti. This in turn will yield progressively more reliable Snew

i scores.
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Fig. 3: Full Pipeline - unsupervised class incremental learning with incDFM

To estimate a stopping point to incremental recruitment, we set a total
maximum number of iterations and employ a small validation set with only
in-distribution (old) samples, ({Vk}, k < t), to estimate if there is still a prob-
ability of having non-recruited novel samples left (suppl.). In practice, at each
task we reserve a small percentage of detected novel samples for validation and
do not use them for fitting any parameters. For fairness, the same validation set
is used across all baselines that we compare with.

3.2 Full Pipeline: unsupervised class-incremental learning using
incDFM for continual novelty detection

We show that incDFM can be coupled onto an unsupervised class incremental
classification pipeline, Figure 3. We take the same experimental setting previ-
ously described, where at each task we have a mixture of holdout samples of old
classes and one new class at a time, all unlabeled. Over tasks, we keep a counter
of how many novelties have been introduced so far, Ct (equivalent to number of
classes in this case). At each task, after incDFM has selected a final estimate
of novel samples ÔODt, these are pseudolabeled as Ct−1 + 1 and the counter
is also incremented. As the classifier we use a perceptron on top of the frozen
feature extractor that is also shared with incDFM, similarly to [39, 45]. The de-
tected novel samples are then used to train the classifier using the pseudolabels
as targets and are stored in a coreset for replay at future tasks. We employ a
fixed size coreset with the same building strategy as in [38]. Thus, at each task,
the classifier is trained using the current tasks detected ÔODt samples and the
samples in the coreset using experience replay to mitigate forgetting (suppl.).

4 Experiments

Intra-dataset class-incremental experiments: For intra-dataset experiments,
we consider four datasets: 1. CIFAR-10 (10 classes), 2. CIFAR-100 (super-class
level, 20 classes) [20], 3. EMNIST (26 classes) [6] and 4. iNaturalist21 (phylum
level, 9 classes) [43]. We adapt all datasets for class-incremental learning by
starting with 2 classes for the first task and adding one class at each incremental
task until all classes are covered.
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Inter-dataset Experiment: In this experiment, the novelty per task is an en-
tire novel dataset (with multiple new classes). This is a CL version of the conven-
tional ID/OOD setting. We compare how much easier it is to detect ID/OOD
shifts in this CL inter-dataset paradigm versus the previous CL intra-dataset
class incremental experiment. We consider a sequence of eight tasks each being
one of 8 object recognition datasets (Flowers [31]; Scenes [35]; Birds [44]; Cars
[19]; Aircrafts [26]; VOC Actions [10]; Letters [7]; svhn [30]) as in [2] (see suppl.).
Baselines: We compare and benchmark our method against the various com-
monly used offline OOD detectors: (i) Mahalanobis based OOD detector [23] (ii)
Softmax based OOD detector [15] which uses softmax output as a confidence
score, and (iii) Generalized ODIN [17] which introduces a decomposed softmax
scoring function as an improvement of Softmax. Note that while Softmax and
ODIN both rely on classification layers to detect novelties, Mahalanobis relies
on distance scores computed from intermediate features of a DNN. For ODIN
and Softmax we use the same classifier architecture as in our full-pipeline (sec-
tion 5.3.), i.e. a perceptron (MLP) on top of the frozen feature extractor. Since
these baselines were developed for offline OOD detection, we make the necessary
adaptations to use them in continual learning: First, for Mahalanobis we keep a
coreset with select past ID samples to estimate the joint covariance needed for
the metric. Second, because the MLP classifier in both Softmax and in ODIN
is plastic and updated continually, catastrophic forgetting is expected to have a
degrading effect on continual novelty detection performance unless an alleviation
mechanism is employed. In the intra-dataset class incremental experiments, we
apply coreset-based experience replay [40], the same CL strategy as in our full-
pipeline. Task-dependent algorithms cannot be applied in this case since each
task is only one class. Alternatively, to mitigate forgetting in the inter-dataset
experiment, we use PSP [5](a task-dependent CL algorithm) and separate read-
out heads per task, similar to [39]. The original PSP formulation requires a
task oracle. Hence, we also propose a version of PSP that is oracle-less: we loop
through all PSP task-conditioned MLP partitions and output heads collecting
task-dependent Softmax/ODIN scores. We then select the task-dependent score
yielding maximum certainty among them as a final task-independent score. Fi-
nally, we also compare against a direct implementation of DFM, which uses the
same per-task knowledge consolidation strategy as described in Section 3.1.2. but
does not employ our proposed incremental recruitment algorithm. This serves
as an ablated version of incDFM. For all four baselines, we select ÔODt by ap-
plying a single threshold per task on the corresponding generated uncertainty
scores. The threshold is chosen based on a validation set containing ID samples.
For fairness, we employ the same validation set {Vk}, k < t used by incDFM.
Refer to suppl. for more implementation details.
Architecture and Training Parameters: For all methods considered, includ-
ing ours, we use a ResNet50 [14] backbone pre-trained on ImageNet using SwAV
[4], a contrastive learning algorithm. For OOD methods which rely on classifi-
cation (ODIN, Softmax ) and also for the end-to-end class incremental learning
pipeline, we use an MLP, with 4096-dimensional hidden layer, as the classifier.
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The backbone is kept frozen for all tasks and only the classifier is fine-tuned
over the course of an experiment. We compared to fine-tuning the backbone
continually using experience replay but the reported frozen backbone approach
worked best for incDFM and baselines (see suppl.), in line with the results re-
ported in [13]. We optimize using ADAM [18] with a learning rate of 0.001 and
decrease the learning rate when on a plateau. Finally, for all methods requiring a
coreset, .e.g., our end-to-end incremental learning pipeline (section 5.3), ODIN,
Softmax and Mahalanobis, we keep between 5-10% of the dataset converted to
deep embeddings (output of frozen feature extractor) into a fixed-size coreset.
For the end-to-end-pipeline, we train until convergence using 40 epochs per task
for ODIN and 20 epochs per task for all others.

5 Results

5.1 Preliminary offline evaluation of incDFM and baselines

ID → OOD incDFM DFM Mahal Softmax ODIN

CIFAR-10 → SVHN 99.9 93.4 93.1 88.2 95.8
CIFAR-100 → SVHN 99.9 93.6 87.7 83.5 88.4

Table 1: AUROC scores for offline OOD estimation

In table 1 we evaluate incDFM performance in a conventional offline inter-dataset
setting: training on one ID dataset (one task) and evaluating once on another
OOD dataset. We use CIFAR-10 and CIFAR-100 as ID datasets and SVHN as
OOD. We implemented each baseline (DFM, ODIN, Softmax and Mahalanobis)
using the same architecture as described in Section 4.1 - a frozen Resnet50 back-
bone followed by trainable MLP. The latter in the case of methods that perform
classification (i.e. ODIN and Softmax). We show that incDFM overperforms the
compared baselines as measured by AUROC scores. AUROC stands for area
under the receiver operating characteristic curve, which plots the true positive
rate (TPR) of in-distribution data against the false positive rate (FPR) of OOD
data by varying a threshold. It can be regarded as an averaged score.

5.2 Continual Novelty detection

Intra-dataset OOD, Class incremental novelty detection: Figure 4(a)
displays the performance per task of incDFM when evaluated on intra-dataset
class incremental novelty detection, shown for CIFAR-10 and CIFAR-100. Addi-
tionally, figure 4(b) shows the average performance across tasks for all datasets.
We evaluate performance using AUROC and AUPR scores. the latter refers to
the area under precision recall curve with respect to the novelty class. Overall,
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CIFAR-10 iNaturalist CIFAR-100 EMNIST
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

incDFM 98.2 98.2 91.5 90.4 95.4 95.5 98.7 98.8
DFM 74.0 72.1 61.3 60.5 63.8 62.2 75.4 71.1
Mahal 75.2 72.2 60.9 61.6 58.7 57.7 67.7 65.0
Softmax 66.6 63.5 70.3 66.8 56.4 52.7 61.1 57.6
ODIN 81.6 79.7 75.3 71.6 53.7 53.2 63.3 60.6

(b)

Fig. 4: Intra-dataset Novelty Detection: (a) AUROC scores per task using detected
samples for model update. (b) Average AUROC and AUPR scores after all tasks.

our approach over-performs the competing methods. incDFM shows consistent
performance over tasks, with minimal to no degradation. We can directly observe
the advantage of incDFM’s incremental recruitment algorithm by comparing it
to DFM (our ablated baseline) which employs a single threshold for OOD se-
lection instead. Additionally, we can observe that the performance gap between
incDFM and compared methods is much larger in this class incremental setting
then those shown in Table 1 for the offline setting. When IDt and OODt sets
are drawn from the same dataset, as is the case in our class-incremental setting,
OOD detectors cannot explore low-level statistics to arrive at a prediction. In-
stead, the distinction must come from more conceptual class-defining properties,
arguably harder. Moreover, in this continual setting, other factors such as for-
getting and error propagation pose a further challenge.

Inter-dataset OOD, dataset incremental novelty detection: Table 2 shows
results for incDFM in a different continual learning setting, where each task now
corresponds to a fully novel dataset (experiment described in section 4). In gen-
eral, all OOD detectors, including incDFM, show higher performance in this
experiment than in the previous intra-dataset experiments (refer to Fig 4). This
again reaffirms the notion that inter-dataset ID/OOD splits are easier to disen-
tangle than splits within the same dataset. Additionally, we show that baselines
Softmax and ODIN really suffer in performance when they don’t have access to
ground-truth task labels (second row). This finding is in line with other works
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incDFM DFM Mahal Softmax ODIN
Task-Oracle AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Yes - - - - - - 99.9 99.9 99.8 99.6
No 99.9 99.9 95.0 94.5 94.7 94.3 69.4 70.1 64.2 64.0

Table 2: Inter-dataset continual learning (8-dataset) with and without Task Oracle.

1) Cifar10 2) Cifar100

Epochs Epochs

Ac
cu

ra
cy

Epochs for Odin Epochs for Odin

(a)

Cifar10 iNaturalist Cifar100 EMNIST

MT 93.1 91.1 75.6 93.1
Oracle 94.0 85.3 77.2 92.8
incDFM 92.0 74.6 74.7 90.3
DFM 75.2 60.8 46.2 71.3
Mahal 63.6 55.8 35.6 48.5
Softmax 59.9 62.5 36.2 41.7
Odin 62.5 64.3 36.8 46.1

(b)

Fig. 5: Unsupervised incremental classification pipeline - (a) Average incremental clas-
sification accuracy over tasks. (b) Final classification accuracy after all tasks.

that have explored task oracle substitutions in CL [39]. In fact, having access to
task labels for unlabeled ID samples is unrealistic in novelty detection since if a
task-label is known, it obviates the need for novelty detection in the first place.

5.3 Full Pipeline Results

Figure 5 shows results for our end-to-end pipeline for unsupervised incremental
class learning. In incDFM, the experience replay coreset stores ÔODt samples
and their assigned pseudolabels, see section 3.2. Thus, we propose an upper-
bound baseline, Oracle, which employs the same classifier and experience replay
strategy but uses real ground truth novelties(OODt) for training and for popu-
lating the coreset. This is equivalent to stopping error propagation. We also com-
pare to the multi-task (MT) upper-bound which trains all classes for the dataset
jointly, without continual learning. Firstly, figure 5(b) shows that our experience
replay baseline using ground-true labels (Oracle - dark gray) is reliably close to
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AUROC CIFAR-10 CIFAR-100
Estimated OOD Yes No Yes No

incDFM 98.2 98.2 95.9 96.1
DFM 74.0 83.0 63.8 65.2
Mahal 75.2 75.8 58.6 58.8

Softmax 66.6 73.8 45.7 67.2
ODIN 81.6 87.3 56.0 69.5

(a) (b)

Fig. 6: (a) Error Propagation from using ÔODt/(yes) vs. ground-truth OODt/(no).
(b) incDFM iterations and recruitment % (Cifar10 averaged across tasks).

upper bound MT for all datasets, suggesting a consistent mitigation of forget-
ting through time by using coreset-based replay only. Yet, most importantly, we
see that incDFM (red) is very close to the upper-bound Oracle for all tasks and
datasets, despite using only pseudolabels. In contrast, all other baselines incur a
significant drop in classification performance through time. The reason is likely
due to the compounded effect of error propagation since they provide a very
suboptimal novelty detection performance across tasks (refer back to Figure 4).
Poorer ÔODt estimates per task will propagate wrong pseudolabels for train-
ing and for coreset storage, adding detrimental noise to the overall training and
increasingly hurting performance through time.

5.4 Ablation and Hyper-parameter sensitivity study in incDFM

Error Propagation in continual OOD detection: We analyze the effect
of using estimated novel samples, ÔODt, versus ground truth novel samples,
OODt, for knowledge consolidation (Figure 6(a)). Note that estimated ÔODt

will contain a degree of error, i.e., ID samples that are erroneously pseudola-
beled as novel. Or, instead, too many OOD samples labeled as old. When this
error percentage grows too large (as is often the case for hard OOD/ID splits),
it begins to detrimentally and progressively affect the ability to perform OOD
detection at subsequent tasks. We call this continual compounded effect "error
propagation". In incDFM error propagation is largely minimized due to incre-
mental recruitment, which maintains prediction errors low throughout tasks. In
contrast, we can see that classification based OOD detectors, e.g. ODIN and
Softmax, are particularly vulnerable to error propagation.
Incremental Recruitment sensitivity in incDFM: The number of maxi-
mum iterations within a task and the percentage of recruitment of estimated
novel remaining samples at each iteration are both hyperparameters in incDFM.
We analyze the sensitivity to each in figure 6(b). Note that when maximum
iterations is equal to 1 in the x axis, we fall back to single thresholding per
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New:Old incDFM DFM Mahal Softmax ODIN

1:1 98.2 72.1 72.2 63.5 79.7
1:2 97.0 56.6 59.5 46.2 62.0
1:3 95.9 49.3 52.4 39.3 51.7
1:4 95.0 44.2 48.1 34.6 45.1

Table 3: AUPR Scores with task data imbalanced towards more old samples (Cifar10).

task, same as in our ablated baseline DFM. Iterative recruitment seems to peak
in performance roughly at about 5 iterations for CIFAR-10 and we observed a
similar trend across all datasets. Moreover, performing two iterations is already
a 22% improvement when compared to single thresholding as in simple DFM.
Alternatively, incDFM is less sensitive to the recruitment percentage and follows
an intuitive trend where, for very low recruitment percentages, it takes more it-
erations to converge (yellow line - 15% recruitment rate). Overall, incDFM with
10 maximum iterations achieves up to a 39.4% improvement over simple DFM.
Mixing Ratio of New/Old in each task: In previous experiments we kept
each task with a balanced number of old and new data samples. However, in-
creasing the ratio of old to new data can have a detrimental effect in precision
and recall performance. Old classes can be interpreted as distractors and more
distractors can make novelty detection harder. We show the effect of data im-
balance on performance in Table 3. Overall incDFM is much more robust to
imbalances than other baseline methods. From a 1:1 to a 1:4 new to old ratio in
the unlabeled pool, incDFM decreases only 3.3% in performance (AUPR scores)
whereas baselines have a decrease between 33% (ODIN) to 41.4% (Softmax).

6 Conclusion

This paper presented a novel, self-supervised continual novelty detector. In con-
trast to the prevailing novelty detection approaches that operate in a static
setting, we designed a method capable of handling realistic, non-stationary con-
ditions with recurrent exposure to new classes of data. Using cumulative consol-
idated knowledge of what is in-distribution up until the new task, our method
incrementally estimates a statistical novelty detection model associated to the
new task by iteratively recruiting the most certain novel samples and updating
itself to progressively enable better estimates. Extensive experimentation in the
challenging task-incremental continual learning setting shows state of the art
performance in continual novelty detection, minimizing catastrophic forgetting
and error propagation at each task through time.
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